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Abstract

A linear forest is a graph that connected components are chordless paths. A linear

partition of a graph G is a partition of its edge set into linear forests and la(G) is
the minimum number of linear forests in a linear partition. It is well known that
la(G) = 2 when G is a cubic graph and Wormald [17] conjectured that if |V (G)| ≡ 0
(mod 4), then it is always possible to find a linear partition in two isomorphic linear
forests. We give here some new results concerning this conjecture.
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1 Introduction.

A linear-forest is a forest whose components are paths. The linear-arboricity
of a graph G introduced by Harary [12] is the minimum number of linear
forests which partition its edge set (this number is denoted la(G)). In this
paper we consider cubic graphs, that is to say finite simple 3-regular graphs.
It was shown by Akiyama, Exoo and Harary [1] that la(G) = 2 when G is
cubic. A partition of E(G) into two linear forests LB and LR will be called a
linear partition and we shall denote this linear partition by L = (LB, LR) .

For any cubic graph on n ≡ 0 (mod 4) vertices, it is an easy task to find a
linear partition where we have the same number of paths in LB and in LR (see
[2] for example).
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and Technology grant No 11 420 04
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Let L = (LB, LR) be a linear partition of a cubic graph. For j ∈ {1, n − 1}
let nj

B be the number of paths of length j in LB and define nj
R in the

same way for LR and let ω(LB) (ω(LR)) be the number of components of LB

(LR respectively). In addition, we shall denote by µ(LB) and µ(LR) the mean
lengths of paths in LB and LR while l(LB) and l(LR) will denote the maximum
lengths of these paths.

Assume that L = (LB, LR) is a linear partition such that ω(LB) = ω(LR)
(which implies that n ≡ 0 (mod 4)) Theorem 1 below says, that, from statis-
tical point of view, the two forests LB and LR are identical.

Theorem 1 [11] Let L = (LB, LR) be a linear partition of a cubic graph G
such that ω(LB) = ω(LR). Then

n−1∑

j=1

(j − 3)nj
B = 0 and

n−1∑

j=1

(j − 3)nj
R = 0.

Proof We know that ω(LB) + ω(LR) = n
2
. Then,

µ(LB) =
|LB|

n − |LB|
=

n − ω(LB)

ω(LB)
=

2ω(LB) + 2ω(LR) − ω(LB)

ω(LB)

A similar equality holds for LR and we get,

µ(LB) = 3 and µ(LR) = 3.

Considering LB we have,

n−1∑

j=1

jnj
B = |LB| = ω(LB)µ(LB).

Which leads to (the second equality being obtained when dealing with LR)

n−1∑

j=1

jnj
B = 3ω(LB) and

n−1∑

j=1

jnj
R = 3ω(LR)

We obviously have
∑n−1

j=1 nj
B = ω(LB) and

∑n−1
j=1 nj

R = ω(LR). Hence,

n−1∑

j=1

(j − 3)nj
B = 0 and

n−1∑

j=1

(j − 3)nj
R = 0.

¤

In fact, a conjecture of Wormald [17] goes further in that direction.

2



Conjecture 2 [17] Let G be a cubic graph with |E(G)| ≡ 0 (mod 2) (or
equivalently |V (G)| ≡ 0 (mod 4)). Then there exists a linear partition L =
(LB, LR) of E(G) such that LB and LR are isomorphic linear forests.

Theorem 10 below (see [5] and independently [17]) implies that Conjecture 2
is true for Jaeger’s graphs (see definition 6). Up to our knowledge, it is even
the only known class for which the Wormald conjecture is proved.

Our purpose, in that paper, is to give some new results concerning this con-
jecture.

2 Preliminaries

Assume that G is a cubic graph and let M be a matching transversal of
the odd cycles, that is a matching which intersects the edge-set of every odd
cycle. Since G \ M is bipartite, we can colour V (G) in two colours blue and
red accordingly to the bipartition of G \ M (let B and R these two sets of
vertices). An edge of E(G) is said to be mixed when one end is blue while the
other is red. Hence, the edges of G \M are mixed while M is partitioned into
three sets (some of them, possibly empty)

M = MB + MR + M ′

MB is the set of edges with two ends in B, MR the set of edges its two ends
in R and M ′ is a set of mixed edges.

A strong matching C in a graph G is a matching C such that there is no edge
of E(G) connecting any two edges of C, or, equivalently, such that C is the
edge-set of the subgraph of G induced on the vertex-set V (C). Note that MB

and MR induce strong matchings in G since the neighbours of an edge in MB

(respectively MR) are joined to this edge by a mixed edge.

Theorem 3 A cubic graph is 3-edge colourable if and only if there is a par-
tition of its vertex set into two sets, B and R and a perfect matching M such
that every edge in G − M is mixed.

Proof Let G be a cubic 3-edge colourable graph. Any colour of a 3-edge
colouring of G induces a perfect matching M , and the two others colours
induce a graph whose components are even cycles. Let us colour these cycles
in B and R alternately. Hence every edge lying on these cycles is mixed.

Conversely, assume that G has a perfect matching M and a partition of its
vertex set into B and R such that every edge in G − M is mixed. Let us
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consider the 2-factor of G obtained in deleting M . Since every edge outside
M is mixed, this 2-factor is even, which means that G is 3-edge colourable. ¤

Remark 4 Under conditions of Theorem 3 we certainly have the same num-
ber of vertices in B and in R, since every edge of the 2-factor G−M is mixed.
When considering M = MB + MR + M ′ we have |MB| = |MR| since every
mixed edge of M uses a vertex in each colour.

2.1 Definitions

As usually, for any undirected graph G, we denote by V (G) the set of its
vertices and by E(G) the set of its edges and we consider usually that |V (G)| =
n and |E(G)| = m. If F ⊆ E(G), V (F ) is the set of vertices which are incident
with some edges of F . For any path P we shall denote by l(P ) the length of
P , that is to say the number of its edges. A vertex of a path P distinct from
an end-vertex is said to be an internal vertex.

Let L = (LB, LR) be a linear partition of a cubic graph, since every vertex of
G is either end-vertex of a maximal path of LB or end-vertex of a maximal
path of LR, we have

ω(LB) + ω(LR) =
|V (G)|

2
.

Let M be a perfect matching of a cubic graph G. An M-alternating path (or
alternating path when no confusion is possible) is a path v = v0v1v2 . . . v2k+1 =
w such that any edge vivi+1 (where i is odd) is an edge of M . We shall say
that two distinct vertices v and w are at alternating distance 2k + 1 (k ≥ 0)
whenever a shortest alternating path joining these two vertices has length
2k + 1. An alternating cycle is an alternating path where the two extremities
are joined by an edge of M .

Definition 5 Let G be a cubic 3-edge colourable graph with a perfect match-
ing M given in Theorem 3 by a 3-edge colouring. We shall say that a partition
of M in MB, MR and M ′ is an M-associated partition (or associated partition
for short).

Definition 6 We shall say that a cubic graph G is a Jaeger’s graph when-
ever G contains a perfect matching which is a union of two disjoint strong
matchings. A Jaeger’s matching is a perfect matching which is the union of
two strong matchings.
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Assume that G is a Jaeger’s graph and let MB and MR be the two strong
matchings which partition a Jaeger’s matching M of G. Let us colour with
blue the vertices which are ends of edges in MB and red those which are
ends of edges in MR. It is an easy task to see that the remaining edges are
mixed. Hence G is 3-edge colourable and, as pointed out in Remark 4 we have
|MB| = |MR| = |M |/2. The associated partition M = MB + MR + M ′ is such
that M ′ is empty.

In his thesis [14] Jaeger called these cubic graphs equitable and pointed out
that the above two colouring of their vertices leads to a balanced colouring
defined by Bondy [6].

Definition 7 An odd linear forest is a linear forest in which each path has
odd length.

Aldred and Wormald [3] proved that a cubic graph G can be factored into two
odd linear forests if and only if G is 3-edge coloured (i.e. χ′(G) = 3).

2.2 Associated linear construction

Assume that we are given a cubic 3-edge colourable graph together with an
associated partition M = MB + MR + M ′. Let us fix an arbitrary orientation
to the cycles of G \ M . To each vertex v of V (G) we can associate an edge
o(v) of E(G) \M such that v is the origin of o(v) with respect to the chosen
orientation of the cycle through v. It will be convenient to denote by s(v) (
successor of v) the end of o(v) in that orientation and by p(v) its predecessor.
We can colour o(v) in blue or red accordingly to the colour of v. MB being
coloured with blue and MR with red, we get hence a larger set CLB of edges
coloured with blue (and CLR of edges coloured with red). It is easily seen that
the CLB and CLR are linear-forests where each maximal unicoloured path has
length 1 or 3. Moreover each edge of MB ∪MR is the central edge of a path of
length 3. At this point, the only edges which are not coloured are the edges
of M ′ and we do not know how we can affect a colour to these edges in order
to get a linear partition of E(G).

Definition 8 We shall refer to the above construction of CLB and CLR when
an associated partition is given as the associated linear construction and we
denote this construction CL = (CLB, CLR) .

Proposition 9 Let us colour at random any edge of M ′ with blue or red
and let M ′

R and M ′
B the two subsets of M ′ so obtained. Then the connected

components of the subgraphs induced by V (CLR ∪ M ′
R) (the red components)

and V (CLB ∪M ′
B) (the blue components) are alternating cycles or alternating

paths.
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Proof Since the construction of CLB and CLR is obtained in colouring al-
ternatively red and blue the edges of an even 2−factor each vertex is incident
to at least one edge in each colour. Hence the maximum degree in each colour
is 2. A vertex of degree 2 in a red component (blue component) is incident
to a mixed edge of the 2−factor and an edge of MR ∪ M ′

R (MB ∪ M ′
B respec-

tively). Hence the connected components in each colour are alternating path
and alternating cycles as claimed. ¤

Theorem 10 [5], [17] A cubic graph G has a linear partition L = (LB, LR) such
that each path has length 3 if and only if G is a Jaeger’s graph .

Proof : Suppose that G has a linear partition L = (LB, LR) with maximum

lengths l(LB) ≤ 3 and l(LR) ≤ 3 . Since ω(LB) + ω(LR) = |V (G)|
2

, and

|E(G)| = 3 |V (G)|
2

each path in LB and LR have length exactly 3. Let MB

(resp. MR) be the set of the middle edges of the paths of LB (resp. LR). It is
an easy task to check that MB and MR are strong matchings and |MB| = |MR|.
Moreover M = MB ∪ MR is a perfect matching and G is a Jaeger’s graph .

Conversely, let us suppose that G is a Jaeger’s graph and let M = MB + MR

be an associated partition. Since M ′ is empty, in using the associated linear
construction above, we have coloured every edge of G and each unicoloured
path has length 3. ¤

3 Associated partition with extra conditions

When a cubic 3-edge colourable graph and an associated partition M =
MB+MR+M ′ are given, it is rather natural to impose some extra condition on
M ′ in order to extend Theorem 10 and obtain a larger class of graphs for which
Conjecture 2 holds. In that section we consider the case where the connected
components of V (M ′) are paths of length 1 or 3. Starting from the associated
linear construction CL = (CLB, CLR) we try to colour M ′ (ie partition M ′ in
M ′

B and M ′
R) expecting that the partition of E(G) (CLB ∪M ′B,CLR ∪M ′

R)
so obtained is a linear partition with nice properties.

Recall that, as pointed out before (see Proposition 9), the connected compo-
nents of CLB and CLR are paths of length 1 or 3. Moreover, the number of
paths of length 3 is the same in CLB and CLR as well as the number of paths
of length 1.

In this section, we shall assume that G is a cubic 3-edge colourable graph and
M = MB + MR + M ′ an associated partition that the components of V (M ′)
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are paths of lengths 1 or 3. In this conditions, it is always possible to partition
M ′ into 2 strong matchings, namely M ′

B and M ′
R, the edges of M ′

B will be said
blue while the edges of M ′

R are red.

Lemma 11 For any partition of M ′ into two strong matchings M ′
B and M ′

R,
the partition of E(G) (CLB ∪ M ′

B, CLR ∪ M ′
R) is a linear partition.

Proof By Proposition 9, the connected components of CLB ∪M ′
B are alter-

nating paths and cycles. Let br be an edge of M ′
B such that b ∈ B and r ∈ R

and let r′ = s(b). Since G\M contains only mixed edges r′ is a red vertex.
Observe that o(r′) is a red edge while the edge of M incident to r′ in G, say e,
cannot belong to M ′

B since M ′ is a strong matching. Moreover, e having a red
end cannot belong to CLB, consequently e belongs to CLR∪M ′

R. Thus, among
the three edges incident to r′, only o(b) is in CLB ∪M ′

B which means that the
connected component of CLB∪M ′

B containing br is an alternating path. Since
we can use the same argument for any edge in M ′, (CLB ∪M ′

B, CLR ∪M ′
R) is

a linear partition. ¤

Lemma 12 There is a partition of M ′ into two strong matchings M ′
B and

M ′
R such that there is no new path of length 3 in CLB ∪ M ′

B and CLR ∪ M ′
R.

Proof Let br ∈ M ′
B (with b ∈ B and r ∈ R). Assume that br is contained in

a new path of length 3 of CLB ∪ M ′
B. This path is certainly s(b)brp(r). The

edge of M incident to p(r) say e is in CLR ∪ M ′
R since p(r) is an endpoint of

a blue path of length 3, more precisely e ∈ M ′
R for otherwise the edge p(r)r

would be in CLR. Consequently the edge of M incident to s(b) say e′ belongs
to MR, as a matter of fact if on the contrary we have e ∈ M ′

R we would have in
the subgraph induced with V (M ′) a path of length greater than 3 containing
the edges e, p(r)r, rb, bs(b), e′ a contradiction. From now on e is denoted p(r)r′

(r′ ∈ R).

The path r′p(r)rbs(b) being a component of the subgraph induced with V (M ′)
we have that the edge of M which is incident to p(b) is in MR, similarly s(r)
is incident to an edge of MB, p(b′) to an edge of MB and s(b′) to an edge of
MB. Hence, b is an endpoint of a path of length 3 of CLR say P1, p(r) is an
endpoint of a path of length 3 in CLR and r′ is an endpoint of a path of length
3 in CLB, say P2. We set :

M ′
B = M ′

B − br + p(r)r′,M ′
R = M ′

R − p(r)r′ + br

Observe that M ′
B and M ′

R remain to be strong matchings. In addition s(r)
becomes an endpoint of a path in CLB∪M ′

R of length at least 5 which contains
P1, bs(b) is a path of length 1 in CLB ∪M ′

B while r becomes an endpoint of a
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path of length at least 5 in CLB ∪M ′
B which contains P2 and r′s(b′) is a path

of length 1 in CLR ∪ M ′
R.

This operation can be iterated for each new path of length 3 in CLB ∪M ′
B or

in CLR ∪ M ′
R and the result follows. ¤

Remark 13 Observe that when M ′ itself is a strong matching, then Lemma
12 holds for all partitions of M ′ into M ′

B and M ′
R.

Lemma 14 A path of length 5 in CLB ∪ M ′
B (CLR ∪ M ′

R) is obtained by
connecting a path of length 1 and a path of length 3 of CLB (CLR respectively).

Proof A path in CLB ∪ M ′
B is an alternating path. Since M ′

B is a strong
matching, such a path of length 5 contains at most one edge of M ′

B. In the
same way this path contains at most one edge of MB (MB being a strong
matching). Hence a path of length 5 must contains one edge of M ′

B and one
edge of MB. These edge of MB leads to a path of length 3 in CLB and the edge
of MB connects this path of length 3 to a path of length 1 of CLB as claimed. ¤

Lemma 15 A path of length 7 in CLB ∪ M ′
B (resp. CLR ∪ M ′

R) is obtained
by connecting two paths of length 1 of CLB (resp. CLR) to one path of length
3 of CLB (resp. CLR), moreover each path of the linear partition L = (CLB ∪
M ′

B, CLR ∪ M ′
R) has odd length at most 7.

Proof Let b1r1 be an edge of M ′
B (b1 ∈ B, r1 ∈ R). Let us set r2 = s(b1).

The edge of M incident to r2 cannot be in M ′
B since M ′

B is a strong matching
nor in MB since r2 is a red vertex, thus r2 is one end of the path of CLB ∪M ′

B

containing b1r1.

Let b2 = p(r1) and r3 = p(b2), obviously b2 ∈ B, r3 ∈ R, b2r1 is a blue edge
and r3b2 is a red one. Consider in G the edge of M incident to b2, say e. M ′

B

being a strong matching, the edge e cannot belong to M ′
B. Moreover, the edge

e has a blue end, namely b2, and thus cannot belong to MR. Hence e is in
MB ∪ M ′

R.

If e ∈ M ′
R the path b2r1b1r2 is a path of length 3 in CLB ∪ M ′

B and we are
done.

From now on e is in MB and will be denoted b2b3 (b3 ∈ B) and s(b3) will be
denoted r4, we have r4 ∈ R. Let e′ be the edge of M incident to r4. Since r4

is a red end of e′, e′ cannot be in MB. If e′ is a member of MR ∪ M ′
R we are

done since e′ and o(r4) both are in CLR ∪ M ′
R and the path of CLB ∪ M ′

B

containing b1r1 is reduced to a path of length 5, namely r2b1r1b2b3r4.
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Suppose now that e′ ∈ M ′
B, Let us denote e′ as r4b4 (b4 ∈ B) and s(b4)

as r5. But now, the edge of M which contains r5 cannot be in MB since
r5 is a red vertex nor in M ′

B since M ′
B is a strong matching. Hence P =

{r2, b1, r1, b2, b3, r4, b4, r5} induces a path of length 7 and this path is obtained
in connecting two paths of length 1 to a path of length 3 of CLB.

When we decide to put an edge of M ′ in M ′
B or M ′

R we can create only a path
of length 3 or a path of length 5 or a path of length 7. Hence we have obtained
an odd linear partition where each path has length at most 7. ¤

In [16] Thomassen, answering positively a conjecture in [5], showed that any
cubic graph can be provided with a linear partition where each path has length
at most 5. Aldred and Wormald [3], obtained before 9 instead of of 5, but using
their method we can prove that a cubic 3-edge colourable graph has an odd
linear partition with every path of odd length at most 7. In our case we get
more precise information about the distribution of paths of length 7 when we
have a stronger condition on the matching M ′, namely when M ′ itself is a
strong matching.

Theorem 16 Let G be cubic 3-edge colourable graph and an associated par-
tition M = MB +MR +M ′. Assume that M ′ is a strong matching. Then there
is an odd linear partition L = (LB, LR) of E(G) where each path has length
1, 3, 5 or 7 such that |nB

7 − nR
7 | ≤ 1.

Proof From Lemmas 11 and 15, we know that in partitioning M ′ in M ′
B

and M ′
R we get a linear partition (LB, LR) where each path has odd length at

most 7.

If for that linear partition |nB
7 − nR

7 | ≤ 1 we are done, w.l.o.g. let us suppose
that nB

7 > nR
7 + 1. Then pick an edge br ∈ M ′

B which is on a path of length 7
in CLB ∪M ′

B and put this edge in M ′
R. Hence M ′

B becomes M ′
B \ br while M ′

R

becomes M ′
R + br. Applying the preceding reasoning in Lemma 15 we get an

odd path of length at most 7 entirely contained in CLR ∪ M ′
R. Since we have

lost a path of length 7 in CLB ∪ M ′
B, in the new linear partition so obtained

|nB
7 − nR

7 | is strictly smaller than before. We can thus perform our exchange
as long as |nB

7 − nR
7 | ≤ 1 and we get our result. ¤

Independently of Theorem 16, if we choose the strong matchings M ′
B and M ′

R

in such a way that Lemma 12 holds and if we suppose that we have the same
number of paths of length 7 (we do not claim that it is always possible) it is
reasonable to think that we have an isomorphic linear partition.

Theorem 17 Let G be a cubic 3-edge colourable graph, M = MB + MR +
M ′ an associated partition where V (M ′) induces a subgraph whose connected
components are paths of length 1 or 3. Let L = (LB, LR), where LB = CLB ∪
M ′

B and LR = CLR ∪ M ′
R, be an odd linear partition obtained in partitioning

M ′ in M ′
B and M ′

R into two strong matchings such that
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• there is no new path of length 3 in L = (LB, LR)
• nB

7 = nR
7

• ω(LB) = ω(LR)

Then L = (LB, LR) is an isomorphic odd linear partition.

Proof Let pB
1 = pR

1 be the number of paths of length 1 and let be pB
3 =

pR
3 the number of paths of length 3 in CLB and CLR (the two sets of an

associated linear construction leading to our linear partition L = (LB, LR) ).
Since ω(LB) = ω(LR), by Theorem 1 we have:

−2nB
1 + 0nB

3 + 2nB
5 + 4nB

7 = −2nR
1 + 0nR

3 + 2nR
5 + 4nR

7 = 0 (1)

since we have the same number of paths of length 7, we get

−nB
1 + nB

5 = −nR
1 + nR

5 (2)

Since there is no path of length 3 in L = (LB, LR) , we have from Lemmas 13
and 14

pB
1 = nB

1 + nB
5 + 2nB

7

pR
1 = nR

1 + nR
5 + 2nR

7

and hence, taking into account that nB
7 = nR

7

nB
1 + nB

5 = nR
1 + nR

5 (3)

Indeed, each path of length 5 uses one path of length 1 of CLB while, as
pointed out in Lemma 15, a path of length 7 needs to use two such paths.

From Equations (2) and (3) we get nB
1 = nR

1 and nB
5 = nR

5 .

Since we have pB
3 = pR

3 , there is no new path of length 3 in L and each path
of length 5 or 7 uses exactly one path of length 3 in CL (see Lemmas 14 and
15), we necessarily have nB

3 = nR
3 . Hence the linear partition L = (LB, LR) is

isomorphic as claimed. ¤

Theorem 18 Let G be a cubic 3-edge colourable graph on n ≡ 0 (4) vertices
and let M = MB + MR + M ′ be an associated partition. Assume that for any
two edges e and e′ in M ′ the shortest alternating path joining these two edges
has length at least 5. Then G has an odd isomorphic linear partition.

Proof Since M ′ is even (n ≡ 0 (4)) we can choose to partition M ′ in M ′
B

and M ′
R in such a way that |M ′

B| = |M ′
R|. Let L = (LB = CLB + M ′

B, LR =
CLR +M ′

R) be the odd linear partition so obtained from Theorem 16. Let b1r1

be an edge of M ′
B, we have seen in Lemma 15 that when we create a path

of length 7 in CLB ∪ M ′
B containing b1r1 (let P = {r2, b1, r1, b2, b3, r4, b4, r5}
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this path), the edge r4b4 is itself in M ′
B. In that case the alternating distance

between b1r1 and r4b4 is thus 3. Since we have supposed that no two edges in
M ′ are joined by an alternating path of length less than 5, that means that
this case does not occur and no path of length 7 can be created. Hence each
edge of M ′

B leads to a path of length 5 (recall that no path of length 3 can be
created by Lemma 12) in CLB ∪M ′

B as well as each edge of M ′
R in CLR∪M ′

R.
Since |M ′

B| = |M ′
R| we have hence ω(LB) = ω(LR) and the result follows from

Theorem 17 ¤

Corollary 19 Let G be a cubic 3-edge colourable graph on n ≡ 0 (4) having
a 2−factor of triangles. Then G has an odd isomorphic linear partition.

Proof Assume that G is three edge coloured and let M = MB +MR +M ′ be
an associated partition. It is an easy matter to see that each triangle contains
an edge of MB or MR while exactly one edge connecting this triangle to another
one is also in M . Hence the three edges of each triangle are affected in the
associated linear construction either to CLB or to CLR. The edges of M ′ are
edges connecting some triangles of our 2−factor (each triangle being incident
to at most one edge of M ′). If M ′ is empty, G is a Jaeger’s graph and we are
done. |M ′| being even, let xy and x′y′ be two distinct edges of M ′, we want
to show that their alternating distance is at least 5.

Assume that x is contained in the triangle xuv and y in ywt while x′ is
contained in x′u′v′ and y′ in y′w′t′. A shortest alternating path joining xy
to x′y′ begins with wuv or xvu or ywt or ytw. In the same way, it must ends
with v′u′x′ or u′v′x′ or t′w′t′ or w′t′y′. Since each triangle is incident to at
most one edge of M ′, such a shortest alternating path has length at least 5.
The conclusion follows from theorem 18. ¤

In [11] it is shown that a cubic graph having a 2-factor of squares is a Jaeger’s
graph and, hence, can be provided with an isomorphic linear partition. As a
step towards Conjecture 2, it could be interesting to generalize these results
by considering k−uniform 2-factors (each cycle has length k for a fixed k ≥ 5).

4 Graphs with strong chromatic index 5

A strong edge colouring of a graph G is a partition of its edge set into strong
matchings. Let χS(G) (strong chromatic index) denote the minimum integer k
for which E(G) can be partitioned into k strong matchings of G. This notion
was introduced in [10] and [9] while [7] is the usual reference for the origin
of this problem. When dealing with cubic graphs, we have immediately that
χS(G) ≥ 5. We know that χS(G) ≤ 10 (see [4] and [13]) for cubic graphs
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in general and χS(G) ≤ 9 (see [15]) when considering cubic bipartite graphs
(answering thus positively to conjectures appearing in [9] and [8]).

The class of cubic graphs satisfying χS(G) = 5 (as Petersen’s graph, Dodec-
ahedron and the graphs associated to C60 the molecule of the well known
fulleren, a polyhedra on 60 vertices whose faces are 12 cycles on 5 vertices
and 20 cycles on 6 vertices) is of particular interest. A simple counting ar-
gument leads to |V (G)| ≡ 0 (10). By the way this implies that χS(G) ≥ 6
when |V (G)| 6≡ 0 (10) which gives us easy counterexamples to a conjecture
in [8] asserting that χS(G) = 5 when G is a cubic bipartite graph with girth
sufficiently large.

Proposition 20 [9] Let G be a cubic graph with χS(G) = 5. Then the span-
ning subgraph of G obtained by considering 3 colours is an induced subgraph
of k K1,3 and an induced subgraph of cycles without chord of length ≡ 0 (6).
The sum of the lengths of these cycles being 6k.

Proof Assume that we have coloured E(G) with the five (strong) colours
{1, 2, 3, 4, 5}. Let us remark that each edge of G is incident to each colour.
W.l.o.g. we consider the 3 colours {1, 2, 3}. Since we use 5 strong matchings
to colour the edges of G, each vertex is certainly incident to at least one colour
in {1, 2, 3}. Hence these 3 colours leads to a spanning subgraph of G. Assume
that v is a vertex incident to the 3 colours. v is the center of a K1,3 coloured
with {1, 2, 3}. This subgraph is induced in G otherwise we have two neighbors
of v joined by an edge. In that case G contains a triangle and it is easy to see
that we need at least 6 strong matchings to colour the edges incident to the 3
vertices of a triangle, a contradiction. Let us remark that each neighbor of v
is incident to 2 edges coloured with 4 and 5. If we consider two distinct K1,3’s
centered in v and w then an edge joining a neighbor v′ of v to a neighbor w′

of w would be incident to two edges of colour 4 or 5, contradiction. Hence, the
set of K1,3 coloured with {1, 2, 3} is an induced subgraph of G.

Assume now that v1v2 is coloured 1, v2v3 is coloured 2 while v1, v2, v3 are not
the center of one of the K1,3’s coloured with {1, 2, 3}. v2 is not incident with
3 and v3 is not incident with 1. Hence v3 is certainly incident with 3. Let v4

be the end of the edges of colour 3 incident with v3. v4 is not the center of
a K1,3 coloured with {1, 2, 3}. v4 must be incident with 1 leading to a new
vertex v5 etc... We construct in that way a cycle whose edges are alternatively
coloured 1, 2 and 3. We can check that this cycle has no chord (otherwise a
chord would be incident to two edges with the same colour). Moreover this
cycle is even, since each edge is incident to an edge coloured with 4 and the
other with 5. These two colours are alternated along the cycle. Each such cycle
has length multiple of 6 as claimed. The edges of colours 4 and 5 have one end
on a K1,3 and the other on one of the cycles. Hence the sum of the lengths of
our cycles must be exactly 6k, the number of edges of colour 4 or 5 incident
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to the pendent vertices of the set of K1,3’s. ¤

Theorem 21 Let G be a cubic graph with χS(G) = 5. Let K be the set of
K1,3 induced by 3 colours in a 5-strong edge colouring of G and let C be the set
of corresponding cycles. Assume that |K| = k. Then G has a linear partition
L = (LB, LR) such that

• LB is a set of p paths of length 6, p + 2q paths of length 2 and q paths of
length 3

• LR is a set of q paths of length 6, q + 2p paths of length 2 and p paths of
length 3

for any two integers p and q such that p + q = k

Proof Assume that we have partition E(G) with the five (strong) colours
{1, 2, 3, 4, 5}. W.l.o.g. we consider that K and C is obtained in using the 3
strong matchings {1, 2, 3}. Let us colour alternatively the edges of each cycle
of C in red and blue and let us colour the edges of 4 with red and those of
5 with blue. At this point, we remark that each blue connected component is
a path of length 2 as well as each red connected component. Moreover each
vertex of C is the end vertex of a red path (or a blue) path and the interior
vertex of a blue path (or a red path respectively). Let us remark that the
only edges which are not coloured in red or blue are the edges in K. For each
K1,3 ∈ K, the three pendent vertices are the end of a red path of length 2
(and a blue path of length 2), the other end being on C. Assume that v is the
center of a K1,3 ∈ K and let v1, v2 and v3 be its 3 (distinct) neighbors. Let us
put v1v and vv2 in blue while vv3 is set in red. We get hence a blue path of
length 6 and a red path of length 3. In addition, we have 2 red paths of length
2 ending in v1 and v2 and a blue path of length 2 ending in v3. We could had
put v1v and vv2 in red and vv3 in blue, obtaining thus a red path of length
6 and a blue path of length 3, 2 blue paths of length 2 ending in v1 and v2

with a red path of length 2 ending in v3. We operate in the same way on each
K1,3 ∈ K.

Since, in that process, we are connecting two distinct paths of length two, with
the same colour, each having exactly one end on C, while a path of length 2 is
extended to a path of length 3, without changing any previous coloured edge
(in C as well as edges in 4 and 5), we are sure that any path involved in that
operation cannot be extended from one K1,3 ∈ K to another one. Moreover,
for each K1,3, we are free to choose the colour leading to a path of length 6.
Hence we can decide to create p blue paths of length 6 and p red paths of
length 3 when operating on p K1,3 ∈ K and to create q red paths of length 6
and q blue paths of length 3 with the q remaining K1,3’s. The result follows.
¤
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Observe that the isomorphic linear forests considered in Theorem 21 are not
necessarily odd.

Corollary 22 Let G be a cubic graph with χS(G) = 5 and having a number
of vertices multiple of 20. Then G can be partitioned into two isomorphic linear
forests.

Proof In that case |K| = k is even. From theorem 21 we consider p = q = k
2

and we get the result. ¤

Recall that a cubic planar graph is a multi-k-gon [9] (with 3 ≤ k ≤ 5) if all its
faces have length multiple of k. We know that multi-3-gons and multi-4-gons
satisfy Conjecture 2 since they are Jaeger’s graphs (see [5]). Multi-5-gons are
not Jaeger’s graphs in general, however we can show that they do have an
isomorphic linear partition.

Corollary 23 Let G be a multi-5-gon. Then G can be partitioned into two
isomorphic linear forests.

Proof In [10], it is proved that the strong chromatic index of a multi-5-gon is
5 and its number of vertices is multiple of 20. The result follows from corollary
22 ¤

5 Near Jaeger’s graphs

We have seen that whenever an associated partition M = MB + MR + M ′ is
such that V (M ′) induces components of length 1 or 3, we can find, in some
cases, an isomorphic linear partition, extending thus the previous known result
on Jaeger’s graphs. An other way to explore is to assume an upper bound of
the number of edges in M ′. In Theorem 24 below we consider the simple case
where M ′ has only two edges.

Theorem 24 Let G be a cubic 3-edge colourable graph on n ≡ 0 (4) vertices.
Assume that we can find a 3-edge colouring with an associated partition M =
MB + MR + M ′ where M ′ has exactly two edges. Then there exists a linear
partition L = (LB, LR) of E(G) such that LB and LR are isomorphic odd
linear forests.

Proof Let CL = (CLB, CLR) be the linear construction associated to M (see
Definition 8). In deleting M we are left with an even 2-factor C whose vertices
are alternatively coloured blue and red, let B be the set of blue vertices and
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R be the set of red ones. Let us denote the two mixed edges of M ′ as b1r1 and
b2r2 (b1, b2 ∈ B and r1, r2 ∈ R).

We may assume that b1 and r2 are adjacent as well as b2 and r1; for otherwise
the subgraph induced by {b1, r1, b2, r2} is either a P4 or a 2K2, we set M ′

B and
M ′

R in such a way that there is no new path of length 3 in LB = CLB∪M ′
B nor

in LR = CLR∪M ′
R (see Lemma 12), by Lemma 15 we know that nB

7 = nR
7 = 0

and thus Theorem 17 applies.

Hence b1r2, b2r1 ∈ E(G). In addition, we can suppose that in following the
orientation given to each cycle of C we have r2 = s(b1) and b2 = s(r1) : the
contrary implies that the edges b1r2 and b2r1 are on the same cycle of C,
namely b1r2 . . . b2r1 . . . b1, in this case we replace the mixed edges b1r1 and
b2r2 with b1r2 and r1b2 we consider the linear construction associated to the
perfect matching MB + MR + b1r2 + r1b2, we get another 2-factor C ′ such that
b1r2 and r1b2 are not on the same cycle of C ′.

We denote p(b1) as r3, s(r2) as b3, p(r1) as b4 and s(b2) as r4 (b3, b4 ∈
B, r3, r4 ∈ R). Hence we have the oriented paths r3b1r2b3 and b4r1b2r4 while
b1r2, b4r1, b2r4 ∈ MB and r3b1, r2b3, r1b2 ∈ MR.

We know that r3 is the end of an edge of MR, namely r3r
′
3, moreover b4 is the

end of an edge b4b
′4 of MB. The linear construction leads to paths of length

3 ending in this vertices. More precisely, r3 is the end of a path P1 of CLB

while r′3 is the end of a path P2 of CLB. In the same way we have paths P3

and P4 of CLR ending in b4 and b′4.

Case 1 : Assume that P1 6= P2 and P3 6= P4.

In this case (see figure 1) we set LB = CLB − b4b
′
4 + r3r

′
3 + r2b2 and LR =

CLR−r3r
′
3+b4b

′
4+b1r1. It follows that LB and LR have both the same number

of paths of length 3, one path of length 7 and two paths of length 1.

Case 2 : P1 = P2 or P3 = P4.

W.l.o.g we assume that P1 = P2 = r3b5b
′
5r

′
3 (b5, b

′
5 ∈ B). The edge r3r

′
3 is the

central edge of a path Q of length 3 in CLR, the vertex b5 is an endpoint of a
path R in CLR while the edge b4b

′
4 is the central edge of a path S of length 3

in CLB.

In this case ( see Figure 2) we set LB = CLB − b5r3 + r3r
′
3 + b1r1 and LR =

CLR − r3r
′
3 + b5r3 + r2b2.

We have transformed Q into two paths of length 1, R into a path of length
5 ending with b5r3b1 and these two paths are in LR while P1 is replaced by
b5b

′
5r

′
3r3. The path S is transformed into a path of length ending with r1b1r2.
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Fig. 1. Isomorphic linear partitions case 1

Since r2b2 ∈ LR we have created a path of length 3, namely r1b2r2b3 in LR

which takes the place of Q. Consequently, LB and LR have both the same
number of paths of length 3, one path of length 5 and one path of length 1.

LR

P4

P3

P1
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3
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b3r2b1r3
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b′
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S P4
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b1

b5

b′
5

Q

R

S

not assigned

CLR

CLB LB

Fig. 2. Isomorphic linear partitions case 2

Either in case 1 and case 2 both forests LB and LR have the same number of
paths of length 1, of paths of length 3, of paths of length 5 and of paths of
length 7 thus L′

B and L′
R are isomorphic odd linear forests. ¤
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