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1 Introduction

This work aims to study the representativity of the measurements obtained from a limited domain of the
random viscoplastic two–phase material and to precise the statistical definition of the Representative Volume
Element (RVE).

2 Numerical tools for homogenization problems

The computational methods used in this work introduce explicitely the 2D/3D morphology of the consid-
ered random heterogeneous materials. A generic representation of the microstructure of random materials
is chosen, namely the so–called Voronöı mosaics. The finite element method is chosen for the 2D/3D com-
putations presented in this work. The corresponding parameters used in the finite element simulations of
the creep behavior of a two–phase aggregate are given: mesh size, constitutive equations of the constituents
and boundary conditions.

2.1 Generic representation of the microstructure

A good candidate to generate random media is the Voronöı mosaic model since it provides a granular
representation of the microstructure and since it introduces a random character in the phase distribution
(Torquato, 2002). It is an ideal representation of isotropic random polycrystals (Gilbert, 1962; Barbe et al.,
2001). The Voronöı mosaic model reproduces a random distribution of grains in space according to a Poisson
process, building a Voronöı tesselation of space (Gilbert, 1962). It is also possible to superimpose a constraint
of periodicity at the boundary of the volume in the generation of the Voronöı mosaic as proposed in (Decker
and Jeulin, 2000) and used in (Kanit et al., 2003). One must distinguish the 2D case to the 3D one. These
two models are different. Moreover, one can precise that 2D slices generated by a 2D Voronöı mosaic model
cannot be obtained from 2D slices of a volume built following a 3D Voronöı mosaic model. For the 2D case
(resp. 3D), the number of grains NS (resp. NV ) is given by the relation SGNS = S (resp. VGNV = V ),
where SG (resp. VG) is the mean surface of a grain (resp. mean volume of a grain) and S (resp. V ) the
surface (resp. volume) of the grains. As no intrinsic length scale is introduced in our simulations, absolute
values of grain sizes are not required. The convention is made that the mean surface of one 2D Voronöı cell
(resp. the mean volume of one 3D Voronöı cell), SG (resp. VG), is 1. As a result, a surface (resp. volulme)
contains in average NS = S (resp. NV = V ) Voronöı cells.

Figures 1a (resp. 1c) show a realization of a 2D (resp. 3D) Voronöı mosaic obtained by the algorithm
proposed in (Barbe et al., 2001). Each color corresponds to a different grain. The phases (hard and soft)
are then distributed randomly among the various grains according to a given volume fraction, which leads
to the distribution shown in figure 1b (resp. 1d). In the present study, we have chosen a volume fraction of
70% for the hard phase (the hard phase is called P1) and 30% for the soft phase (the soft phase is called P2).

2.2 Constitutive equations

The constitutive equations adopted for modelling the response of the phases are based on a standard elas-
toviscoplastic framework. The total strain is decomposed into elastic and plastic parts and Hooke’s law is
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Figure 1: (a) 2D microstructure (Voronöı mosaic containing 300 grains), (b) Meshing of a Two-phase mate-
rial: 2D Voronöı mosaics containing 300 grains with 70% of phase1 and 30% of phase2, (c) 3D microstructure
(Voronöı mosaic containing 470 grains), (d) Meshing of a Two-phase material: 3D Voronöı mosaics containing
470 grains with 70% of phase1 and 30% of phase2.
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Phase Volume Fraction (%) n K (MPa1/n) E (GPa) ν

Hard phase 70 3.5 5000 441 0.25
Soft phase 30 4 950 307 0.25

Table 1: Volume fraction and mechanical data for the two phases. K and n are parameters in the power
law used for the viscoplastic behavior of the two phases.

adopted:
εij = εe

ij + εp
ij , σij = cijklε

e
kl (1)

For simplicity, the creep law introduced for both phases is a simple power law without hardening:

ε̇p
ij = ṗ

3
2

sij

J2(σij)
, ṗ =

(
J2(σij)

K

)n

, J2(σij) =

√
3
2
sijsij (2)

J2 denotes the second invariant of the stress tensor and is also called the von Mises equivalent stress. The
deviatoric part of the stress tensor is sij and p is the cumulative equivalent viscoplastic strain. The materials
properties of each phase are thus defined by the two parameters: K and n. These parameters are given in
Table 1.

2.3 Finite element meshing

The finite element mesh associated with the image of the microstructure is obtained using the so–called
multi-phase element technique (Lippmann et al., 1997; Barbe et al., 2001). A regular 2D (resp. 3D) finite
element grid is superimposed on one image of the Voronöı mosaics. The material property is attributed to
each integration point according to the color of the nearest pixel (resp. voxel) of the image. As a result,
two phases may be present inside some elements. Figure 1b (resp. 1d) shows such a mesh for a 2D (resp.
3D) microstructure and the distribution of both phases. The elements are quadratic squares (8 nodes) (resp.
quadratic bricks (20 nodes)) with complete integration (9 Gauss points) (resp. (27 Gauss points)).

The appropriate mesh density, defined as the average number of elements required for ensuring a given
accuracy in the results of the numerical simulations, must be first determined in 2D and 3D. For that purpose,
a specific 2D (resp. 3D) microstructure made of 100 grains is used, with a volume fraction equal to 70% of
phase P1 and 30% of phase P2. Shear creep tests were simulated by applying a constant macroscopic shear
stress Σ12 equal to 10 MPa, with the boundary conditions as explained in section 2.5. The number of cells
and the geometry of the microstructure are unchanged but different mesh resolutions are used. The number
of finite elements was changed from 100 to 8000 elements.

The results given in figure 2 show the convergence of the macroscopic shear Ė12 of the aggregate as a
function of the number of elements. In 2D, a mesh density of 20 quadratic elements per grain is necessary
to get a precision of 1% on the mean strain rate. In 3D and with the same precision, 17 quadratic elements
per grain are necessary. We verified that this mesh density leads to a convergence of the local stress and
strain fields with a precision better than 5%.

2.4 Ensemble average

The computation cost limits the possible number of grains that can be handled in the simulation of one
volume element V. In particular, such a limit size may be smaller than a so–called Representative Volume
Element of the material (Kanit et al., 2003). In this case, the properties that can be computed are not
necessarily the desired effective properties but merely apparent properties of the investigated volume.

In (Huet, 1990; Hazanov and Huet, 1994), Huet derive relationships between apparent physical properties
obtained on a large elastic specimen (not necessarily a RVE) and on a set of smaller ones obtained as a
uniform partition of the considered large specimen. One of the conclusions is that the effective properties
are bounded by the ensemble average of results obtained on the set of smaller specimens:

C∼∼
app
SUBC ≤ C∼∼

eff ≤ C∼∼
app
KUBC (3)
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Figure 2: Evolution of Ė12 as a function of the number of elements (2D/3D). Creep tests were performed
under periodic boundary conditions for a macroscopic shear stress Σ12 = 10 MPa.

where:
C∼∼

app
SUBC is the ensemble average of apparent modulus tensor obtained with Static uniform boundary

conditions (SUBC) on a partition of V .
C∼∼

app
KUBC is the ensemble average of apparent modulus tensor obtained with Kinematic uniform boundary

conditions (KUBC) on a partition of V .
C∼∼

eff is the effective modulus tensor of the representative volume element. The inequality 3 has to be
integrated in terms of quadratic forms.

When the large specimen is a RVE, the effective properties found with both SUBC and KUBC are the
same. Recently, Kanit et al. (Kanit et al., 2003) show that one can estimate the effective properties of
heterogeneous elastic materials by computing and ensemble averaging the apparent properties of a sufficient
number of volumes containing a given number of grains. This statistical approach is extended in the present
work to the nonlinear case.

2.5 Boundary conditions

The notations used within the context of the mechanics of heterogeneous materials are the following (Suquet,
1997): the local strain and stress fields inside the considered volume elements are denoted by εij(xk) and
σij(xk). The macroscopic strain and stress tensors are then defined as the corresponding average values over
each considered volume:

Eij =< εij >=
1
V

∫
V

εij , dV, Σij =< σij > (4)

In order to invesigate the creep behavior of the heterogeneous material, one must be able to prescribe a
given macroscopic stress tensor Σij to each considered volume element V. For that purpose, several types of
boundary conditions are available. They are listed and compared in the reference (Kanit et al., 2003).

The boundary conditions that lead to the smallest boundary layer effects and therefore to smaller rep-
resentative volume elements are the periodicity conditions. The displacement field over the entire volume
then reads:

ui = Eijxj + vj ∀xi ∈ V (5)

where Eij is the prescribed macroscopic strain tensor. The fluctutation vi is periodic: it takes the same
values at two homologous points on opposite faces. The traction vector σijnj takes opposite values at two
homologous points on opposite faces of V . The numerical resolution of this problem within the finite element
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context is such that the dual forces associated to Eij are the components of the macroscopic stress tensor
Σij (Besson et al., 2001). Consequently, the periodicity conditions can be used either for prescribing mean
strain or mean stress components.

In the present work, all the simulations were performed by applying a constant macroscopic shear stress
Σ12 during the creep tests, the remaining stress components being set to zero. The macrocospic stress tensor,
Σij , takes this form:

Σij =

 0 Σ12 0
Σ12 0 0
0 0

 (6)

Therefore, the macroscopic strain rate of the aggregate is equal to the macroscopic viscoplastic strain
rate:

< ε̇ij >=< ε̇e
ij > + < ε̇v

ij >, Ėij = Ėe
ij + Ėv

ij (7)

so:
Ėe

ij = 0, Ėij = Ėv
ij (8)

2.6 Apparent viscoplastic properties

The problem is to define this notion of apparent property for viscoplasticity. In this case, the strain energy
takes this form:

ė=̂ < σ∼ : ε̇∼ >= Σ∼ :< ε̇∼ >= Σ∼ : Ė∼ (9)

where Ė∼ and Σ∼ are the macroscopic strain and stress tensors. Shear creep tests being performed and
assuming that a stationary stress state has been reached, one can write:

Σ∼ :< ε̇∼ >= Σ∼ : Ė∼
v
, 2Σ12 < ε̇12 >= 2Σ12Ė

v
12, < ε̇12 >= Ėv

12 (10)

We make the hypothesis that the macroscopic strain rate of the 2D/3D aggregates can be also approx-
imated by a simple creep law. It is known that, in general, this assumption is not verified, except when
both phases have the same parameter n (Rougier et al., 1993), but we suppose that it is only suitable under
certain conditions: shear creep tests in a precise domain of stresses (≤ 30 MPa) at 1400K. Two parameters
napp, Kapp are then identified such that:

Ėv
ij = ṗ

3
2

Sij

J2(Σij)
, ṗ =

(
J2(Σij)
Kapp

)napp

, J2(Σij) =

√
3
2
SijSij (11)

J2 and Sij are the second invariant and the deviatoric part of the macroscopic stress tensor.
Then, taking into account relation 11, relation 10 become:

2 < ˙ε12 >=
√

3
napp+1

Σnapp

12

1
Kappnapp ,

1
Kappnapp =

2 < ˙ε12 >
√

3
napp+1

Σ12
napp

(12)

We define an apparent property for viscoplasticity Pv = P app
v as:

P app
v =

2 < ˙ε12 >
√

3
napp+1

Σ12
napp

=̂
1

Kappnapp (13)

The procedure of determination of P app
v is the following. For each domain size (2D/3D), shear creep

tests were performed under periodic boundary conditions on each realization at 10 MPa. The contrast
between strain rates of both phases under a shear stress of 10 MPa is 35. For a given domain size and for
each realization, the average shear strain rate Ė12 =< ˙ε12 > is computed; napp and Kapp are calibrated
using a numerical identification from the ensemble average obtained on shear creep tests performed on each
realization at two different stress levels (10 and 30 MPa). One can now compute for each realization the
apparent property for viscoplasticity P app

v .
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3 Statistical definition of the size of the RVE

We have seen in section 2.4 that the apparent properties are defined from spatial average of additive fields
˙ε12 over a surface S (resp. volume V ). We will consider now fluctuations of the average values over different

realizations of the random composite material inside the surface S (resp. volume V ). The variance of the
apparent properties for each domain size is used for the determination of the RVE.

A good way to have a convenient measurement of the size of a RVE of a stationary and ergodic random
structure is the notion of integral range (Matheron, 1971; Matheron, 1975; Lantuejoul, 1991; Cailletaud
et al., 1994; Jeulin, 2001). It is a range which gives information on the domain size of the microstructure for
which the parameters measured in this volume have a good statistical representativity. This notion is very
useful to predict the variability of the properties of a material. This notion of integral range has already
been introduced by T. Kanit (Kanit et al., 2003) and this work is an extension of this notion to the nonlinear
case.

Considering Pv as an ergodic stationary function, one can compute the variance D2
Pv

(S) (resp. D2
Pv

(V ))
of its average value Pv over the surface S (resp. volume V ) (Matheron, 1971; Lantuejoul, 1991):

D2
Pv

(S) =
D2

Pv
A2

S
, (D2

Pv
(V ) =

D2
Pv

A3

V
) (14)

where D2
Pv

is the point variance of Pv and A2 (resp. A3) is the integral range of the random function
Pv. The scaling law 14 is valid for an additive combination of the variable Pv over the region of interest
S (resp. V ), when its size is such that: S > A2 (resp. V > A3). In the case of a two-phase viscoplastic
composite material with creep properties (n1,K1) for phase 1 (volume fraction P1 = P ) and (n2,K2) for
phase 2 (volume fraction P2 = 1 − P ), the point variance D2

Pv
of random variable Pv over the surface S

(resp. volume V ) is given by:

D2
Pv

= P 2
v − Pv

2
, D2

Pv
= P (1− P )(Pv1 − Pv2)

2 (15)

Using relation 13, one can write:

D2
Pv

= P (1− P )[
1

Kn1
1

− 1
Kn2

2

]2 (16)

Regarding the material as a random taking of independant realizations, the size of the RVE, based on
statistical arguments, must be considered as a function of parameters: the physical property of interest, the
contrast of properties, the volume fraction of components and the number of realizations of the microstructure
(Kanit et al., 2003). In the statistical theory of samples that can be found for instance in (Kreyszig, 1988;
Kanit et al., 2003), the absolute error εabs and relative error εrel on the mean value of the studied property
Pv, obtained with n independent configurations of surface S (resp. volume V ), is a function of the variance
DPv

(S) (resp. DPv
(V )) by:

εabs =
2DPv

(S)√
n

, (εabs =
2DPv

(V )√
n

) εrel =
εabs

Pv

(17)

Taking into account relation 14, one can write:

S =
4D2

Pv
A2

ε2relP
2
v n

, (V =
4D2

Pv
A3

ε2relP
2
v n

) (18)

The size of the Representative Surface Element RSE (resp. Representative Volume Element) can therefore
be estimated as the surface (resp. volume) for which for instance n=1 realization is necessary to estimate
the mean property Pv with a relative error εrel=1%. One can decide also to operate on smaller volumes and
to consider n realizations to obtain the same relative error.
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S (number of grains) 300 833 1400 2000
n (number of realizations) 1000 300 300 300

mean value Ė12(x109s−1) 8.26 8.10 8.10 8.09

mean value Pv(x1013) 2.63 2.58 2.59 2.58

variance 2DPv (x1014) 6.78 3.84 3.28 2.52
εrela 0.8% 0.8% 0.8% 0.6%

Table 2: Dispersion and mean value of the apparent property for viscoplasticity P app
v as a function of the

domaine size S.

V (number of grains) 96 150 470 715 1000
n (number of realizations) 112 66 81 25 11

mean value Ė12(x109s−1) 5.85 5.60 5.56 5.65 5.65

mean value Pv(x1013) 2.56 2.45 2.44 2.47 2.47

variance 2DPv (x1014) 10.5 6.41 4.51 3.28 2
εrela 3.8% 3.2% 2.1% 2.7% 2.4%

Table 3: Dispersion and mean value of the apparent property for viscoplasticity P app
v as a function of the

domain size V .

4 Results

4.1 2D/3D Fluctuations of the effective property

The number of grains and realizations considered in our 2D (resp. 3D) simulations are reported in table 2
(resp. table 3). The obtained mean values Pv and dispersions 2DPv of the apparent property for viscoplas-
ticity P app

v are given, in 2D (resp. 3D), in figure 3a (resp. figure 3b), as a function of the domain size. Values
are reported in tables 2 and 3.

It is observed, for both 2D and 3D domains, that the dispersion of the results decreases when the size
of the domain increases and that the mean values converge towards the same limit for large domains, which
is the wanted effective property. One can see in tables 2 and 3 that the values of the effective property for
viscoplasticity P eff

v are practically the same in 2D and 3D. The relative error between both values is lower
than 4%. Moreover, one can oberve that a bias is found in the mean value for small volume sizes. This bias
is well-known (Huet, 1990; Sab, 1992). Even using periodic boundary conditions, the mean value computed
on small aggregates cannot represent the effective response of the two-phase material. In 2D, from a surface
containing 800 grains and, in 3D, from a surface containing 150 grains, the mean value does not depend on
the size of the domain.

Finally, we can compare the 2D and 3D dispersions obtained. First, one can precise that the number
of grains in 2D, NS , is different to the one in 3D, NV . NS is obtained simply from NV by the relation:
NS = N

2
3
V . In 3D, the maximum number of grains considered in our simulations is 1000, which corresponds

to about 100 grains in 2D. If we compare the dispersion obtained in 3D for the volume containing 1000 grains
with the ones obtained in 2D (figure 3, see also tables 2 and 3), we can conclude that the 2D dispersion is
greater than the 3D one.
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(a)

(b)

Figure 3: Dispersion and mean value of the apparent property for viscoplasticity P app
v , as a function of the

domain size: (a) 2D, (b) 3D. Periodic boundary conditions are considered.
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Property Integral Range A2 α

Pv (P = 70%, ε̇1
ε̇2

= 35) 1.3 1
Volume fraction (P = 70%) 1.018 (Gilbert, 1962) 1

Property Integral Range A3 α

Pv (P = 70%, ε̇1
ε̇2

= 35) 0.63 1
Pv (P = 70%, ε̇1

ε̇2
= 35) 1.19 1.1

Pv (P = 70%, ε̇1
ε̇2

= 35) 2.18 1.2
Volume fraction (P = 70%) 1.111 (Kanit et al., 2003) 1

1.179 (Gilbert, 1962) 1
κ (P = 70%, E1

E2
= 100) 1.02 (Kanit et al., 2003) 0.78

µ (P = 70%, E1
E2

= 100) 1.322 (Kanit et al., 2003) 0.763
λ (P = 70%, λ1

λ2
= 100) 2.619 (Kanit et al., 2003) 1.033

Table 4: Values of the integral range A2, A3 and the coefficient α for the apparent property for viscoplasticity
P app

v and for other linear properties.

4.2 2D/3D Computations of the Integral Range

Starting from relations (14), one can identify A2 and A3 from the simulations performed. We propose to
test a power law according to the relation:

D2
Pv

(S) = DP 2
v
(
A2

S
)α, (D2

Pv
(V ) = DP 2

v
(
A3

V
)α) (19)

α equal to 1 means that the model is well fitted. Equation (19) can be written:

log(D2
Pv

(S)) = −αlog(S) + (log(DP 2
v
) + αlog(A2)), (log(D2

Pv
(V )) = −αlog(V ) + (log(DP 2

v
) + αlog(A3)))

(20)
Our data were fit to relation (20) for the apparent property for viscoplasticity P app

v . The obtained A2,
A3 and α parameters are reported in table 4.

The quality of the fitting can be seen in figure 4 where the variances of simulated results and the model
are compared. One can see that the model is well fit in 2D with A2 equal to 1.3 and α equal to 1. In 3D,
the fitting is less perfect with A3 equal to 1.19 and α equal to 1.1. We have tested the sensibility of the
parameter A3 to a slight variation of α. Results are reported in table 4 and show that A3 varies between 0.63
and 2.18 when α is comprised in the interval [1;1.2]. It is shown in figure 4b that the quality of the fitting is
improved and more acceptable for α equal to 1. A possible explanation of a better fitting in 2D compared
to 3D is probably the size of the domains considered. The maximum number of grains in 2D is 2000. The
maximum number of grains in 3D is 1000, which corresponds only to about 100 grains in 2D. Then, larger
volumes (or more realizations ?) should be used to possibly improve the quality of the fitting and to precise
correctly the value of A3 (more closed to 0.63 than to 1.19). Finally, it seems that A3 (closed to 0.63) is
lower than A2 (1.3). It means that the variance seems to decrease twice slower, with the size of the domain,
in 2D than in to 3D. This is in agreement with the previous result stating that the 2D dispersion of the
property Pv is greater than the 3D one.

5 Discussion

5.1 Comparison with other properties

The values of the integral ranges obtained in 2D and 3D are closed to 1. We can see in table 4 that A2

(1.3) and A3 (closed to 0.63) are practically in the same order of the integral range of the volume fraction
predicted by both theory (Gilbert, 1962) and numerical simulations of a two-phase voronöı mosaic (Kanit
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(a)

(b)

Figure 4: Variance of the apparent property for viscoplasticity Pv as a function of the domain size: simulations
and model, (a) 2D (α = 1; A2 = 1.3) , (b) 3D (α = 1-1.1; A3 = 0.63-1.19)
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Relative precision εrel=1% εrel=5% εrel=10%
S2D

Pv
(n=10 realizations) 20311 831 203

S2D
Pv

(n=300 realizations) 677 27 7
V 3D

Pv
(n=10 realizations) 10739 (S3D−>2D = 502) 429 (S3D−>2D = 58) 105 (S3D−>2D = 22)

V 3D
Pv

(n=300 realizations) 357 14 4
V 3D

κ (n=10 realizations) 13340 533 133
V 3D

κ (n=300 realizations) 444 17 5
V 3D

µ (n=10 realizations) 71253 2806 701
V 3D

µ (n=300 realizations) 2339 93 23

Table 5: Minimimal sizes of the RSE and RVE determined for nonlinear and linear properties, for a given
precision εrel and a given number of realizations n.

et al., 2003). We can also compare our results with values of integral range obtained in 3D with other linear
properties (see table 4) using periodic boundary conditions, with the same volume fraction (P = 70%) but
different contrasts between the properties of the constituents (Kanit et al., 2003). Results are also reported
in table 4. The contrast in shear modulus µ is high (120), whereas the contrast in bulk modulus κ is lower
(5). The value obtained for the integral range of the nonlinear property Pv in 3D (A3 closed to 0.63) is
always lower than the ones obtained for the bulk κ, shear µ moduli and for the thermal conductivity λ. It
means that the variance decreases more slowly with the size of the domain in the linear case than in the
nonlinear case.

5.2 Determination of the size of the Representative Volume Element

Using relations 18, one can now estimate the minimal sizes of the RSE and the RVE for a given relative
error εrel and a given number n of realizations. Results are reported in table 5. 3D results are compared
with the ones obtained for linear properties presented in section 4.2.

When εrel=1% and for n=10 realizations, it is shown that one must take about S2D
Pv

= 20311 and V 3D
Pv

= 10739 for the apparent property for viscoplasticity P app
v . Or, V 3D

Pv
= 10739 grains in 3D corresponds to

about S3D−>2D
Pv

=500 grains in 2D (NS = N
2
3
V ). S2D

Pv
is 40 times greater than S3D

Pv
when εrel=1% and 10

times when εrel=10%.
Comparing our results with other linear properties, one can see that:

• V 3D
Pv

is practically equal to V 3D
κ , whereas the contrast chosen in our simulations is 35 and the contrast

between bulk moduli is 5,

• V 3D
Pv

is 7 times lower than V 3D
µ , wheras the contrast chosen in our simulations is 35 and the contrast

between shear moduli is 120

Then, the size of the Representative Volume Element (RVE) seems to be smaller in the nonlinear case
than in the linear case, for the present study.

6 Conclusions and prospects

This work aimed to estimate RVE sizes for 2D/3D viscoplastic composite material. The microstructure
was representated by Voronöı mosaics. An apparent property for viscoplasticity Pv was proposed with
its numerical procedure of determination. 2D/3D computations were performed under periodic boundary
conditions to estimate the fluctuations of the effective property P eff

v and to compute the integral range.
Results show that the 2D dispersion is greater than the 3D one. A3 (closed to 0.63) is smaller than A2

(1.3), which means that the variance seems to decrease twice slower, with the size of the domain, in 2D than
in to 3D. We found that the integral range A3 obtained for Pv is always lower than the ones obtained for
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other linear properties, like the bulk κ, shear µ moduli and the thermal conductivity λ. It means that the
variance decreases more slowly with the size of the domain in the linear case than in the nonlinear case.
Computations of RVE sizes show that:

• the size of the RVE in 2D is larger than the size of the RVE in 3D,

• the size of the RVE seems to be smaller in the nonlinear case than in the linear case.
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