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Abstract

A normal odd partition T of the edges of a cubic graph is a partition
into trails of odd length (no repeated edge) such that each vertex is the end
vertex of exactly one trail of the partition and internal in some trail. For
each vertex v, we can distinguish the edge for which this vertex is pending.
Three normal odd partitions are compatible whenever these distinguished
edges are distinct for each vertex. We examine this notion and show that
a cubic 3-edge-colorable graph can always be provided with three com-
patible normal odd partitions. The Petersen graph has this property and
we can construct other cubic graphs with chromatic index four with the
same property. Finally, we propose a new conjecture which, if true, would
imply the well known Fan and Raspaud Conjecture.

Keywords:Cubic graph; Edge-partition

1 Introduction

For basic graph-theoretic terms, we refer the reader to Bondy and Murty [1].
A walk in a graph G is a sequence W = v0e1v1 . . . ekvk, where v0, v1, . . . , vk
are vertices of G, and e1, e2 . . . , ek are edges of G and vi−1 and vi are the ends
of ei, 1 ≤ i ≤ k. The vertices v0 and vk are the end vertices and e1 and
ek are the end edges of this walk while v1, . . . , vk−1 are the internal vertices
and e2, . . . , ek−1 are the internal edges. The length l(W ) of W is the number
of edges (namely k). The walk W is odd whenever k is odd, even otherwise.

∗email: jean-luc.fouquet@univ-orleans.fr
†email: jean-marie.vanherpe@univ-orleans.fr
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The walk W is a trail if its edges e1, e2, . . . , ek are distinct and a path if its
vertices v0, v1, . . . , vk are distinct. If W = v0e1v1 . . . ekvk is a walk of G, then
W ′ = viei+1 . . . ejvj (0 ≤ i ≤ j ≤ k) is a subwalk of W (subtrails and subpaths
are defined analogously) .

If v is an internal vertex of a walk W with ends x and y, then W (x, v)
and W (v, y) are the subwalks of W obtained by cutting W at v. Conversely
if W1 and W2 have precisely one common end v, then the concatenation of
these two walks at v gives rise to a new walk (denoted by W1 +W2) with v as
an internal vertex. When there is no possible confusion as to the edges being
used, it would be convenient to omit the edges in the description of a walk, i.e.,
W = v0e1v1 . . . ekvk can be shortened to W = v0v1 . . . vk.

In what follows, G is a cubic graph on n vertices where loops and multiple
edges are allowed.

Definition 1 A partition of E(G) into trails T = {T1, T2 . . . , Tk} is normal
when every vertex is an internal vertex of some trail of T , say Ti, i ∈ {1, . . . k}
and an end vertex in Tj ∈ T , j ∈ {1, . . . k}. The length of a normal partition is
the maximum length of the trails in the partition, that is max{l(Ti)|Ti ∈ T }.

If T = {T1, T2 . . . , Tk} is a normal partition, then k = n
2
. We can associate to

each vertex v the unique edge with end v that is the end edge of a trail of T .
We shall denote this edge by eT (v) and it will be convenient to say that eT (v) is
the marked edge associated to v. When it is necessary to illustrate our purpose
by a figure, we represent the marked edge associated to a vertex by a ⊢ close to
this vertex.

Let v be a vertex such that v is an internal vertex in Ti ∈ T and an end vertex
in Tj ∈ T (as an end of eT (v)). We can associate to v the set ET (v) containing
the end vertices of Ti. Note that Ti and Tj are not necessarily distinct, in this
case we have v ∈ ET (v). When x and y are the ends of Ti, one of these two
vertices is certainly different from v. Let us transform T into a new normal
partition T ′ by the so called switching operation (see Definition 2).

Definition 2 Let T be a normal partition and v be a vertex of the graph such
that v is an internal vertex in Ti ∈ T and an end vertex in Tj ∈ T . Let x and
y be the ends of Ti, (x 6= v).

• When Ti 6= Tj , let T ′
i = Ti(x, v)+Tj , T ′

j = Ti(y, v) and T ′ = T −{Ti, Tj}∪
{T ′

i , T
′
j}.

• When Ti = Tj , let us write Ti = x0e0x1e1 . . . xrerxr+1 . . . xsesxs+1 where
x0 = x, xr = v, es = eT (v) and xs+1 = v.
We set T ′

i = x0e0x1e1 . . . xresxs . . . xr+1erxr and T ′ = T − {Ti} ∪ {T ′
i}

(see Figure 1).

The normal partition T ′ is the result of the switch of T on v.
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Figure 1: The switching operation when Ti = Tj.

Definition 3 A normal partition T = {T1, T2 . . . , Tn
2
} of E(G) into trails is

odd when every trail in T is odd. For each trail of odd length Ti ∈ T , let us say
that an edge e of Ti is odd whenever the subtrails of Ti obtained by deleting e
have odd lengths. The edges of Ti that are not odd are said to be even.

Given two normal partitions T = {T1, T2 . . . , Tn
2
} and T ′ = {T ′

1, T
′
2 . . . , T

′
n
2
} ,

AT T ′ is the set of vertices such that eT (v) = eT ′(v). It must be clear that two
normal partitions T and T ′ are identical whenever AT T ′ = V (G)

Definition 4 Two normal partitions T and T ′ of E(G) into trails are compatible
when eT (v) 6= eT ′(v) for every vertex v of G (in other words AT T ′ = ∅).

Given three normal partitions T = {T1, T2 . . . , Tn
2
} , T ′ = {T ′

1, T
′
2 . . . , T

′
n
2
} and

T ′′ = {T ′′
1 , T

′′
2 . . . , T ′′

n
2
} we let A(T , T ′, T ′′) = AT T ′ ∪ AT ′T ′′ ∪ AT ′T ′′ . We say

that G has three compatible normal odd partitions T , T ′ and T ′′ whenever
these partitions are pairwise compatible, that is A(T , T ′, T ′′) = ∅.

It is shown in [3] (see Theorem 5) that a cubic graph without loops can
always be provided with three compatible normal partitions.

Theorem 5 [3] A cubic graph G has three compatible normal partitions if and
only if G has no loop.

Normal odd partitions are directly associated to perfect matchings and it
is natural to ask whether the problem of finding three compatible normal odd
partitions is connected to the edge-coloring problem. We show that cubic graphs
with chromatic index 3 can be provided with three compatible normal odd
partitions. It turns out that the Petersen graph, the Flower snarks, and the
Goldberg snarks have also three such partitions.

2 Preliminary results

2.1 Switching equivalence

In [3] we proved that if T and T ′ are two normal partitions of a cubic graph
then we can transform T into T ′ by a sequence of at most 2n switchings. In
other words T and T ′ are switching equivalent.
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When T is a normal odd partition, a switching leading to a new odd partition
T ′ is said to be an odd switching. When we can transform a normal odd partition
T in T ′ by a sequence of odd switching operations, T and T ′ are said to be odd
switching equivalent.

Theorem 6 Any two normal odd partitions of a cubic graph G are odd switch-
ing equivalent.

Proof Let MT (v) denote the set of edges x incident with a vertex v for which
there exists a normal odd partition T of G odd switching equivalent with T ,
such that x = eT (v) and eT (u) = eT ′(u) for all u, v such that u 6= v.

If T is a normal odd partition of a cubic graph G, then for every vertex v
of G there exists a normal odd partition T ′ of G such that eT (v) 6= eT ′(v) and
eT (u) = eT ′(u) for all u and v such that u 6= v, T , and T ′ are odd switching
equivalent. Therefore, |MT (v)| ≥ 2 for every v.

Assume that T and T ′ are normal odd partitions of G that are not odd
switching equivalent and such that AT T ′ has maximum cardinality. Then there
is a vertex v /∈ AT T ′ . Since |MT (v)| ≥ 2 and |MT ′(v)| ≥ 2, we have MT (v) ∩
MT ′(v) 6= ∅. Therefore, there exist two normal odd partitions S and S ′ of G
that are not odd switching equivalent and AT T ′ ( ASS′ , a contradiction.

�

Theorem 7 Let G be a cubic graph. Then G has an odd normal partition if
and only if G has a perfect matching.

Proof If M is a perfect matching of G, then G − M is a 2−factor of G.
Let us give an orientation to this 2−factor and for each vertex v let us de-
note the outgoing edge o(v). For each edge e such that e = uv ∈ M , let Puv

be the path of length 3 obtained by concatenating o(u), uv and o(v). Then
T = {Puv|uv ∈ M} is a normal odd partition (of length 3) of G. Conversely
let T = {T1, T2 . . . , Tn

2
} be a normal odd partition of G. A vertex v ∈ V (G) is

internal in exactly one trail of T . The edges of this trail being alternatly odd
and even, v is incident to exactly one odd edge. Hence the odd edges defined
above induce a perfect matching of G. �

Given an odd normal partition T of G, we can define the associated perfect
matching as the set of odd edges of T . Conversely, given a perfect matching M ,
we can say that a normal odd partition T is conformal to M whenever M is the
set of odd edges of T . Let T ′ be a normal odd partition obtained from a normal
odd partition T by one operation of switching. If T and T ′ are conformal to a
perfect matching M , then we can say that we have performed a conformal (to
M) switching. This operation of conformal switching is not always possible on
a vertex. Indeed, assuming that v is an internal vertex in T ∈ T and an end
vertex of this trail, then the conformal switching is not allowed since we would
obtain a cycle in the transformation (see Figure 2, the edge of M is the dashed
edge).
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Figure 2: Conformal switching on v not allowed (the dashed edge is odd).

Theorem 8 If G is a cubic graph of order at least four and M is a perfect
matching in G, then any two normal odd partitions T and T ′ conformal to M
are conformal switching equivalent.

Proof Assume that T and T ′ are two normal odd partitions conformal to a
perfect matching M that does not belong to the same equivalence class. Suppose
that |AT T ′ | is maximum. In particular, we have AT T ′ 6= V (G).

Let v 6∈ AT T ′ and let u1, u2, and u3 be its neighbors. Put vu1 = e1, vu2 = e2,
and vu3 = e3. Without loss of generality we may assume that vu1 is an edge of
M and that eT (v) = vu2, while eT ′(v) = vu3. Since a conformal switching of
T on v leads to a conformal normal partition T ′′ where eT ”(v) = eT ′(v) while
nothing is changed elsewhere, we can suppose that this conformal switching is
not allowed on v. In the same way a conformal switching of T ′ on v is not
allowed as well. Hence v is an internal vertex of T ∈ T and an end vertex of
this trail. Symmetrically, v is an internal vertex of T ′ ∈ T ′ and an end vertex
of this trail (see Figure 3). We suppose that y is the second end vertex of T and
y′ the second end vertex of T ′.

Claim 1 The vertices u2 and u3 are distinct.

Proof If u2 = u3, then we have eT (u3) = e3 (formally we need to distinguish
between u2 and u3) and eT ′(u2) = e2. Hence u2 6∈ AT T ′ . Let us denote by u2u4

the edge of M incident to u2 (= u3) on the subtrail of T joining u1 to u2.
We may assume that u4 6= u1, otherwise G would be a graph on two vertices,

a contradiction.
But now, conformal switchings of T on u4, u2, and v lead to a normal par-

tition T ′′ conformal switching equivalent to T . Whether u4 belongs or not to
AT T ′ , AT ′′T ′ has more vertices than AT T ′ , a contradiction. �
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Figure 3: Conformal switchings on v are not allowed in T and T ′ (the dashed
edges are odd).

Claim 2 The vertices u1 and u2 are distinct.

Proof Assume not: thus u1 /∈ AT T ′ . From Claim 1, we then have u1 6= u3.
We have y = u1, otherwise we could transform T to T ′′ by using a conformal

switching on u1 followed by a conformal switching on v and we would obtain
|AT ′′T ′ | > |AT T ′ |, a contradiction.

But now, conformal switchings of T on u3, u1, and v lead to a normal par-
tition T ′′ conformal switching equivalent to T . Whether u3 belongs or not to
AT T ′ , AT ′′T ′ has more vertices than AT T ′ , a contradiction. �

Similarly u1 6= u3. Consider the subtrails T (u1, u2). There is a certainly
a vertex on that trail for which the associated marked edge eT (w) 6= eT ′(w).
Assume that w is the first such vertex when running from u1 to u2 on T (let us
remark that T (u1, w) = T ′(u1, w)). Hence w 6∈ AT T ′ . Let x be the neighboring
vertex of w on T (v, w) (it may happen that u1 = w, in which case x = v) and
let Q be the trail of T ending in w with the marked edge eT (w).

Since eT (w) /∈ M and eT ′(w) /∈ M , we have xw ∈ M .

Claim 3 w = y.

Proof Assume that w 6= y. Since xw ∈ M , we can perform a conformal
switching of T on w leading to the conformal partition T ′′:

T ′′ = T − {T,Q}+ {T (y, w) +Q, T (w, v)}

But now, |AT T ′′ | > |AT T ′ |, a contradiction. �

In the same way, we certainly have w = y′ (take T ′ instead of T ). Since by
Claim 1 u2 6= u3, we must have either u2 6= w or u3 6= w. By considering T , we
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Figure 4: Two non-equivalent conformal partitions for the cubic graph on two
vertices (the dashed edges are odd).

can decide without loss of generality that u2 6= w (if not, we consider T ′ where
the roles of u2 and u3 are exchanged).

In T , the vertex u2 is an internal vertex of T and an end vertex of a trail S
with S 6= T . A conformal switching is allowed on u2 and this switching leads to
the conformal partition

Q = T − {T, S}+ {T (y, u2) + S, u2v}.

We have AQT ′ = AT T ′ or AQT ′ = AT T ′ − u2. But now we can perform a
conformal switching on v followed by a conformal switching on w. The first
switching on v leads to R defined as follows:

R = Q− {T (y, u2) + S, vu2}+ {S + T (u2, v) + vu2, T (v, w)}.

The second switching on w leads to S defined by

S = R−{S+T (u2, v)+vu2, T (v, w)}+{u2v+T (v, w)+T (w, v), T (w, u2)+S}.

We have now v and w in AST ′ . Since this set has at least one vertex more than
AT T ′ , we have a contradiction. �

It turns out that the cubic graph on two vertices depicted in Figure 4 has two
non-equivalent conformal partitions (with respect to the dashed edge).

2.2 Miscellaneous

The following proposition will be essential in the next section.

Proposition 9 Let G be a cubic graph having three normal partitions T , T ′

and T ′′. If e = xy is an edge of G such that x and y are not in A(T , T ′, T ′′),
then one of the followings is true:

• e is an internal edge in exactly one partition,

• e is an internal edge in exactly two partitions.

Moreover, in the second case, the edge e itself is a trail of the third partition.

Proof Assume that e is an end edge in T , in T ′, and in T ′′. Then in x
or y we would have two partitions (say T and T ′) for which eT (x) = eT ′(x)
(eT (y) = eT ′(y) respectively), a contradiction.

If e is an internal edge in T , T ′ and T ′′, then let a and b be the two other
neighbors of x. We would then have
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• eT (x) = xa or xb

• eT ′(x) = xa or xb

• eT ′′(x) = xa or xb,

which is impossible.
Assume now that e is an internal edge of a trail in T and in T ′ and let a

and b be the two other neighbors of x. Up to the names of the vertices, we have

• eT (x) = xa

• eT ′(x) = xb.

>From the third partition T ”, we must have eT ”(x) = xy. In the same way we
would obtain eT ”(y) = yx. Hence the trail containing e = xy is reduced to e,
as claimed. �

Given a normal partition T , the average length of the trails in T is denoted
µ(T ) while nT (i) is the number of trails of length i.

Proposition 10 [3] Let T be a normal partition of a cubic graph G on n ver-
tices. It follows that

• µ(T ) = 3,

•
∑i=n+1

i=1
(3− i)nT (i) = 0.

Hence a normal partition whose average length is 3 has all its trails of length 3.

Proposition 11 If G is a cubic graph with three compatible normal odd parti-
tions, then G is bridgeless.

Proof Assume that xy is a bridge of G and let C be the component of G−xy
containing x. Since G has three compatible normal odd partitions, one of these
partitions, say T , is such that eT (x) = xy. Thus the edges of C are partitioned
into odd trails. We have

m = |E(C)| =
3(|C| − 1) + 2

2

and m is even whenever |C| ≡ 3 mod 4 while m is odd whenever |C| ≡ 1 mod 4.
The trace of T on C is a set of |C|−1

2
trails and this number is odd when

|C| ≡ 3 mod 4 and even otherwise. Hence when |C| ≡ 3 mod 4 we must have
an odd number of odd trails partitioning E(C), but in that case m is even, a
contradiction. When |C| ≡ 1 mod 4, we must have an even number of odd trails
partitioning E(C), but in that case m is odd, contradiction. �

In Figure 5, we show K4 provided with three compatible normal odd par-
titions. Let us remark that, following Theorem 12, we need to have trails of
length 5 in at least one partition.
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Figure 5: K4 with three compatible normal odd partitions.

3 On cubic graphs with chromatic index three

In this section the existence of three compatible normal odd partitions in cubic
3-edge-colorable graphs is considered.

Theorem 12 If G is a cubic graph, then the following are equivalent:

i) G has three compatible normal odd partitions of length 3

ii) G has three compatible normal odd partitions, where each edge is an
internal edge in exactly one partition

iii) G is bipartite.

Proof Assume first that G can be provided with three compatible normal odd
partitions of length 3, say T , T ′, and T ′′ . Since the average length of each
partition is 3 (Proposition 10), each trail of each partition has length exactly 3.
Thus T , T ′, and T ′′ are three normal odd partitions and from Proposition 9,
each edge is the internal edge of one trail in exactly one partition. Conversely
suppose that G can be provided with three compatible normal odd partitions
where each edge is an internal edge in exactly one partition, the edge of each
trail of length 1 must be an internal edge of two partitions, thus there is no trail
of length 1 in any of these partitions. Since the average length of each partition
is 3, that means that each trail in each partition has length exactly 3. Hence
i) ≡ ii).

We prove now that i) ≡ iii). Let T , T ′ and T ′′ be three compatible normal
odd partitions of length 3. Following the proof of Theorem 7, the set of internal
edges of trails of T (T ′ and T ′′ respectively) is a perfect matching, say M (M ′

and M” respectively).
Let a0a1a2a3 be a trail of T and let b1 and b2 be the third neighbors of a1

and a2 respectively. By definition, we have eT (a1) = a1b1 and eT (a2) = a2b2.
Assume without loss of generality that a0a1 is an internal edge of a trail T ′

1

of T ′. The trail T ′
1 does not use a1a2: otherwise eT ′(a1) = a1b1, a contradiction

to eT (a1) = a1b1 since T and T ′ are compatible. Hence T ′
1 uses a1b1 and

eT ′(a1) = a1a2.
Assume now that a2a3 is an internal edge of a trail T ′

2 of T ′. Reasoning in
the same way, we get that eT ′(a2) = a2a1. These two results lead to the fact
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that a2a3 must be a trail in T ′, which is impossible since each trail has length
exactly 3.

Hence a2a3 is an internal edge in a trail of T ′′. Thus the two internal vertices
of a0a1a2a3 can be distinguished, as follows from the fact that the end edge to
which they are incident is internal in T ′ (say white vertices) or T ′′ (say black
vertices). The same holds for each trail in T (and incidently for each partition
T ′ and T ′′). We can now remark that a1b1 is an end edge of a trail in T .
This end edge cannot be an internal edge in T ′ since the trail of length 3 going
through a0a1 ends with a1b1. Hence a1b1 is an internal edge in T ′′ and b1 is
a black vertex. Considering now a0, this vertex is the internal vertex of a trail
of length 3 of T . Since a0a1 ∈ M ′ and M ′ is a perfect matching, a0 cannot be
incident to an other internal edge of a trail in T ′ and a0 must be a black vertex.
Hence a1 is a white vertex and its neighbors are all black vertices. Since we can
perform this reasoning for each vertex, G is bipartite as claimed.

Conversely, suppose that G is bipartite and let V (G) = {W,B} be the biparti-
tion of its vertex set. In the following, a vertex in W will be represented by a
circle (◦) while a vertex in B will be represented by a bullet (•). >From König’s
Theorem [7], G is a cubic 3-edge-colorable graph. Let us consider a coloring of
its edge set with three colors {α, β, γ}. A trail of length 3 that is obtained by
considering an edge uv (u ∈ B and v ∈ W ) colored with β together with the
edge colored α incident with u and the edge colored with γ incident with v will
be said to have the type α • β ◦ γ.

It can be easily checked that the set T of trails of type α • β ◦ γ is a normal
odd partition of length 3. We can define in the same way T ′ as the set of trails
of type β • γ ◦ α and T ′′ as the set of trails of type γ • α ◦ β .

Hence T , T ′, and T ′′ are three normal odd partitions of length 3. We claim
that these partitions are compatible. Indeed, let v ∈ W be a vertex and u1, u2

and u3 be its neighbors. Assume that u1v is colored with α, u2v is colored
with β and u3v is colored with γ. Hence u1v is internal in a trail of T ′′ and
eT ”(v) = vu3. The edge u2v is internal in a trail of T and eT (v) = vu1. The
edge u3v is internal in a trail of T ′ and eT ′(v) = vu2. Since the same reasoning
can be performed in each vertex of G, the three normal partitions T , T ′ and
T ′′ are compatible. �

Theorem 13 Let G be a cubic graph with three compatible normal odd parti-
tions T , T ′, and T ′′. If T has length 3 then G is a cubic 3-edge-colorable graph
.

Proof Since T has length 3, every trail of T has length 3 (see Proposition
10). Hence there is no edge which can be an internal edge of a trail of T ′ and
a trail of T ′′, since by Proposition 9 such an edge would be a trail of length
1 in T . Thus the perfect matchings associated to T ′ and T ′′ (see Theorem 7)
would then be disjoint and induce an even 2-factor of G, which means that G
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is a cubic 3-edge-colorable graph as claimed. �

Lemmas 14, 15, and 16, below, together with Theorem 17, will be useful in
proving that a cubic graph with a 3-edge-coloring has three compatible normal
odd partitions which are conformal with respect to this coloring (see Corollary
18).

Lemma 14 Let G be a cubic 3-edge-colorable graph. Assume that G has a
proper 3-edge-coloring {Red,Blue, Y ellow} together with three compatible nor-
mal odd partitions TRed, TBlue, TY ellow which are, respectively, conformal to
Red, Blue and Y ellow. Then the graph G′ obtained from G by subdividing an
edge e such that e = xy with two vertices u and v (u adjacent to x and v ad-
jacent to y) and joining these two vertices by an additional edge has also this
property.

Proof Assume that e = xy is colored with Red.
We get a proper 3-edge-coloring of G′ as follows: let the edges xu and vy be

colored Red while the two other edges incident to u and v are colored with the
two remaining colors.

Since xy is colored Red, this edge is internal in TRed. Moreover, by Proposi-
tion 9, we know that xy is an end edge in some other partition, say TBlue. For
µ ∈ {Red,Blue, Y ellow}, we are going to transform the normal odd partition
Tµ of G, conformal to µ, into the normal odd partition T ′

µ of G′, conformal to
µ.
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Let us put xu = e1 and vy = e2, while the edge incident to u and v colored
with Blue is denoted by e3 and the edge incident to u and v colored Y ellow is
denoted by e4.

Let R ∈ TRed be the trail containing e. We write R = R(r, x)+xey+R(y, s)
where r and s are end vertices of R. In order to get the normal odd partition T ′

Red

the subtrail xey of R is split into two subtrails, namely xe1ue3v and ye2ve4u
(see Figure 6). Thus

T ′
Red = TRed − {R} ∪ {R(r, x) + xe1ue3v,R(y, s) + ye2ve4u}.

Obviously all the trails of T ′
Red have odd edges of color Red.

The edge e is an end edge of some trail B of TBlue. This trail has x and
some other vertex b as end vertices. We replace the subtrail yex of B with
ye2ve3ue4v and we consider the trail of length 1, xe1u. Hence we get a normal
odd partition T ′

Blue of G′ conformal with Blue as follows:

T ′
Blue = TBlue − {B} ∪ {xe1u, ve4ue3ve2y +B(y, b)}.

We have now two cases to consider.
Case 1: e is an end edge of some trail Y of TY ellow .

Hence y is one end vertex of Y while c is the other one. We replace the
subtrail xey of Y with xe1ue4ve3u and we add the trail of length 1 ye2v. In
other words:

T ′
Y ellow = TY ellow − {Y } ∪ {ue3ve4ue1x+ Y (x, c), ye2v}.

Case 2: e is an internal edge of some trail Y of TY ellow .
We write Y = Y (f, x) + xey + Y (y, g), where f and g are end vertices of Y .

We replace the subtrail xey of Y with xe1ue4ve3u and we add the trail ye2v of
length 1. Thus

T ′
Y ellow = TY ellow − {Y } ∪ {Y (f, x) + xe1ue4ve3u, ve2y + TY ellow(y, g)}.

In all cases, we get a normal odd partition T ′
Y ellow of G′ conformal with

Y ellow and we can check that these three normal odd partitions T ′
Red, T

′
Blue

and T ′
Y ellow of G′ are compatible, as expected. �

Lemma 15 Let G be a 3-edge-colorable cubic graph with the proper 3-edge-
coloring {Red,Blue, Y ellow}. If TRed, TBlue, and TY ellow are three compatible
normal odd partitions conformal, respectively, to Red, Blue, and Y ellow, then
the graph G′ obtained from G by expanding a vertex by a triangle also has this
property.

Proof Let v be a vertex of G with neighbors u1, u2, u3. Let us expand the
vertex v by a triangle, say abc. We color the edges ab, ac, and bc in order
to get a proper 3-edge-coloring in G′ (see Figure 7). Assume without loss of
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u1

Y ellow u3

Figure 7: Situation in Lemma 15.

generality that the edge ab (respectively, bc, ac) is colored Blue (respectively,
Red, Y ellow).

We suppose eTRed
(v) = vu3. The vertex v is an internal vertex of some trail

in TRed, say R, we replace v in R with abc and we add the trail of length 1, ac.
Thus we get a normal odd partition of the edge set of G′ all of whose trails have
odd edges of color Red.

We proceed in a similar way for TBlue and for TY ellow and we get three com-
patible normal odd partitions with the desired property. �

Let G be a simple cubic 3-edge-colorable graph without triangles and with a
proper 3-edge-coloring using colors in {Red,Blue, Y ellow}. Let TRed, TBlue, and
TY ellow be three normal odd partitions conformal, respectively, to Red, Blue,
and Y ellow. With these hypotheses, given a vertex v of G, denote by v1, v2,
and w the neighbors of v such that vv1 ∈ Red, vv2 ∈ Blue, and vw ∈ Y ellow.
In addition, let w1 and w2 be the neighbors of w satisfying ww1 ∈ Red and
ww2 ∈ Blue. Let Rv (respectively, Bv, Yv) be the trail of TRed (respectively,
of TBlue, TY ellow) that contains v as an internal vertex and R′

v (respectively,
B′

v, Y
′
v) be the trail of TRed (respectively, TBlue, TY ellow) for which v is an end

vertex.
Let rv and sv be the end vertices of Rv: more precisely, rv is the end vertex of
the subtrail R(v, rv) having the end edge adjacent to v colored with Red. The
vertices bv and cv are defined in an analogous way for the trail Bv as well as the
vertices yv and zv for Yv.

13
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Figure 8: Initial situation in Lemma 16.

Moreover, r′v denotes the end vertex of the trail R′
v distinct from v, and the

vertices b′v and y′v are defined similarly for the trails B′
v and Y ′

v .

Lemma 16 Let G be a simple cubic 3-edge-colorable graph without triangles
and with the proper 3-edge-coloring {Red,Blue, Y ellow}. Let TRed, TBlue, and
TY ellow be three normal odd partitions conformal to Red, Blue, and Y ellow such
that A(TRed, TBlue, TY ellow) has minimum size.

Let v be a vertex of G. If v ∈ ATRedTBlue
, and, using the notations above, if

vv1 is an end edge of Y ′
v (see Figure 8), then, as shown in Figure 9:

1. rv = v and Rv = R′
v,

2. w /∈ A(TRed, TBlue, TY ellow),

3. B′
v = B′

w = vw,

4. Yv = Yw = Y ′
v = Y ′

w and the edges vv1, w2w, wv, vv2 and w1w occur in
that order on the trail.

Proof We prove successively items one to four.
Proof of item 1.

Assume that rv 6= v. We use a conformal switching of TRed on v and we get
a normal odd partition T ′

Red as follows:

T ′
Red = TRed − {Rv, R

′
v} ∪ {R′

v +Rv(v, rv), Rv(v, sv)}.
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Figure 9: Final situation in Lemma 16.

Observe that the trails R′
v + Rv(v, rv) and Rv(v, sv) are odd and that vv1 re-

mains to be an odd edge of R′
v + Rv(v, rv). Since we have eT ′

Red
(v) = vv2,

|A(T ′
Red, TBlue, TY ellow)| = |A(TRed, TBlue, TY ellow)| − 1, a contradiction. Thus

rv = v and Rv = R′
v.

Proof of item 2.

Assume that w ∈ A(TRed, TBlue, TY ellow). We know by item 1 that eTRed
(w) =

ww2. We get a normal odd partition T ′
Red from TRed by using conformal switches

of TRed on w and v. More precisely, we write

T ′
Red = TRed − {Rv, R

′
w} ∪ {wv +Rv(v, w) +R′

w, Rv(v, sv)}.

Once again, when performing those operations we get three odd normal parti-
tions which are compatible on v, a contradiction since |A(T ′

Red, TBlue, TY ellow)| =
|A(TRed, TBlue, TY ellow)| − 1.

Proof of item 3.

Since Rv contains the edge w1w, the vertex w and ends with v, we must
have eTRed

(w) = ww2. Moreover, since w /∈ A(TRed, TBlue, TY ellow), we have
eTY ellow

(w) 6= ww2 and the edge wv must be an internal edge of Yw. Hence
eTY ellow

(w) = ww1 and Yw = Yv, it follows that wv is an end edge of B′
v, i.e.,

that the trail B′
v has length 1 and B′

v = B′
w = vw.

Proof of item 4.

Now consider the trails of TY ellow. We already know that Yv = Yw, thus
zv = yw and yv = zw, and furthermore vv1 is an end edge of Y ′

v while ww1 is
an end edge of Y ′

w.
Assume first that zv 6= w. We proceed successively to two conformal switchings
(of TBlue and TY ellow) on w:

1. a switching of TBlue on w which leads to

T ′
Blue = TBlue − {Bw, B

′
v} ∪ {Bw(w, cw), vw +Bw(w, bw)},

15



2. a switching TY ellow on w:

T ′
Y ellow = TY ellow − {Yv, Y

′
w} ∪ {Y ′

w + wv + Yv(v, zv), Yv(w, yv)}.

When Rv and R′
w are distinct trails, we proceed to a switching of TRed on

w and v:

T ′
Red = TRed − {Rv, R

′
w} ∪ {wv +Rv(v, w) +R′

w, Rv(v, sv)}.

If, on the contrary, Rv = R′
v = R′

w = Rw, we set T ′
Red in order to have

eTRed
(v) = vv2 and eTRed

(w) = wv, that is, we proceed successively to the four
following conformal switchings:

a conformal switching of TRed on v1,

a conformal switching of TRed on w,

a conformal switching of TRed on v,

a conformal switching of TRed on v1.

Hence we get

T ′
Red = TRed − {Rv} ∪ {wvv1 +Rv(v1, w1) + w1ww2 +R′

w(w2, v2) + v2v}.

Moreover, a conformal switching of TBlue on w and a conformal switching of
TY ellow on w lead us to

T ′
Blue = TBlue − {Bw, B

′
v} ∪ {Bw(w, cw), vw +Bw(w, bw)},

T ′
Y ellow = TY ellow − {Yv, Y

′
w} ∪ {Y ′

w + wv + Yv(v, zv), Yv(w, yv)}.

But now, in both cases, A(T ′
Red, T ′

Blue, T ′
Y ellow) has fewer vertices than

A(TRed, TBlue, TY ellow), a contradiction.
>From now on we can suppose zv = w and therefore Yv = Yw = Y ′

w. When
zw 6= v, we perform the conformal switching of TBlue and TY ellow on v and we
get two new normal odd partitions, which are

T ′
Y ellow = TY ellow − {Yv, Y

′
v} ∪ {Yv(v, zv), Y

′
v + vw + Yw(w, zw)},

T ′
Blue = TBlue − {Bv, B

′
v} ∪ {wv +Bv(v, bv), Bv(v, cv)}.

It follows that |A(TRed, T ′
Blue, T ′

Y ellow)| = |A(TRed, TBlue, TY ellow)|− 1, a con-
tradiction. Consequently, zw = v and Yv = Yw = Y ′

v = Y ′
w, which proves the

lemma. �

Theorem 17 Let G be a simple cubic 3-edge-colorable graph without triangles.
If G has a proper 3-edge-coloring {Red,Blue, Y ellow}, then G has three com-
patible normal odd partitions TRed, TBlue and TY ellow which are conformal, re-
spectively, to Red, Blue, and Y ellow.
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Proof Let us consider three odd normal partitions TRed, TBlue, and TY ellow

such that the odd edges are colored Red, Blue, and Y ellow, respectively. As-
sume that TRed, TBlue, and TY ellow are such that the size of A(TRed, TBlue, TY ellow)
is minimum. We suppose A(TRed, TBlue, TY ellow) 6= ∅: otherwise, TRed, TBlue

and TY ellow are compatible and the proof is complete.
Let v ∈ A(TRed, TBlue, TY ellow). Without loss of generality, we suppose

v ∈ ATRedTBlue
. Using the notations given above, v1, v2 and w are the neighbors

of v such that vv1 ∈ Red, vv2 ∈ Blue, and vw ∈ Y ellow, while w1 and w2 are
neighbors of w such that ww1 ∈ Red and ww2 ∈ Blue. Hence eTRed

(v) = vw =
eTBlue

(v). Moreover, since eTY ellow
(v) 6= vw, we can assume that eTY ellow

(v) =
vv1.

We know, by Lemma 16, that rv = v, B′
v = B′

w = vw, eTY ellow
(w) = w1w,

Yv = Yw, zv = yw = w, and yv = zw = v. Furthermore, w /∈ A(TRed, TBlue, TY ellow).

Claim w2 /∈ A(TRed, TBlue, TY ellow) and r′w = w2.

Proof Assume w2 ∈ A(TRed, TBlue, TY ellow). By using the conformal
switching of TBlue on v, the conformal switching of TY ellow on w2, and a fi-
nal conformal switching on v, we obtain

1. the conformal switching of TBlue on v leads to

T ′
Blue = TBlue − {Bv, B

′
v} ∪ {wv +B(v, bv), B(v, cv)},

2. after a conformal switching of TY ellow on w2, we have:

T ′
Y ellow = TY ellow − {Yv, Y

′
w2

} ∪ {Y ′
v(v, w2) + Y ′

w2
, w2w + wv + Yv(v, w)},

3. we now perform a conformal switching of T ′
Y ellow on v, hence

T ′′
Y ellow = T ′

Y ellow−{Yv(v, y
′
w2

), Yv(w,w2)}∪{Yv(v, w), w2w+wv+Yv(v, y
′
w2

}.

But we have A(TRed, T ′
Blue, T ′′

Y ellow) = A(TRed, TBlue, TY ellow) − {v}, a
contradiction to the choice of TRed, TBlue and TY ellow .

We can suppose now w2 /∈ A(TRed, TBlue, TY ellow), the edge ww2 being an
internal edge of Bw ∈ TBlue and an internal edge of Yv ∈ TY ellow , and since
w,w2 /∈ A(TRed, TBlue, TY ellow), by Proposition 9, the trail R′

w has length 1.
Hence we can write R′

w = ww2, that is, r′w = w2. �

Let us first use a conformal switching of TRed on w (recall that r′w = w2)
followed by a conformal switching of the resulting Red partition on w as well
as a final conformal switching of TBlue on w, in other words, we get the odd
normal partitions:

T ′
Red = TRed − {Rv, R

′
w} ∪ {Rv(v, sv), wv +Rv(v, w) + ww2}

and
T ′
Blue = TBlue − {B′

v, Bw} ∪ {vw +Bw(w, bw), Bw(w, cw)}.
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We have v /∈ A(T ′
Red, T ′

Blue, TY ellow) and w ∈ A(T ′
Red, T ′

Blue, TY ellow).
More precisely, w ∈ AT ′

Blue
TY ellow

. It follows that A(T ′
Red, T ′

Blue, TY ellow) and
A(TRed, TBlue, TY ellow) have the same size.
Observe that the trail wv + Rv(v, w) + ww2 of T ′

Red contains w and w2 as end
vertices. Since w ∈ AT ′

Blue
TY ellow

and A(T ′
Red, T

′
Blue, TY ellow) has minimum

size, we apply Lemma 16 to the vertices w and w1. It follows that the trail of
T ′
Red having wv as an end edge must have w and w1 as end vertices, a contra-

diction since this trail ends with w and w2. �

Due to Lemmas 14 and 15, Theorem 17 can be easily extended to 3-edge-
colorable cubic graphs having multiple edges or triangles.

Corollary 18 If G is a cubic 3-edge-colorable graph with a proper 3-edge-
coloring {Red,Blue, Y ellow}, then G has three compatible normal odd parti-
tions TRed, TBlue and TY ellow which are conformal, respectively, to Red, Blue,
Y ellow.

4 On cubic graphs with chromatic index four

A snark is a bridgeless cubic graph with edge chromatic number four. By
Proposition 11, a cubic graph with three compatible normal odd partitions
must be bridgeless. Thus in this section we consider the problem of providing
three compatible normal odd partitions for some known snarks as the families
of Flower snarks as well as Goldberg snarks.

In Figures 10(a), 10(b) and 10(c) we give three compatible normal odd par-
titions of the Petersen graph. It can be pointed out that these three compatible
normal odd partitions are isomorphic. Indeed, we have in each partition, a path
of length five, three paths of lengths three, and one path of length unity. In
some sense this fact shows that Theorem 13 is sharp.

4.1 Flower snarks

For an odd k such that k ≥ 3, let Fk be the cubic graph on 4k vertices
u1, u2, . . . uk, v1, v2, . . . vk, w1, w2, . . . wk, t1, t2, . . . tk such that u1u2 . . . uk is an
induced cycle of length k, w1w2 . . . wkt1t2 . . . tk is an induced cycle of length 2k
and for 1 ≤ i ≤ k the vertex vi is adjacent to ui, wi and ti. For odd k such that
k ≥ 5, the graph Fk is known as a Flower snark (see [6]) while F3 is sometimes
known as Tietze’s graph (see [1]).

Proposition 19 If k ≥ 3 is an odd integer, Fk can be provided with three
compatible normal odd partitions.

Proof In Figure 11 we propose three compatible normal odd partitions, namely
T1, T2 and T3, of Tietze’s graph F3. Moreover, when considering the vertices
u1, v1, w1, t1, u2, v2, w2, t2, we have the following situation (recall that k = 3):
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(a) Normal Partition T1. (b) Normal Partition T2.

(c) Normal Partition T3.

Figure 10: Three compatible normal odd partitions T1, T2, and T3, of the Pe-
tersen graph.
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Figure 11: Three compatible normal odd partitions of the Flower snark F3.

eT1(u1) = u1v1, eT1(v1) = v1w1, eT1(w1) = w1w2, eT1(t1) = t1t2 (1)

eT2(u1) = u1uk, eT2(v1) = v1t1, eT2(w1) = w1v1, eT2(t1) = t1wk (2)

eT3(u1) = u1u2, eT3(v1) = v1u1, eT3(w1) = w1tk, eT3(t1) = t1v1 (3)

eT1(u2) = u2u3, eT1(v2) = v2u2, eT1(w2) = w2v2, eT1(t2) = t2t1 (4)

eT2(u2) = u2v2, eT2(v2) = v2t2, eT2(w2) = w2w3, eT2(t2) = t2t3 (5)

eT3(u2) = u2u1, eT3(v2) = v2w2, eT3(w2) = w2w1, eT3(t2) = t2v2. (6)

Observe that among the edges u1u2, w1w2 and t1t2 we have
u1u2 is an odd edge in T1, t1t2 is an odd edge in T2 and in T3.

Assume that for an odd integer k, k ≥ 3, Fk is provided with three compat-
ible normal odd partitions, namely T1, T2 and T3. Suppose further that the
Properties above (1)–(6) are verified by T1, T2, and T3.

We derive Fk+2 from Fk as follows:
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Figure 12: Extension of three compatible normal odd partitions from the Flower
snark Fk to the Flower snark Fk+2.

V (Fk+2) = V (Fk) ∪ {u′
1, v

′
1, w

′
1, t

′
1, u

′
2, v

′
2, w

′
2, t

′
2}

E(Fk+2) = E(Fk)−{u1u2, w1w2, t1t2}
∪ {u1u

′
2, w1w

′
2, t1t

′
2}

∪ {v′2u
′
2, v

′
2w

′
2, v

′
2t

′
2}

∪ {u′
2u

′
1, w

′
2w

′
1, t

′
2t

′
1}

∪ {v′1u
′
1, v

′
1w

′
1, v

′
1t

′
1}

∪ {u′
1u2, w

′
1w2, t

′
1t2}

In other words, we insert eight new vertices into Fk, we delete the edges
u1u2, w1w2, t1t2 and add new edges in order to obtain the Flower snark Fk+2.

Figures 12(a), 12(b), and 12(c) show three normal partitions of Fk+2, T ′
1 , T ′

2

and T ′
3 obtained, respectively, from T1, T2 and T3.

But now we rename some vertices of Fk+2 as follows: For i ≥ 2, the vertices
ui, vi, wi, and ti, are renamed, respectively, ui+2, vi+2, wi+2, and ti+2. The
vertices u′

1, v
′
1, w

′
1, and t′1 are renamed, respectively, u3, v3, w3, and t3. The

vertices u′
2, v

′
2, w

′
2, and t′2 are renamed, respectively, u2, v2, w2, and t2.

It is a routine matter to check that those partitions are odd, compatible,
and satisfy Properties (1)–(6). �
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Figure 13: Adjacencies in a Goldberg Snark.

4.2 Goldberg snarks

For every odd k such that k ≥ 3, the Goldberg snark Gk is defined as follows:
V (Gk) = {vji : 1 ≤ i ≤ 8, 0 ≤ j ≤ k−1} and adjacencies are defined as shown in
Figure 13. The superscript j is always considered modulo k. Moreover, vk6 = v06 ,
vk3 = v04 , and vk8 = v07 .

Proposition 20 If k ≥ 3 is an odd integer, Gk can be provided with three
compatible normal odd partitions.

Proof The proofs of Propositions 19 and 20 are similar. Thus we do not give
the details. We just mention that Figure 14 gives three compatible normal odd
partitions of G3 while Figure 15 describes the construction of such partitions
for Gk+2 from those of Gk. �

5 Open Problems

Fan and Raspaud [2] conjectured that every bridgeless cubic graph can be pro-
vided with three perfect matchings with empty intersection. The following Con-
jecture 21 is due to Fulkerson: it appears first in [4] and is known as the Berge–
Fulkerson Conjecture.

Conjecture 21 If G is a bridgeless cubic graph, then there exist six perfect
matchings M1, . . . ,M6 of G with the property that every edge of G is contained
in exactly two of M1, . . . ,M6.

Theorem 22 If G is a cubic graph with three compatible normal odd partitions,
then there exist three perfect matchings M , M ′, and M” such that M ∩ M ′ ∩
M” = ∅.

Proof Let M , M ′, and M” be the associated perfect matchings of T , T ′,
and T ′′, respectively. Let v be a vertex and u1, u2 and u3 its neighbors. T ,
T ′ and T ′′ being compatible, we can suppose eT (v) = vu1, eT ′(v) = vu2, and
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Figure 14: Three compatible normal odd partitions of the Goldberg snark G3.
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(a) partition T ′
1
.

(b) partition T ′
2
.

(c) partition T ′
3
.

Figure 15: Extending three compatible normal odd partitions from the Goldberg
snark Gk to the Goldberg snark Gk+2.
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eT ′′(v) = vu3. The edge vu1 is an end edge of a trail in T . This edge is not an
odd edge in T and thus vu1 6∈ M . In the same way, vu2 6∈ M ′ and vu3 6∈ M”.
Hence every edge incident to v is contained in at most two perfect matchings
among M,M ′, and M”. This means that M ∩M ′ ∩M” = ∅. �

Theorem 22 above implies that the Fan and Raspaud Conjecture is true
for graphs with three compatible normal odd partitions and we propose the
following new conjecture.

Conjecture 23 Any bridgeless cubic graph can be provided with three compat-
ible normal odd partitions.

We do not know whether this new conjecture is equivalent to the Fan and
Raspaud conjecture or not, or whether it is implied by the Berge–Fulkerson
Conjecture.

Let S = {T1, T2, . . .Tk} (k ≥ 3) be a set of odd normal partitions of a cubic
graph G. The set S will be said to be a complete system of odd normal partitions
of order k whenever for any vertex v of G there are three partitions in S which
are compatible on v, that is, there are T , T ′, and T ′′ (depending on v) in S
such that eT (v), eT ′(v), and eT ′′(v) are three distinct edges.

Problem 24 Is it true that there exists k ≥ 3 such that every bridgeless cubic
graph has a complete system of odd normal partitions of order at most k?

If a cubic graph has a complete system of normal odd partitions of order k,
then it has k perfect matchings with empty intersection. This conjecture would
imply that the conclusions of Conjecture 25 below would hold for bridgeless
cubic graphs.

Conjecture 25 [5] There exists k ≥ 2 such that every r-graph contains k + 1
perfect matchings with empty intersection.

As a matter of fact, in this Conjecture, the integer k depends on r.
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