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Abstract. Metal coated micro-cantilevers are used as transducers of their

electrochemical environment. Using the metallic layer of these cantilevers as a working

electrode allows one to modify the electro-chemical state of the cantilever surface. Since

the mechanical behavior of micrometer scale objects is significantly surface-driven,

this environment modification induces bending of the cantilever. Using a full-field

interferometric measurement set-up to monitor the objects then provides an optical

phase map, which is found to originate from both electro-chemical and mechanical

effects. The scaling of the electro-chemically-induced phase with respect to the surface

charge density is modeled according to Gouy-Chapman-Stern theory, whereas the

relationship between the mechanical effect and the surface charge density is analyzed.

An identification technique is described to determine a modeling of the electro-elastic

coupling and to identify the spatial charge density distribution from full-field phase

measurements. Minimizing the least-squares gap between the measured phase and a

statically admissible phase field, the mechanical effect is found to be charge-driven.

The charge density field is also found to be singular on the cantilever edge, and the

shear stress vs. charge density is found to be non-linear.
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1. Introduction

The increasing interest for micro-electro-mechanical systems (MEMS) has raised several

issues concerning several specific mechanical phenomena. Decreasing the size of

mechanical objects down to the 1-100 micrometer range significantly enhances the

surface-driven aspect of the mechanical behavior, so that these objects are used in wide

range of sensing applications [1]. The present paper intends to focus on the coupling

between electrochemical and mechanical effects, which involves small elastic strains,

thus requiring the measurement of vanishingly small strains [2]. This was first achieved

on macroscopic samples by several optical methods such as Köster interferometer [3],

which was used with a gauge length in the 10-mm range. Electrochemical effects have

also been investigated through the mechanical loading they induce on microcantilevers.

An investigation of the double-layer region [4] (i.e., no electrochemical reaction) as well

as adsorption reactions [5, 6, 7] and electrodeposition [8] have been carried out using

the standard optical lever technique [1]. Using this set-up allows one to demonstrate

the phenomenon, but it is not suited to describing the involved mechanical effect. The

development of in-situ ellipsometric measurements also allows for the development of

comprehensive models describing the optical behavior of noble metal working electrodes

in the double-layer regime [9, 10]. These models, based on the Gouy-Chapman-Stern

theory, have been successfully used to monitor the anion adsorption in the double-layer

regime [11], thus providing a description of the electrochemical state of the interface. The

electro-elastic coupling has then been monitored, combining the optical lever technique

with ellipsometric measurements on a cantilever [12].

However, if the existence of this surface coupling phenomena has been

demonstrated, the modeling of the connection between the electrochemical state of

an interface and the induced deformation remains an open question [2]. Since one of

the main difficulty is to ensure a uniform and well defined loading at the micrometer

scale, it is thought that increasing the experimental information amount may lead to a

significant modeling improvement, provided the redundancy of the measured quantity is

sufficient. This statement is at the origin of the development of identification techniques

based on full-field measurements in Solid Mechanics.

A first class of identification techniques allows for the identification of elastic

properties using redundant or full-field kinematic data in the typical case where the

loading is applied in a well defined manner. A first group, initiated in Ref. [13], is derived

from the constitutive equation error [14] and has been applied to both dynamic model

updating [15] and elastic property or damage field identification [16]. It was also used

to get elastic properties by analyzing a heterogeneous test [17]. Based on equilibrium

conditions, the virtual fields method has been used to identify homogeneous elastic

properties of composites [18, 19]. The reciprocity gap [20] is a specific technique needing

both kinematic and static quantities at the same location of the body boundary [21].

Dealing with experiments where the mechanical loading has to be identified represents

another class of identification problems.
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Starting from the equilibrium gap method [22], one may consider only kinematic

measurements, and add some unknowns (describing the loading) in the identification

problem. This (inverse) problem is solved, provided that the mechanical behavior

remains elastic [23]. Dealing with multi-physical (i.e., coupled) phenomena, an

alternative solution consists in enriching the experimental basis with full-field

measurements of any complementary information describing the phenomenon under

scrutiny. The case where these two fields are combined in a single measured field

is hereby considered, thus requiring no additional measurement but a decoupling

procedure. The aim of the present paper is to propose the use of phase-modulated

interferometric measurements and an electrochemical workstation, presented in Section

2, to have access to the change of a full phase field of the observed object, originating

from both the electrochemical state of the interface and the mechanical effect on

the observed cantilever. The way these two phenomena are operating is described

and modeled in Section 3. The proposed decomposition allows one to distinguish

the electrochemically- and mechanically-induced optical phase, and thus to derive

simultaneously a description of the charge density field and the electro-elastic coupling

through a dedicated identification procedure (Section 4).

2. Experimental set-up

2.1. Nomarski imaging set-up

The interferential microscopy imaging set-up used herein is shown in Fig. 1. A light-

emitting diode (LED, λ = 760 nm) illuminates a polarization beam-splitter. The

beam reflected by the beam-splitter is polarized at 45◦ of the axes of a photo-elastic

polarization modulator. The Wollaston prism, whose axes are parallel with those

of the modulator, splits the beam into two orthogonally polarized beams at a small

angle between each other. These beams are focused upon the sample by an immersion

objective lens (18-mm focal length, N.A. = 0.3). After reflection and recombination

by the Wollaston prism, the beam goes through the polarization modulator and the

polarization beam-splitter. The transmitted beam is finally focused on a CCD array

(Dalsa-CA-D1, 256 × 256 pixels, 8 bits). The polarization beam-splitter behaves as

crossed linear polarizers mounted at 45◦ of the axes of the Wollaston prism and of the

polarization modulator.

The interference pattern is obtained as the difference of two topographies of the

surface, shifted by the Wollaston prism by a distance d. The Wollaston shear-direction

is chosen to be parallel to the cantilever axis, denoted by x, so that the topographies

involved in the interference pattern are views of the cantilever shifted along the direction

of its larger dimension (see Fig. 2). The distance d is chosen to be almost similar to

the cantilever length. The pixel size in the object plane is equal to 0.9 µm. The optical

phase map is then retrieved using four integrating buckets, and arises from both the

sample topography (i.e., height and slope fields) and the reflection coefficient field of
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Figure 1. Schematic view of a Nomarski shear-interferometer with phase modulation.

Figure 2. Typical interference pattern. The shear direction is parallel to the cantilever

direction, and the shear d is almost equal to the cantilever length. The axis system is

shifted for the sake of clarity and the origin is set at point O.
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Figure 3. Schematic view of the used fluid cell.

the interface [24].

2.2. Electro-chemical procedure

2.2.1. Sample preparation Figure 3 shows a schematic view of the used fluid cell. It

is mainly composed of two polymer parts (PDMS, PolyDiMethylSiloxane). The lower

part is used to hold the sample, which is glued on a copper piece thanks to a conducting

epoxy resin. The temperature of this copper piece is controlled by Peltier effect modules

and a temperature sensor. A clear aperture is made in the upper part, and closed

by the immersion objective. The mechanical contact between the objective and the

upper PDMS part ensures the fluid cell to be watertight. Another copper part, whose

temperature is also controlled by Peltier modules, embraces this upper polymer part.

Fluid inlet and outlet allow for a simple modification of the content of the fluid cell.

The fluid cell presented in Fig. 3 is filled with an electrolytic solution, and a

gold-coated silica array of 18 cells of 6 micro-objects is sealed in it. The objects

under consideration are micro-cantilevers (70 × 20 × 0.84µm), which are made of silica

(thickness: 770 nm) obtained by thermal oxydation of a silicon wafer. A titanium

(thickness: 20 nm) and a gold (thickness: 50 nm) layer are then sputtered onto the

sample. A conducting glue is used to ensure the electrical connection to the gold layer.

This microcantilevers cell is used as the working electrode. All the connections are

insulated with a thin PDMS layer, to ensure that only the gold surface of the working

electrode is in contact with the solution. It has a total area of almost 1cm2 in constant

contact with the electrolytic solution. The counter-electrode is a 250-µm diameter and

15-cm long platinum wire plunging in the fluid cell. The Ag/AgCl reference electrode

is made of a silver wire (250-µm in diameter) onto which a silver chloride layer has

been electrodeposited by oxidation in a 1M KCl solution. The three electrodes are

then connected to a CHI 660A potentiostat (IJCambria, England). After bubbling

nitrogen, the fluid cell is then filled with a KCl solution (10−2M), prepared from milliQ
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Figure 4. Cyclic voltammetry of the microcantilevers array in a 10−2M KCl solution.

Number of cycles: 3, scan rate: 2 mV/s, starting potential: -0.1 V vs. Ag/AgCl.

water. The gold surface is then cleaned electrochemically by performing successive cyclic

voltammograms between 0 and 0.8 V at 10 mV/s. Gold is then successively oxidized

and reduced, until a stable voltammogram (i.e., after a few cycles) is obtained, thus

ensuring a clean and reproducible metallic surface. The fluid cell is then purged and

filled again with a 10−2M KCl deoxygenated solution.

2.2.2. Electrochemical response of the microcantilevers array Figure 4 shows the cyclic

voltammetry at the microcantilevers array. The electrode potential was swept linearly

at a scan rate of 2mV/s, during three cycles, between -0.1 and 0.4 V vs. Ag/AgCl.

The potential window was chosen so that the electrode processes are not perturbed by

any substance or electrode material electrochemical transformation. For potentials less

than -0.1 V vs. Ag/AgCl, oxygen reduction may be observed while a peak, presumably

related to Au oxidation, is observed for potentials greater than 0.5 V. The reversible

system observed at 0.05 V (oxidation) and -0.05 V (reduction) is attributed to the

Ti underlayer oxidation. The shape of the voltammogram, in the chosen potential

region, is characteristic of a double layer charging process. The integration of the cyclic

voltammogram provides the variation of the charge passing through the electrode with

the potential.

3. Phenomena at the origin of the measured optical phase

During the three potential cycles, a phase map is recorded every 0.05-V step, thus

providing a set of 61 phase maps, that is a 15 × 111 × 61 phase measurements stack
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covering the cantilever through the whole experiment. The aim of this section is then

to express the phase change as a function of both the deformation of the cantilever and

the electrochemical modification of the interface.

3.1. Decomposition in electro-chemically induced and mechanically induced optical

phase

The interface composition is modified when subjected to a potential change. This

property has been used to predict the change of the ellipsometric parameters with the

surface charge of these surfaces [9, 10]. Paik et al [11] have shown that it is necessary

to take into account at least two phenomena if one wants to compute the ellipsometric

parameters change of an electrode/electrolyte interface:

• the local change of the refractive index of the solution due to a local concentration

shift;

• the complex refractive index change of the metal induced by the free electrons

density change at the surface.

If the electrode potential is modified to impose a metal surface charge σm, then the

electrolyte side of the interface yields a surface charge density σd in a diffuse layer, and

specific adsorption of anions (resp., cations) may occur, leading to a surface charge σ−
(resp., σ+). Electrical equilibrium of the interface requires

σm + σd + σ− + σ+ = 0 (1)

The Gouy-Chapman theory [25, 26, 27] may be used to describe the interface between a

monovalent electrolyte solution whose bulk concentration is N0 (i.e., number of charges

per unit volume) and a metallic electrode, assuming the latter to be planar. The diffuse

layer charge per unit electrode surface σd reads

σd = −
√

8N0ǫwkT sinh

{
e(Φm − Φ∞)

2kT

}
(2)

where ǫw is the dielectric constant for water, k Boltzmann constant, T the absolute

temperature, e the electron charge, Φm the electrode (metal) potential and Φ∞ the

remote potential. The concentration distribution for cations N+ and anions N− read

N± = N0

(
1 ± γ exp(− x

λD
)

1 ∓ γ exp(− x
λD

)

)2

(3)

where the parameter γ is defined by

γ = tanh

{
−e(Φm − Φ∞)

4kT

}
(4)

and λD is the Debye length given by

λ2
D =

ǫwkT

8πe2N0
(5)

From Eq.(3), it is shown that only a thin layer close to the surface, whose thickness

scales as λD, is significantly modified when charging the electrode. The concentration
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shift induced in this layer modifies locally the refractive index of the solution,

modifying the complex reflection coefficient of the interface, and therefore generating

a non-mechanically induced optical phase change. For the present system, λD ≃

3 nm. Consequently, the total measured optical phase changeφ is decomposed into

a mechanically induced optical phase φmec and an electro-chemically induced optical

phase φec

φ = φmec + φec (6)

The combination is assumed to be additive, as long as one term significantly dominates

the other one

• The “almost mechanical” case, where the displacement is large compared with λD;

• The “almost electro-chemical” case, where λD is large compared to the

displacement.

The two following subsections are intended to relate φmec and φec terms to the surface

charge density σd.

3.2. Electro-chemically induced optical phase

One proposes to compute the reflection coefficient of a charged interface for a focused

beam in the same manner as Stedman [9, 10] and Paik et al [11] derived the ellipsometric

parameters for a plane wave impinging on a metal-electrolyte interface. Let us derive

refractive index changes of the solution and of the metal for the present case, and use

them to describe the link between φec and the electro-chemical state of the interface

through the complex reflection coefficient change of the surface illuminated with a

focused monochromatic beam.

3.2.1. Refractive index of the solution The surface excess concentrations are deduced

from the density profiles

Γ± =

∫
∞

0

(N± −N0)dz = N0
±4γλD

1 ∓ γ
(7)

As previously discussed [9], one chooses to represent the diffuse layer by a finite one

whose thickness is 2λD. One also considers that the liquid side of the interface is

charged by the diffuse layer, as well as by adsorbed ions located at the inner Helmholtz

plane. The equivalent densities Ñ+ and Ñ− are thus defined to ensure the same surface

excesses

Ñ+ = N0 +
Γ+ + σ+

2λD

= N0
1 + γ

1 − γ
+

σ+

2λD

(8)

Ñ− = N0 +
Γ− + σ−

2λD

= N0
1 − γ

1 + γ
+

σ−

2λD

(9)

The refractive index ne of the electrolyte layer is then obtained from the Lorentz-Lorenz

formula

ne(Φm − Φ∞, σ+, σ−) =

√
M̄ + 2ρ̄

∑
i xiRi

M̄ − ρ̄
∑

i xiRi

(10)
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where M̄ is the mean molar mass of the film, and ρ̄ its mean mass density. The latter

requires the molar volume of the components of the film, which are taken from Ref. [28].

The molar fractions xi of the different elements composing the film read

xi =
Ñi

ÑH2O + Ñ+ + Ñ−

(11)

for i = {H2O,+,−}. The molar refractivities Ri of the components of the film are taken

from Ref. [29].

3.2.2. Refractive index of the metal According to Drude’s model, and neglecting the

contribution of the bound electrons, the complex refractive index n̂m of the metal is

obtained as

n̂2
m = 1 −

4πnele
2

m

1

ω(ω − iβ)
(12)

where β is Drude’s damping parameter, m the electron mass, ω the frequency of the

impinging wave and nel the volume charge density. Decomposing n̂m into real and

imaginary parts

n̂m = nm(1 + iκ) (13)

and considering both real and imaginary parts of Eq. (12) yields

n2
m(1 − κ2) = 1 − snel

2n2
mκ = −s

β

ω
nel (14)

where s is defined by

s =
4πe2

m

1

ω2 + β2
(15)

Solving Eq. (14) for the ratio β

ω
yields

β

ω
= −

2n2
mκ

1 − n2
m(1 − κ2)

(16)

The ratio β

ω
is deduced from ellipsometric measurements. At zero charge, one measures

nm = 0.33

κ = −13.12

for a wavelength of 760 nm. Setting (16) into its definition, s is rewritten as

s =
4πe2

mω2

(1 − n2
m(1 − κ2))

2

1 − 2n2
m(1 − κ2) + n4

m(1 + κ2)2
(17)

If the surface charge density σm is changed to σm + dσm, the charge density change at

the surface reads

dnel =
dσm

et
(18)
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where t is the “thickness” of the metal layer whose charge is modified. One arbitrarily

sets t = 1nm, as in Ref. [11]. The new refractive index of the metal layer is described

by n′

m and κ′ satisfying

n′2
m(1 − κ′2) = n2

m(1 − κ2) − s× dnel

2n′2
mκ

′ = 2n2
mκ− s

β

ω
dnel (19)

n′

m is thus found by solving

4n′4
m + n′2

m [4n2
m(κ2 − 1) + 4sdnel]

−4n2
m

(
n2

mκ
2 − κs β

ω
dnel

)
−
(
s β

ω
dnel

)2
= 0

(20)

and κ′ is deduced from

κ′ =
2n2

mκ− s β

ω
dnel

2n′2
m

(21)

3.2.3. Reflection coefficient of the surface The complex reflection coefficients rTE and

rTM for TE and TM polarized light are then deduced using Fresnel formula [30] as

functions of the surface charge density in the metal σm and the charge densities for

adsorbed anions σ− and cations σ+, modeling the interface with two homogeneous layers

whose optical properties are defined as above descibed. The electrochemical contribution

to the optical phase field measured with the Nomarski shear-interferometer is then

described considering TE and TM polarized beams separately, for a given incidence

angle θ. For example,

φec(x, y, θ) = φTM(x, y, θ) − φTE(x− d, y, θ) (22)

As the image is formed by using the whole objective pupil, the phase change measured

after reflection on the sample does not depend on the initial polarization [31], so that

the fields φTM and φTE are equal. As a consequence, φec(x, y, θ) is a measure of the

heterogeneous part of the reflection phase change field

φec(x, y, θ) = φTE,TM(x, y, θ) − φTE,TM(x− d, y, θ) (23)

The exact relationship for the fully illuminated pupil may be difficult to predict

accurately since it depends on the numerical aperture and the apodization function of the

objective. Therefore, one will consider in the following the function φTE,TM(x, y, θe) =

h(σm(x, y), θe) of the metal surface charge density σm(x, y) and of an apparent incidence

angle θe [32]

φTE,TM(x, y, θe) = arg

(
rTE(x, y, θe) + rTM(x, y, θe)

2

)
= h(σm(x, y), θe)(24)

Figure. 5 shows the change of the phase of the base complex reflection coefficient
rTE+rTM

2
of the considered interface as a function of the electrode surface charge,

assuming no specific adsorption (i.e., σ− = σ+ = 0), for θe = 0.3 rad. It is worth

noting that the described results are consistent with previously published ellipsometric

parameters [11]. Moreover, as outlined in Ref. [11], the obtained phase function does not

significantly depend on the arbitrarily chosen “thickness” of the affected metal layer.
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Figure 5. Change of the phase of the base complex reflection coefficient rTE+rT M

2
of

a Au(111)/KCl interface as a function of the surface charge for θe = 0.3 rad.

3.3. Mechanically induced optical phase

3.3.1. From Gouy-Chapman theory to a surface shear-stress field Considering that

the electrochemical free enthalpy GS is driven by the interactions between the ions in

solution and the charges on the electrode, the total free enthalpy variation of a small

surface S0 subjected to a small surface change δS is written as

δG = δGe + δGS = δGe(δS) + δS
σ2

m

ǫw
(25)

where the strain energy term δGe(δS) depends on the mechanical behavior of the

cantilever. Let us denote by u(x) the in-plane displacement field of the cantilever surface.

The surface modification then reads

δS(x) = bu(x) (26)

where b is the cantilever width. Replacing it in Eq. (25), leads to

δG(x) = δGe(x) + δGS(x) = δGe(x) + bu(x)
σ2

m

ǫw
(27)

so that the electrochemical term appears as an external force contribution, similar to

the work of a shear stress τ(x) in the in-plane displacement u(x)

δG(x) = δGe(x) + bu(x)
σ2

m

ǫw
= δGe(x) − bu(x)τ(x) (28)

with

τ(x) = −
σ2

m

ǫw
(29)
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Since the interface between the gold layer and the solution is much larger than the

cantilever surface, one assumes that the modification of the cantilever surface does not

induce a significant change in the overall charge density.

3.3.2. Displacement fields basis To be able to represent the well known localization

effets on micro-electrodes [33], one assumes that the cantilever is subjected to a

heterogeneous shear-stress field

τ(x) =
1

(x0 − x)m
(30)

where x0 and m are two parameters describing the stress field when x < x0. According

to the analysis of the system described in Ref. [24], the mechanical term φmec reads

φmec(x, y) =
4πn

ιλ
(v(x, y) − v(x− d, y))

+
∂φW

∂γ

(
dv

dx
(x, y) −

dv

dx
(x− d, y)

)
(31)

where v(x) in the out-of-plane displacement field and ∂φW

∂γ
is an experimentally identified

coefficient, n the average refractive index of the ambient medium, λ the used wavelength,

and ι a scaling coefficient depending on the numerical aperture of the used objective

lens [24]. The displacement and cross-section rotation fields are derived as a closed-form

solution in Appendix A, thus providing a description of the mechanical phase field φmec.

4. Identification

Section 3 provides a possible description of the measured phase field arising from the

electro-elastic coupling described in Section 2. Figure 6 shows the measured optical

phase recorded along the median line of the cantilever as a function of the loading step.

This phase ranges (by definition) from −π to π and is thus subjected to phase jumps. No

significant difference has been noted in the phase behavior across the cantilever width,

so that the following results are presented for the median (i.e., number 8) line of the

cantilever, even though the identification procedures involve all the pixels covering the

cantilever (i.e., 15-pixel rows). The aim of this Section is to use the measured phase

maps, taking explicitly into account both the electrochemical and mechanical phase

terms to propose a modeling of the electro-elastic coupling.

4.1. Identification problem

Solving a direct mechanical problem usually consists in finding stress and displacement

fields satisfying simultaneously

• kinematic compatibility;

• equilibrium conditions ;

• constitutive law.
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Figure 6. Measured phase recorded along the median line of the cantilever as a

function of the loading step.

A global formulation of the purely mechanical identification problem is to find the

displacement field U minimizing ϕ2

ϕ2 = KKA‖U −Um‖KA +KSA‖U −USA‖SA +KCE‖U −UCE‖CE (32)

that is matching “at best” the measured displacement field (i.e., the kinematic

conditions, first term), satisfying equilibrium conditions (second term) as well as the

constitutive law (third term) [23]. As outlined by Eqs. (6) and (31), the displacement

field is not directly accessible, so that one has to modify the function ϕ2 to use the

optical phase instead of displacements, and to take into account the ambivalent nature

of the information carried by the measured optical phase:

• the phase decomposition reads φmes = φmec + φec

• the mechanical component φmec represents the displacement field, and thus appears

in the first term (kinematic conditions) of Eq. (32);

• the electrochemical component φec is an image of the loading intensity on the

cantilever, and thus accounts for the second term (equilibrium conditions). It is

obtained as φec(x,E) = h (σm(x,E)) − h (σm(x− d, E))

Furthermore, contrary to most of the above cited identification procedures where the

last term in Eq. (32) involves only the (possibly heterogeneous) mechanical behavior of

the material under scrutiny, here one deals with coupled phenomena, thus involving

an additional coupling term between the local electrochemical state and the local

mechanical loading. For the sake of simplicity, one assumes in the following that the

material mechanical behavior is uniform along the cantilever. In order to avoid errors

arising from phase jumps, one proposes to formulate the identification problem as finding
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a minimizer for

η2 =
1

Np

∑

x,y,n

χ(x, y, n)2 (33)

=
1

Np

∑

x,y,n

1

µ(x, y, n)2
(φtest(x, y, n) − φtest(x, y, n− 1)

−φmes(x, y, n) + φmes(x, y, n− 1))2 (34)

where φmes(x, y, n) − φmes(x, y, n − 1) is the measured phase change between two

consecutive loading steps, φtest(x, y, n) − φtest(x, y, n − 1) the phase change estimated

from the actual parameters, Np the number of measurement points and µ(x, y, n)2 the

estimated phase change variance at the considered point (see Appendix B). One should

underline that φtest(x, y, n) depends on:

• the mechanical loading applied to the overall cantilever at step n (through the

φmec-term);

• the mechanical loading applied to point (x, y) and at step n, through the φec-term.

Several assumptions have thus to be made to obtain an admissible phase field basis,

that is a basis for phase fields satisfying simultaneously both equilibrium conditions and

constitutive law(s). Minimizing the objective function defined by Eq. (33) yields then

a projection of the measured phase map onto the defined basis, minimizing the first

term of Eq. (32) (i.e., kinematic conditions ). As the whole working electrode is gold

coated (and not only the cantilever under scrutiny), the major difficulty to overcome is

then to estimate the local charge-density field (on the cantilever) from global electrical

measurements (i.e., on the whole electrode).

4.2. Identification as a potential driven process

Let us assume here that the global charge density of the cantilever may be estimated

from the potential of the working electrode. As a consequence:

• the local charge density reads σm(x,E) = D(x) × P (E)

• D(x) = cp(x0)
(x0−x)p and the constant cp(x0) is defined through the normalization

condition
∫ L

0
D(x)dx = 1, by integrating the localization function over the

cantilever length L.

• the local shear-stress is a continuous function of the charge density τ = δσn
m

• P (E) is alternatively defined in two ways:

– a) P (E) = BCd(E − EPZC), where Cd is the (homogeneous) differential

capacity of the surface, B is a multiplicative constant to be identified (both

constant along the cycles), and EPZC the zero-charge potential

– b) dP (E) = BCdadE during anodic scans, and dP (E) = BCdcdE during

cathodic scans, and EPZC the zero-charge potential for the first scan. This

last formulation allows one to account for slight charge leak.
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Table 1. Identified parameters for the different stress-charge relationships assuming

a potential driven process.

Parameter set p n x0

L
EPZC δ δ (BCdcp(x0))

n
θe

Cdc

Cda

residual

(V / Ag-AgCl) (u.a.) (a.u.) (rad) η2
min

a 2.07 1.37 1.07 -0.02 −2.47 × 10−6 -4.62 0.47 0.2

b 1.45 1.71 1.12 0.06 −1.7 × 10−7 -13.73 0.16 0.77 0.19

Figure 7. Residual map along the median line of the cantilever as a function of the

loading step χ(x, 8, n) after minimization assuming a potential driven process and the

b-set parameters.

Assuming that the cantilever edges are sharp would lead to impose x0 = L and p ≤ 1 to

ensure that the the surface charge density is integrable along the cantilever. The charge

density is then singular, which is no longer true if one takes into account a finite edge

radius [33]. One then chooses to impose only that x0 > L, so that the saturation effect

due to the edge radius is represented preserving the integrability condition.

The minimization of η2 is then performed, to provide a parameters set suitable

for describing the measured phase maps as well as a residual value η2
min. Even though

the solution has been found to be dependent on the initial guess, the best solution sets

(for both assumptions) are reported in Table 1. The charge density field is found to be

singular with p around 2. The stress-charge density is also found to be non-linear, with

an n-exponent around 1.7 for the b-set. Moreover, using the b-set allows one to identify

a differential capacity ratio Cdc

Cda
= 0.77, meaning that the electric potential is not the

suitable state variable to describe the mechanical loading.

This last result is shown by considering the residual map along the median line of

the cantilever as a function of the loading step in Fig. 7. This residual is dimensionless
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as it is the ratio of the phase gap over the expected phase deviation (see Appendix B).

The normalized residual is greater than 1 on the cantilever for almost every loading

step, meaning that the residual arises from modeling errors instead of measurement

uncertainties. The overall error indicator η2
min is then about 0.2, which is rather high

compared to the fact that pixels on the substrate, for which the modeling error vanishes,

are also involved. This is a good indication that this first modeling should be improved

by enriching the description of the electro-elastic coupling.

4.3. Identification as a charge density driven process

The enrichment is achieved by including the charge information Q obtained from the

potentiostat by integrating the current going through the whole working electrode and

assuming that Q = 0 at the initial instant. The assumptions are:

• the local charge density reads σm(x,Q) = D(x) ×Q

• the presence of the cantilevers on the electrode does not significantly modify

the overall electrode charge compared with a standard planar electrode. As a

consequence, one sets D(x) = cq(x0)
(x0−x)p and the constant cq(x0) is defined so that

D(x) = 1 when x tends to the field border on the substrate. The function D(x) is

then a localization function, relating the local charge density to the uniform charge

one would get on a standard planar electrode. This condition then just means that

one assumes that this uniform electrode charge density is recovered “far enough”

from the cantilever, that is around 30 micrometers from the cantilever base in the

present case

• the local shear-stress profile is a continuous function of the charge density, expanded

onto a polynomial basis

τ =

T∑

t=1

δtσ
t
m (35)

4.3.1. Identified charge density field and stress-charge relationship The minimization of

η2 is then performed for different values for T ranging from 1 to 5, to provide parameter

sets representing the measured phase maps. After a standard minimization assuming a

linear (T = 1) coupling relationship, the parameters are identified for greater T values

using a relaxation algorithm. This has been found to provide stable results with respect

to the initial guess for the first minimization.

The solution sets are reported in Table 2. The charge density field is found to be

singular with p around 3.3 and a charge-density singularity virtually located in front of

the cantilever edge (x0

L
=1.12), highlighting the micro-electrode effect (see Ref. [34] for

instance).

The resulting charge density field along the median line of the cantilever is shown

in Fig. 8a. The ratio of the maximum charge density to its average is around 2000,

outlining the high charge localization on micro-electrodes. It is worth noting that even
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Table 2. Identified parameters for the different stress-charge expansions assuming a

charge density driven process.

Number of terms in the p x0

L
θe residual

coupling relationship expansion (rad) η2
min

1 3.41 1.13 0.58 6.33 × 10−2

2 3.41 1.13 0.60 6.33 × 10−2

3 3.35 1.12 0.43 6.27 × 10−2

4 3.32 1.12 0.51 6.27 × 10−2

5 3.31 1.12 0.60 6.27 × 10−2

Figure 8. a) Identified charge density field along the median line of the cantilever as

a function of the loading step. b) Identified out-of-plane displacement field along the

median line of the cantilever as a function of the loading step.

if p > 1, the charge density is integrable since x0 > L. The induced mechanical effect

yields a maximum upward displacement of about 100 nm at the end of the cantilever, as

shown in figure 8b. This corresponds to a measured phase change mainly arising from

the mechanical term, except at the cantilever edge, where the electrochemical term is

dominant. Even with a “crude” linear coupling relationship, the overall residual η2
min is

down to 6.33 × 10−2. It is worth noting that this is achieved using only 4 parameters

compared with the 8 parameters of the b-set defined in Subsection 4.2.

The overall residual slightly decreases by using more terms in the coupling

expansion. The resulting coupling relations are shown in Fig. 9. By increasing

the number of terms in the coupling relationship expansion, one reveals an inflexion

point reached for a charge density of about 250C.m−2, with a stress saturation for

σm > σs = 250C.m−2 whereas the low-charge density part is concave. One should

outline that this qualitatively agrees with the description derived in Section. 3.3.1, even

though the identified exponent for charge densities less than 200C.m−2 is 1.09 to be

compared to the 2-exponent deduced in Section 3.3.1. It should be emphasized that the

latter strongly depends on the kinematic model used to describe the cantilever behavior

(see Eq. (26)). It is also worth noting that the existence of an inflexion point in the
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Figure 9. Identified coupling relationship for T ranging from 1 to 5. The curve for

T = 2 has been slightly shifted for the sake of clarity.

Figure 10. Residual map along the median line of the cantilever as a function of

the loading step χ(x, 8, n) after minimization assuming a charge density driven process

and a 5-term expansion for the stress-charge density relationship.

coupling relation is consistent with a specific anion adsorption, which makes the surface

expansion more favorable and which has been found to occur in an almost reversible

manner for Au(111) − Cl− systems [35, 36, 37].
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4.3.2. Residual map Figure 10 shows the residual map along the median line of the

cantilever as a function of the loading step χ(x, 8, n) for a 5-term expansion of the

coupling relationship. The normalized phase error is found to remain almost everywhere

in the [−1, 1] range, meaning this mainly arises from measurement uncertainties. It

should be underlined that the decrease in η2 when revealing the inflexion point (see

Table 2) is small compared with the overall value because the modification only concerns

a few loading steps, where the surface charge density reaches σs. Furthermore, the error

pattern close to the loading steps where the electrode potential is 0.4V (that is steps

10, 30 and 50 in Fig. 10) exhibits negative error values during anodic scans and positive

values during cathodic scans. This symmetric shape, which is preserved even though

the images obtained for an electrode potential of 0.4V (where the current varies very

suddenly) are removed, tends to show that further improvements in the mechanical

modeling of the observed effects may be achieved when considering partly inelastic

stresses.

5. Conclusion

Metal coated micro-cantilevers were utilized as micro-electrodes. Full-field

interferometric measurements were carried out to monitor both the surface composition

changes and the cantilever displacement during cyclic voltammetry in the double-

layer region. The scaling of the electro-chemically induced phase with respect to the

surface charge density is modeled according to Gouy-Chapman-Stern theory, whereas

the relationship between the mechanical effect and the surface charge density is identified

thanks to a dedicated formulation of the identification problem. The electro-elastic

coupling effect is found to be charge-driven. The charge density field is also found to

be singular on the cantilever edge, and the shear-stress vs. charge density is shown to

be non-linear, exhibiting an inflexion point that may be the signature of specific anion

adsorption.

Appendix A. Displacement fields basis

One assumes a priori that the cantilever is subjected to a heterogeneous shear-stress

field

τ(x) =
1

(x0 − x)m
(A.1)

where x0 andm are two parameters describing the stress field when x < x0. The bending

moment Mf(x) reads

Mf (x) = −
be1

2

∫ L

x

dη

(x0 − η)m

= −
be1

2
ln

(
x0 − x

x0 − L

)
if m = 1
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= −
be1

2(m− 1)

(
(x0 − L)1−m − (x0 − x)1−m

)
if m 6= 1 (A.2)

where L is the cantilever’s length. By assuming that the bending stiffness is uniform

all along the beam, the rotation and displacement fields are obtained assuming that the

beam is described by en Euler-Bernoulli model [38] with a constant bending stiffness

EBIB where Eb and Ib are the average Young’s modulus and quadratic moment,

respectively. The cross-section rotation field is obtained as a function of the exponent

m by setting dv(0)
dx

= 0

dv(x)

dx
= −

be1

2EbIb

{
(x− x0) ln

(
x− x0

L− x0

)

−x+ x0 ln

(
x0

x0 − L

)}

if m = 1

= −
be1

2EbIb

{
ln

(
x0 − x

x0

)
+

x

(x0 − L)

}

if m = 2

= −
be1

4EbIb

{
−

1

x0 − x
+

x

(x0 − L)2
+

1

x0

}

if m = 3

= −
be1

2EbIb(m− 1)

{
(x0 − x)−m+2 − x−m+2

0

−m+ 2

+x(x0 − L)−m+1
}

if m 6= {1, 2, 3} (A.3)

and the displacement field is obtained by setting v(0) = 0

v(x) =
be1

4EbIb

{
−(x− x0)

2 ln

(
x− x0

L− x0

)

−x0(2x− x0) ln

(
x0

x0 − L

)
− x(x0 −

3x

2
)

}

if m = 1

= −
be1

2EbIb

{
(x− x0) ln

(
x0 − x

x0

)

−x

(
1 −

x

2(x0 − L)

)}
if m = 2

= −
be1

4EbIb

{

ln

(
x0 − x

x0

)
+

1

2

(
x

x0 − L

)2

+
x

x0

}

if m = 3

= −
be1

2EbIb(m− 1)

{
x−m+3

0 − (x0 − x)−m+3

(−m+ 2)(−m+ 3)

+
x2

2
(x0 − L)−m+1 − x

x−m+2
0

−m+ 2

}

if m 6= {1, 2, 3} (A.4)
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Appendix B. Estimation of the measured phase variance

It can be shown [24] that using four integrating buckets and a sinusoidal phase

modulation yields four intensity images Ep, for p = {1, 2, 3, 4}

Ep =
T

4
(I0 + AJ0(ψ) cos(φ))

+
TA cos(φ)

π

∞∑

n=1

J2n(ψ0)

2n
[sin(npπ + 2nθmod) − sin(n(p− 1)π + 2nθmod)]

−
TA sin(φ)

π

∞∑

n=0

J2n+1(ψ0)

2n+ 1

×
(
cos(

π

2
(2n+ 1)(p− 1) + (2n+ 1)θmod)

− cos(
π

2
(2n+ 1)p+ (2n+ 1)θmod)

)
(B.1)

where Jn is the first kind Bessel function of n-th order. The images Ep depend on

average impinging intensity I0, and on cos(φ) and sin(φ) where φ is the optical phase

to be measured. Using four independent images provides then enough information to

recover three parameters, including φ. For each pixel of the CCD array, the ideal set of

Eq. (B.1) is rewritten as a linear system of equations

MP = E (B.2)

where the parameters vector P reads

Pt =

[
TI0

4
,
TA

π
cos(φ),

TA

π
sin(φ)

]
(B.3)

and the images vector

Et = [E1, E2, E3, E4] (B.4)

with (·)t the transpose of (·). The matrix M is built from the modulation parameters and

is then independent of the considered point. Let us denote by λm the given (measured)

realization of a Poisson process whose intensity is Ep. The solution parameter vector

Psol is obtained as the likelihood maximizer, that is as the minimizer of

L(P) =

4∑

i=1

{ln (Γ(λm,i)) − ln (Γ(λi) − (λm,i − λi) ln(λi))} (B.5)

with respect to the parameter set P

λ = MP (B.6)

where λ denotes the actual intensity set. The stationarity conditions read

g(λm,P) = Mtf(λ) −Mtr = 0 (B.7)

where

f(λi) = ln(λi) − Ψ(λi) + 1 (B.8)

ri =
λm,i

λi

(B.9)
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and Γ(x) is the Gamma-Euler function and Ψ(x) the derivative of ln(Γ(x)) with respect

to x. Considering small perturbations from a solution (λs = E,Ps), a Taylor expansion

of g yields

MtNM(P−Ps) = MtR (B.10)

with

Ni,j = 0 if i 6= j (B.11)

Ni,i =

(
df

dλ
(λ = λs,i) +

1

λs,i

)
(B.12)

Ri =
λi − λs,i

λs,i

(B.13)

so that the error on the parameters P is a linear combination of the normalized error

on the measured intensities R

δP = P − Ps = AR (B.14)

where

A = (MtNM)−1Mt (B.15)

The couple (P2, P3) =
(

TA cos(φsol)
π

,
TA sin(φsol)

π

)
is extracted from the parameter vector

P, and used as the argument of a standard “atan2” function to provide a less corrupted

value of the phase. As a consequence, errors δP on the identified P vector induce a

phase bias δφ that relates to δP as

tan(δφ)2 ≃
(δP3 cos(φ) − δP2 sin(φ))2

(P 2
2 + P 2

3 )
(B.16)

A (conservative) estimator ǫ for δφ is then provided by

ǫ = tan−1




√∫ 2π

0

tan(δφ(φ))2dφ



 (B.17)

The quantity ǫ depends on (δP2)
2 and (δP3)

2, which are estimated by

(δPk)
2 =

4∑

l=1

A2
k,l

1

λl

(B.18)

so that ǫ depends on the considered point (x, y, n) in the phase maps, and the variance

µ(x, y, n)2 of the difference between two consecutive phase measurements is estimated

as

µ(x, y, n)2 = ǫ(x, y, n)2 + ǫ(x, y, n− 1)2 (B.19)
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