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On Compatible Normal Odd Partitions in Cubic

Graphs

J.L. Fouquet and J.M. Vanherpe

L.I.F.O., Faculté des Sciences, B.P. 6759
Université d’Orléans, 45067 Orléans Cedex 2, FR

Abstract

A normal odd partition T of the edges of a cubic graph is a partition into trails of odd
length (no repeated edge) such that each vertex is the end vertex of exactly one trail
of the partition and internal in another trail. For each vertex v, we can distinguish
the edge eT (v) for which this vertex is pending. Three normal odd partitions are
compatible whenever these distinguished edges are distinct for each vertex. We study
here this notion and show that a cubic 3-edge colourable graph can always be
provided with three compatible normal odd partitions . The Petersen graph have
this property and we can construct other cubic graphs with chromatic index 4 with
the same property. At last, we give a connexion with the Fan Rapaud [3] conjecture
and propose a new conjecture which, if true, would imply this conjecture.
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1 Introduction

For basic graph-theoretic terms, we refer the reader to Bondy and Murty [2].
Following Bondy [1], a walk in a graph G is sequence W := v0e1v1 . . . ekvk,
where v0, v1, . . . , vk are vertices of G, and e1, e2 . . . , ek are edges of G and vi−1

and vi are the ends of ei, 1 ≤ i ≤ k. v0 and vk are the end vertices and
e1 and ek are the end edges of this walk, while v1, . . . , vk−1 are the internal
vertices and e2, . . . , ek−1 are the internal edges. The length l(W ) of W is the
number of edges (namely k). W is odd whenever k is odd and even otherwise.
The walk W is a trail if its edges e1, e2, . . . , ek are distincts and a path if
its vertices v0, v1, . . . , vk are distincts. If W := v0e1v1 . . . ekvk, is a walk of G
W ′ := viei+1 . . . ejvj (0 ≤ i ≤ j ≤ k) is a subwalk of W (subtrails and subpaths
are defined analogously). If v is an internal vertex of a walk W with ends x
and y, W (x, v) and W (v, y) are the subwalks of W obtained in cutting W in
v. Conversely if W1 and W2 have a common end v, the concatenation of these
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two walks on v gives rise to a new walk (denoted by W1 + W2) with v as an
internal vertex. When no confusion, is possible, it will be convenient to omit
the edges in the description of a walk, that is W := v0e1v1 . . . ekvk will be
shortened in W := v0v1 . . . vk.

Let G = (V,E) be a cubic graph (loops and multiple edges are allowed) and
let T = {T1, T2 . . . , Tk} be a partition of E(G) into trails.

Definition 1 A partition T = {T1, T2 . . . , Tk} of E(G) into trails is normal
when every vertex is the end vertex of one trail of Ti ∈ T and internal in
Tj ∈ T . The length of a normal partition is the maximum length of the trails
in the partition, that is max{l(Ti)|Ti ∈ T }.

When T = {T1, T2 . . . , Tk} is a normal partition, we must have k = n
2
. More-

over, we can associate to each vertex the unique edge with end v which is the
end edge of a trail of T . We shall denote this edge by eT (v) and it will be
convenient to say that eT (v) is the marked edge associated to v. When it will
be necessary to illustrate our purpose by a figure the marked edge associated
to a vertex will be figurate by a ⊢ close to this vertex. Let v be a vertex, v
is an internal vertex in Ti ∈ T and an end vertex in Tj ∈ T (as an end of
eT (v)), we can associate to v the set ET (v) containing the end vertices of Ti. It
must be clear that Ti and Tj are not necessarily distinct, in this case we have
v ∈ ET (v). Let x and y be the ends of Ti, one of these two vertices (say x)
is certainly different from v. Let T ′

i = Ti(x, v) + Tj and T ′
j = Ti(v, y). We can

thus transform T in a new normal partition T ′ by an operation of switching
defined by:

T ′ = T − {Ti, Tj} + {T ′
i , T

′
j}

Definition 2 A normal partition T = {T1, T2 . . . , Tn
2
} of E(G) into trails is

odd when every trail in T is odd. For each trail of odd length Ti ∈ T let us
say that an edge e = uv of Ti is odd (resp. even) whenever the subtrails of Ti

obtained in deleting e have odd (resp. even) lengths.

Given two normal partitions T = {T1, T2 . . . , Tn
2
} and T ′ = {T ′

1, T
′
2 . . . , T ′

n
2

} ,

AT T ′ is the set of vertices such that eT (v) = eT ′(v).

Definition 3 Two normal partitions T and T ′ of E(G) into trails are compat-
ible when eT (v) 6= eT ′(v) for every vertex v ∈ V (G) (in other words AT T ′ = ∅).

Given three normal partitions T = {T1, T2 . . . , Tn
2
} , T ′ = {T ′

1, T
′
2 . . . , T ′

n
2

} and

T ” = {T”1, T”2 . . . , T”n
2
} , we let A = AT T ′ ∪ AT ′T ” ∪ AT ′T ”. We shall say

that G has three compatible normal odd partitions T , T ′ and T ” whenever
these partitions are pairwise compatible (in other words A = ∅).
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In [4] we showed that a cubic graph without loop can always be provided with
3 compatible normal partitions.

Theorem 4 [4] A cubic graph G has three compatible normal partitions if
and only if G has no loop.

It turns out that normal odd partitions are directly associated to perfect
matchings and it is rather natural to ask whether the problem of finding
three compatible normal odd partitions is connected to the problem of the
edge colouring. Motivated by this perspective, we show that cubic graphs with
chromatic index 3 can be provided with three compatible normal odd parti-
tions. Moreover, there are cubic (non trivial) graphs with chromatic index 4
with that property (in particular the Petersen graph and the Flower Snarks).

2 Preliminary results

2.1 Switching equivalence

In [4] we have proved that any two normal partitions T and T ′ of a cubic graph
are switching equivalent, that is, we can transform T in T ′ by a sequence of
at most 2n switchings.

Assume that a normal odd partition T ′ is obtained from the normal odd
partition T by an operation of switching, this operation of switching will be
said an odd switching. If we can transform a normal odd partition T in T ′

by a sequence of odd switching operations, T and T ′ are said odd switching
equivalent.

Theorem 5 Any two normal odd partitions of a cubic graph G are odd switch-
ing equivalent.

Proof Assume that we have chosen two normal odd partitions T and T ′

which are not odd switching equivalent and such that AT T ′ has maximum
cardinality.

In particular, we have AT T ′ 6= V (G). Let v /∈ AT T ′ , u1, u2, and u3 being
the neighbors of v. For sake of simplicity e1, e2 and e3 respectively denote the
edges vu1, vu2 and vu3. Assume without loss of generality that eT (v) = e2 and
eT ′(v) = e3. We denote T (resp. T ′) the trail of T (resp. T ′) which contains v
as an internal vertex.
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As a matter of fact the vertex v is an end point of T , more precisely

T = ve2u2 . . . u1e1ve3u3 . . . x

otherwise there would be a normal odd partition T ′′ obtained from T in using
an odd switching operation on v and such that eT ′′(v) = e3, a contradiction
since AT ′′T ′ would have a greater size than AT T ′ .

Similarly T ′ = ve3u3 . . . u1e1ve2u2 . . . x′.

But now, in using odd switching operations on v we obtain normal odd par-
tition T1 and T ′

1 respectively odd switching equivalent to T and T ′.

T1 = T − {T} ∪ {ve1u1 . . . u2e2ve3u3 . . . x},

T ′
1 = T ′ − {T ′} ∪ {vve1u1 . . . u3e3ve2u2 . . . x′}.

It follows that |AT1T ′

1
| > |AT T ′|, a contradiction. ¤

Theorem 6 Let G be a cubic graph then G has an odd normal partition if
and only if G has a perfect matching.

Proof Let M be a perfect matching in G. Then G−M is a 2−factor of G. let
us give any orientation to this 2−factor and for each vertex v let us denote the
outgoing edge o(v). For each edge e = uv ∈ M , let Puv be the path of length
3 obtained in concatenating o(u) uv and o(v). Then T = {Puv|uv ∈ M} is a
normal odd partition (of length 3) of G. Conversely let T = {T1, T2 . . . , Tn

2
} be

a normal odd partition of G. A vertex v ∈ V (G) is internal in exactly one trail
of T . The edges of this trail being alternatively odd and even, v is incident to
exactly one odd edge. Hence the odd edges so defined induce a perfect match-
ing of G. ¤

Given an odd normal partition T of G, we can define the associated perfect
matching as the set of odd edges of T . Conversely, given a perfect matching
M , we shall say that a normal odd partition T is conformal to M whenever
M is the set of odd edges of T . Assume that a normal odd partition T ′ is
obtained from the normal odd partition T by an operation of switching such
that the associated perfect matching M remains unchanged then we shall say
that we have proceed to a conformal (to M) switching. This operation of
conformal switching is not always possible on a vertex. Indeed, assume that
v is an internal vertex in T ∈ T and an end vertex of this trail then when
T (v, v) contains the edge of M incident to v, the conformal switching is not
allowed since we would obtain a cycle in the transformation (see Figure 2.1,
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V

T

Fig. 1. Conformal switching on v not allowed

the edge of M is the dashed edge). In Theorem 7 we investigate the number
of equivalence classes with respect to the conformal switching operation for a
given perfect matching M , it turns out that except for the cubic graph on two
vertices (see Figure 2.1) the conformal normal partitions are all equivalent.

Fig. 2. Two non equivalent conformal partitions for the cubic graph on 2 vertices

Theorem 7 Let G be a cubic graph of order at least 4 and M be a perfect
matching. Then any two normal partitions T and T ′ conformal to M are
conformal switching equivalent.

Proof

Assume that we have chosen two normal odd partitions T and T ′ which are not
conformal switching equivalent and such that AT T ′ has maximum cardinality.

In particular, we have AT T ′ 6= V (G).

Let v 6∈ AT T ′ and let u1, u2 and u3 be its neighbors. W.l.o.g. we can assume
that vu1 is an edge of M and eT (v) = vu2 while eT ′(v) = vu3. Since a conformal
switch of T in v leads to a conformal normal partition T ” where eT ”(v) =
eT ′(v) while nothing is changed elsewhere, we can suppose that this conformal
switch is not allowed in v. In the same way a conformal switch of T ′ in v is not
allowed as well. Hence v is an internal vertex of T ∈ T and an end vertex of
this trail. Symmetrically, v is an internal vertex of T ′ ∈ T ′ and an end vertex
of this trail (see Figure 2.1). We suppose that y is the second end vertex of T
and y′ the second end vertex of T ′.

Claim 1 u2 6= u3

Proof If u2 = u3 then we have eT (u3) = u3v (formally we need to still
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U2U1

T
′

T

U1 U3U2U3

Fig. 3. Conformal switchings on v are not allowed in T and T ′.

distinguish u2 and u3) and eT ′(u2) = u2v. Hence u2 6∈ AT T ′ . Let us denote
u2u4 the edge of M incident to u2 (= u3) being on the subtrail of T joining
u1 to u2 (identical to the the subtrail of T ′ joining these two vertices).

We may assume that u4 6= u1 otherwise G would be of order 2, a contradiction.

But now, conformal switchings of T in u4, u2 and v lead to a normal partition
T ” conformal switching equivalent to T . Whatever u4 belongs or not to AT T ′ ,
AT ”T ′ has more vertices than AT T ′ , a contradiction. ¥

From now on, we can assume that u2 6= u3.

Claim 2 u1 6= u2

Proof Assume not, thus u1 /∈ AT T ′ . From Claim 1 we have u1 6= u3.

We have y = u1, otherwise we can transform T in T ′′ by using a conformal
switching on u1 followed by a conformal switching in v and we obtain |AT ′′T ′| >
|AT T ′|, a contradiction.

But now, conformal switchings of T in u3, u1 and v lead to a normal partition
T ” conformal switching equivalent to T . Whatever u3 belongs or not to AT T ′ ,
AT ”T ′ has more vertices than AT T ′ , a contradiction. ¥

Similarly u1 6= u3. If we consider the subtrails T (u1, u2) there is a certainly
a vertex on that trail for which the associated marked edge eT (w) 6= eT ′(w).
Assume that w is the first vertex with that property when running from u1 to
u2 on T (let us remark that T (u1, w) = T ′(u1, w)). Hence w 6∈ AT T ′ . Let x be
the neighboring vertex of w on T (v, w) (it may happens that u1 = w, in that
case x = v) and let Q be the trail of T ending in w with the marked edge
eT (w).
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Claim 3 xw ∈ M

Proof If xw 6∈ M then a conformal switching on w leads to T ”

T ” = T − {T, Q} + {T (y, w), Q + T (w, v)}

Whatever is the status of w relatively to AT ”T ′ we can now perform a confor-
mal switching in v in order to get a new conformal normal partition T ′′′ for
which AT ′′′T ′ contains at least one vertex more. Indeed let R ∈ T ” be the trail
containing v as an internal vertex and S ∈ T ” be the trail containing v as an
end vertex then R ends in w and S ends with vu2 (eT ”(v) = vu2). Hence the
conformal switch on v is now allowed, a contradiction. ¥

Claim 4 w = y

Proof Assume that w 6= y. Since by Claim 3 xw ∈ M , a conformal switching
on w is possible. This leads to the conformal partition T ”:

T ” = T − {T, Q} + {T (y, w) + Q, T (w, v)}

In T ” v is now on T (y, w) + Q as an internal vertex and T (w, v) as an end
vertex. A conformal switch is now allowed on v and we get T ′′′ such that
AT ′′′T ′ contains one vertex more than AT T ′ (recall that we do not care about
w since w 6∈ AT T ′), a contradiction. ¥

In the same way, we certainly have w = y′ (take T ′ instead of T ). Since by
Claim 1 u2 6= u3, we must have either u2 6= w or u3 6= w. In considering T , we
can decide, w.l.o.g. that u2 6= w (if not, we consider T ′ where the roles of u2

and u3 are exchanged).

In T , u2 is an internal vertex of T and an end vertex of a trail S with S 6= T .
A conformal switch is allowed in u2 and this switch leads to the conformal
partition:

Q = T − {T, S} + {T (y, u2) + S, u2v}

And we have AQT ′ = AT T ′ or AQT ′ = AT T ′ − u2. But now we can perform a
conformal switch on v followed by a conformal switch on w. The first switch
on v leads to R

R = Q− {T (y, u2) + S, vu2} + {S + T (u2, v) + vu2, T (v, w)}

The second switch on w leads to S

S = R−{S+T (u2, v)+vu2, T (v, w)}+{u2v+T (v, w)+T (w, v), T (w, u2)+S}
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We have now v and w in AST ′ . Since this set has at least one vertex more than
AT T ′ , we have a contradiction. ¤

2.2 Miscellaneous

The following proposition will be essential in the next section.

Proposition 8 Let G be a cubic graph having 3 normal partitions T , T ′ and
T ” and e = xy ∈ E(G) such that x and y are not in A then one of the
followings is true:

• e is an internal edge in exactly one partition
• e is an internal edge in exactly two partitions

Moreover, in the second case, the edge e itself is a trail of the third partition.

Proof If e is not an internal edge in T , T ′ or T ” then e is an end edge for
a trail of T , T ′ and T ”. In x or y we should have two partitions (say T and
T ′) for which eT (x) = eT ′(x) (eT (y) = eT ′(y) respectively), a contradiction. If
e is an internal edge in T , T ′ and T ”. Let a and b the two other neighbors of
x. We should have then

• eT (x) = xa or xb
• eT ′(x) = xa or xb
• eT ”(x) = xa or xb

which is impossible. Assume now that e is an internal edge of a trail in T and
in T ′ and let a and b the two other neighbors of x. Up to the names of vertices
we have

• eT (x) = xa
• eT ′(x) = xb

From the third partition T”, we must have eT ”(x) = xy. In the same way we
should obtain eT ”(y) = yx. Hence the trail containing e = xy is reduced to e,
as claimed. ¤

Given a normal partition T µ(T ) is the mean length of the trails in T and
nT (i) is the number of trails of length i.

Proposition 9 [4] Let T be a normal partition of a cubic graph G on n
vertices. Then
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• µ(T ) = 3
•

∑i=n+1
i=1 (3 − i)nT (i) = 0

Hence a normal partition whose mean length is 3 has all its trail of length 3.

It can be pointed out that cubic graphs with three compatible normal odd
partitions are bridgeless.

Proposition 10 Let G be a cubic graph with three compatible normal odd
partitions then G is bridgeless.

Proof Assume that xy is a bridge of G and let C be the connected component
of G − xy containing x. Since G has three compatible normal odd partitions,
one of these partitions, say T , is such that eT (x) = xy. The edges of C are
thus partitioned into odd trails (namely the trace of T on C). We have

m = |E(C)| =
3(|C| − 1) + 2

2

and m is even whenever |C| ≡ 3 mod 4 while m is odd whenever |C| ≡ 1 mod 4.

The trace of T on C is a set of |C|−1

2
trails and this number is odd when

|C| ≡ 3 mod 4 and even otherwise. Hence, when |C| ≡ 3 mod 4 we must have
an odd number of odd trails partitioning E(C) but, in that case m is even and
when |C| ≡ 1 mod 4 we must have an even number of odd trails partitioning
E(C) but, in that case m is odd, contradiction. ¤

In Figure 2.2, we show K4 provided with three compatible normal odd par-
titions. Let us remark that, following Theorem 11, we need to have trails of
length 5 in at least one partition.

Fig. 4. K4 with three compatible normal odd partitions

3 On cubic graphs with chromatic index 3

In this section the existence of three compatible normal odd partitions in
cubic 3-edge colourable graphs is considered.
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Theorem 11 Let G be a cubic graph then the followings are equivalent

i) G has three compatible normal odd partitions of length 3
ii) G has three compatible normal odd partitions where each edge is an

internal edge in exactly one partition
iii) G is bipartite

Proof Assume first that G can be provided with three compatible normal odd
partitions of length 3 T , T ′ and T ” . Since the mean length of each partition
is 3 (Proposition 9), each trail of each partition has length exactly 3. T , T ′ and
T ” are thus three normal odd partitions and from Proposition 8, each edge
is the internal edge of one trail in exactly one partition. Conversely assume
that G can be provided with three compatible normal odd partitions where
each edge is an internal edge in exactly one partition, then from Proposition
8 there is no trail of length 1 in any of these partitions. Since the mean length
of each partition is 3, that means that each trail in each partition has length
exactly 3. Hence i) ≡ ii).

We prove now that i) ≡ iii). Let T , T ′ and T ” three compatible normal odd
partitions of length 3. Following the proof of Theorem 7 the internal edges of
trails of T (T ′ and T ” respectively) constitute a perfect matching (say M M ′

and M” respectively).

Let a0a1a2a3 be a trail of T and let b1 and b2 the third neighbors of a1 and a2

respectively. By definition, we have eT (a1) = a1b1 and eT (a2) = a2b2.

Since a0a1 and a2a3 must be internal edges in a trail of T ′ or (exclusively) T ”,
assume w.l.o.g. that a0a1 is an internal edge of a trail T ′

1 of T ′. T ′
1 does not

use a1a2 otherwise eT ′(a1) = a1b1, a contradiction with eT (a1) = a1b1 since T
and T ′ are compatible. Hence T ′ uses a1b1 and eT ′(a1) = a1a2.

Assume now that a2a3 is an internal edge of a trail T ′
2 of T ′. Reasoning in

the same way, ge get that eT ′(a2) = a2a1. These two results leads to the fact
that a2a3 must be a trail in T ′, which is impossible since each trail has length
exactly 3.

Hence, whenever a0a1 is supposed to be an internal edge in a trail of T ′, we
must have a2a3 as an internal edge in a trail of T ”. The two internal vertices
of a0a1a2a3 can be thus distinguished, following the fact that the end edge
to whom they are incident is internal in T ′ (say red vertices) or T ” (say blue
vertices). The same holds for each trail in T (and incidently for each partition
T ′ and T ”). We can remark now that a1b2 is an end edge of a trail in T . This
end edge cannot be an internal edge in T ′ since the trail of length 3 going
through a0a1 ends with a1b1. Hence a1b1 is an internal edge in T ” and b1 is a
blue vertices. Considering now a0, this vertex is the internal vertex of a trail

10



of length 3 of T . Since a0a1 ∈ M ′ and M ′ is a perfect matching, a0 cannot
be incident to an other internal edge of a trail in T ′ and a0 must be a blue
vertex. Hence a1 is a red vertex and its neighbors are all blue vertices. Since
we can perform this reasoning in each vertex G is bipartite as claimed.

Conversely, assume that G is bipartite and let V (G) = {W,B} be the bipar-
tition of its vertex set. In the following, a vertex in W will be represented
by a circle (◦) while a vertex in B will be represented by a bullet (•). From
König’s theorem [7] G is a cubic 3-edge colourable graph . Let us consider a
coloring of its edge set with three colors {α, β, γ}. Let us denote by α • β ◦ γ
a trail of length 3 which is obtained in considering an edge uv (u ∈ B and
v ∈ W ) colored with β together with the edge colored α incident with u and
the edge colored with γ incident with v. It can be easily checked that the set
T of α • β ◦ γ trails of length 3 is a normal odd partition of length 3. We can
define in the same way T ′ as the set of β • γ ◦ α trails of length 3 and T ” as
the set of γ • α ◦ β trails of length 3.

Hence T , T ′ and T ” is a set of three normal odd partitions of length 3. We
claim that these partitions are compatible. Indeed, let v ∈ W be a vertex and
u1, u2 and u3 its neighbors. Assume that u1v is colored with α, u2v is colored
with β and u3v is colored with γ . Hence u1v is internal in an γ • α ◦ β trail
of T ” and eT ”(v) = vu3. The edge u2v is internal in an α • β ◦ γ trail of T
and eT (v) = vu1. The edge u3v is internal in an β • γ ◦ α trail of T ′ and
eT ′(v) = vu2. Since the same reasoning can be performed in each vertex of G,
the three T , T ′ and T ” partitions are compatible.

¤

Theorem 12 Let G be a cubic graph with three compatible normal odd parti-
tions T , T ′ and T ” such that

• T has length 3
• T ′ and T ” are odd

Then G is a cubic 3-edge colourable graph.

Proof Since T has length 3, every trail of T has length 3 (see Proposition
9). Hence there is no edge which can be an internal edge of a trail of T ′ and
a trail of T ”, since, by Proposition 8 such an edge would be a trail of length
1 in T . The perfect matchings associated to T ′ and T ” (see Theorem 7) are
thus disjoint and induce an even 2-factor of G, which means that G is a cubic
3-edge colourable graph, as claimed. ¤
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Let G be a simple cubic 3-edge colourable graph with a proper 3-edge colour-
ing using colours in {α, β, γ}. According to Theorem 7 above we know that G
has 3 odd normal partitions Tα, Tβ, Tγ such that Tα is conformal to the perfect
matching of edges coloured with α, Tβ is conformal to β and Tγ is conformal
to γ. Let v be a vertex, we shall denote by vα, vβ and vγ the edge, coloured
α, β and γ respectively, incident with v.

Lemma 13 Let G be a cubic 3-edge colourable graph with a proper 3-edge
colouring {α, β, γ}. Assume that G has three compatible normal odd partitions
Tα, Tβ, Tγ which are, respectively, conformal to α, β and γ. Then G′ obtained
from G in subdividing an edge e with two vertices u and v (u adjacent to x
and v adjacent to y) and joining these two vertices by an additional edge has
also this property.

Proof Assume that e = xy is coloured with α We get a proper 3-edge
colouring of G′ as follows : let the edges xu and vy be colored α while the
two other edges incident to u and v are respectively coloured β and γ. By
proposition 9, e is an internal edge in at least one normal partition (say Tα)
and an end edge in at least one other (say Tβ). We are going to transform the
normal odd partition Tµ of G, conformal to µ, into the normal odd partition
T ′

µ of G′, conformal to µ ∈ {α, β, γ}.

Let Tα ∈ Tα be the trail containing e. In order to get the normal odd partition
T ′

α we replace the sub-trail xey of Tα with xxαuuβvvαy and we add the trail
of length 1, uuγv. Obviously all the trails of T ′

α have odd edges of colour α.

e is an end-edge of some trail of Tβ. W.l.o.g. we can consider that x is its
end vertex. Let us denote Tβ,x this trail. We replace the sub-trail xey of Tβ,x

with vvγuuβvvαy and we consider the trail of length 1, xxαu. We get hence a
normal odd partition T ′

β of G′ conformal with β.

It remains two cases to consider.

case 1: e is an end-edge of some trail of Tγ

Assume that y is its end vertex and let us denote this trail Tγ,y. We replace
the subtrail xey of Tγ,y with xxαuuγvvβu and we consider the trail of length
1 yyαv.

case 2: e is an internal edge of some trail Tγ of Tγ. We replace the subtrail
xey of Tγ,y with xxαuuγvvβu and we consider the trail of length 1 yyαv.

In any case, we get a normal odd partition T ′
γ of G′ conformal with γ and we

can check that these 3 normal odd partitions T ′
α, T ′

β and T ′
γ of G′ are compat-

ible as expected. ¤
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Lemma 14 Let G be a cubic 3-edge colourable graph with a proper 3-edge
colouring. {α, β, γ}. Assume that G has three compatible normal odd partitions
Tα, Tβ, Tγ which are, respectively, conformal to α, β and γ. Then G′ obtained
from G in expanding a vertex by a triangle has also this property.

Proof Let us expand a vertex x of G by a triangle say abc. We colour the
edges ab, ac, and bc in order to get a proper 3-edge colouring in G′. Assume
w.l.o.g. that the edge ab (resp. bc, ac) is coloured β (resp. α, γ).

We suppose that eTα
(x) = xγ. The vertex x is an internal vertex of some trail

in Tα, say Tα,x, we replace x in Tα,x with aaβbbαc and we add the trail of length
1, aaγc. Thus we get a normal odd partition of the edge set of G′ whose all
trails have odd edges of colour α.

We proceed in a similar way for T ′
β and Tγ and we get three compatible normal

odd partitions with the desired property. ¤

Let µ be some colour in {α, β, γ}, we denote Tµ,v the trail of Tµ for which v
is an internal vertex while T ′

µ,v denotes the trail of Tµ ending in v. Since the
odd edges of Tµ,v have colour µ we denote the endpoints of this trail as aTµ,v

and bTµ,v
in such a way that the sub-trail of Tµ,v whose endpoints are aTµ,v

and v contains vµ as an end-edge. Thus we write Tµ,v = aTµ,v
. . . vµv . . . bTµ,v

.
In addition bT ′

µ,v
denotes the endpoint of T ′

µ,v distinct from v.

Lemma 15 Let G be a simple cubic 3-edge colourable graph with a proper
3-edge colouring using colours in {α, β, γ}. Let Tα, Tβ, Tγ three normal odd
partitions conformal to α, β and γ and A = ATαTβ

+ATβTγ
+ATγTα

has minimal
size. Let µ, ν, ξ be 3 distinct colors of {α, β, γ}.

If x ∈ ATµTν
, xµ is an end edge of T ′

ξ,x and y is the neighbor of x such that
xξ = yξ. Then

• aTµ,x
= x,

• y /∈ A,
• T ′

ν,x = xxξy,
• Tξ,x = xxµ . . . yνyxξxxν . . . yµy.

Proof Assume that aTµ,x
6= x. We use an odd switch of Tµ on x and we get

a normal odd partition T ′
µ as follows :

T ′
µ = Tµ − {Tµ,x, T

′
µ,x} ∪ {aTµ,x

. . . xµxxξ . . . bT ′

µ,x
, xxν . . . bTµ,x

}

Observe that the trails aTµ,x
. . . xµxxξ . . . bT ′

µ,x
and xxν . . . bTµ,x

of T ′
µ are odd

and their odd edges of colour µ. Moreover eT ′
µ
(x) = xν , consequently we have

13
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Fig. 5. Situation in Lemma 15

a contradiction with AT ′
µTν

∪ATνTξ
∪AT ′

µTξ
whose size is |A|−1. Thus aTµ,x

= x
and Tµ,x = T ′

µ,x.

Assume that y ∈ A. Thus whatever the odd switches we will perform on y,
this will not increase the size of A. We get a normal odd partition T ′

µ from
Tµ in using odd switches of Tµ on y and x. More precisely we write

T ′
µ = Tµ − {Tµ,x} ∪ {yyµ . . . xµxxξyyν . . . bT ′

ν,y
, xxν . . . bTµ,x

}.

Once again, when performing those operations we get 3 odd normal parti-
tions which are compatible on x, a contradiction with the the fact that A has
minimal size.

14



Since Tµ,x contains the edge yµ, the vertex y and ends on x the edge yν must
be an end-edge of T ′

µ,y. moreover y not being in A, the trail Tξ,y must contain
the edge yν and thus yµ is an end-edge of T ′

ξ,y, it follows that xξ is an end-edge
of T ′

ν,y, that is the trail T ′
ν,x has length 1 namely T ′

ν,x = xxξy = T ′
ν,y.

If aTξ,y
6= y we can perform 3 odd switches (of Tµ, Tν and Tξ) on y an the odd

switch of Tµ on x, in other words we write :

T ′
µ = Tµ − {Tµ,x} ∪ {yyµ . . . xµxxxξyyν . . . bT ′

µ,y
}

T ′
ν = Tν − {Tν,y, xxξy} ∪ {bTν,y

. . . yµy, xxξyyν . . . aTν,y
}

T ′
ξ = Tξ − {Tξ,y, T

′
ξ,y} ∪ {bT ′

ξ,y
. . . yµyyξxxν . . . aTξ,y

, yyν . . . bTξ,y
}

But now, AT ′
µT ′

ν
∪AT ′

νT ′
ξ
∪AT ′

µT ′
ξ

has less vertices than A, a contradiction.
Thus Tξ,y = Tξ,x = yyµ . . . xνxxξyyν . . . bTξ,y

. When bTξ,y
6= x we perform the

odd switches of Tν and Tξ on x and we get 2 new normal odd partitions, that
is :

T ′
ν = Tν − {Tν,x, xxξy} ∪ {yxξxxν . . . aTν,x

, xxµ . . . bTν,x
}

if aTν,x
6= x or

T ′
ν = Tν − {Tν,x, xxξy} ∪ {yxξxxν . . . xµx}

otherwise.

In addition we set

T ′
ξ = Tξ − {Tξ,y, T

′
ξ,x} ∪ {bT ′

ξ,x
. . . xµxxξyyν . . . bTξ,y

},

it follows that Ti,T
′
ν and T ′

ξ are compatible on x, a contradiction. Conse-
quently Tξ,x = xxµ . . . yνyxξxxν . . . yµy which proves the Lemma. ¤

Theorem 16 Let G be a cubic 3-edge colourable graph with a proper 3-edge
colouring. Then G has three compatible normal odd partitions Tα, Tβ and Tγ

which are conformal respectively to α, β and γ.

Proof Assume that G has a 3 edge-colouring using colours in {α, β, γ}. From
Lemma 13 and Lemma 14, we can suppose that G has no multiple edge and
no triangle. Let us consider 3 odd normal partitions Tα, Tβ, Tγ such that the
odd edges are coloured α, β and γ respectively. Assume that Tα, Tβ and Tγ are
such that the size of A is minimum. We suppose that A 6= ∅ otherwise Tα, Tβ

and Tγ are compatible and we are done.

Let u ∈ A, w.l.o.g we suppose that u ∈ ATαTβ
. Henceforth, eTα

(u) = uγ =
eTβ

(u). Let v be the neighbor of u incident to uγ.

Claim 1 aTα,u
= u, v /∈ A, T ′

β,u = uuξv, and Tγ,u = uuα . . . vβvuγuuβ . . . vαv.

15



Proof We just apply Lemma 15 on Tα, Tβ and Tγ with u = x, v = y, α = µ,
β = ν and γ = ξ. ¥

Let v1 and v2 be the neighbors of v such that v1 is incident to vα and v2 is
incident to vβ.

Claim 2 v2 /∈ A and bT ′

α,v
= v2.

Proof Recall that Tγ,u = uuα . . . vβvuγuuβ . . . vαv and T ′
β,u = uuγv. In using

odd switches of Tβ and Tγ on u and the odd switch of Tγ on v2 we obtain :

T ′
β = Tβ − {T ′

β,u, Tβ,u} ∪ {uuα . . . bTβ,u
, vuγuuβ . . . aTβ,u

}

T ′
γ = Tγ − {Tγ,u, T

′
γ,v2

} ∪ {uuβ . . . v1γvαv, u2vβvuγuuα . . . v2 . . . bT ′

γ,v2

}

If v2 ∈ A, we have ATαT ′

β
∪AT ′

β
T ′

γ
∪ATαT ′

γ
= A−{u}, a contradiction with the

choice of Tα, Tβ and Tγ.
Consequently, the edge vβ being an internal edge of Tβ,v ∈ Tβ and an internal
edge of Tγ,u ∈ Tγ and since v, v2 /∈ A, by Proposition8, the trail T ′

α,v has length
1, we can write T ′

α,v = vvβv2, that is bT ′

α,v
= v2. ¥

Let us use odd switches of Tα on u and v as well as an odd switch of Tβ

on v, in other words we get the odd normal partitions :

T ′
α = Tα − {Tα,u, T

′
α,v} ∪ {uuβ . . . bTα,u

, vvγuuα . . . v1vαvvβ . . . bT ′

α,v
}

and

T ′
β = Tβ − {Tβ,v, T

′
β,v} ∪ {uuγvvβ . . . aTβ,v

, vvα . . . bTβ,v
}

But now, we apply Lemma 15 with x = v, y = v1, µ = γ, ν = β,ξ = α and
with A′ = AT ′

αT
′

β
∪ AT ′

β
Tγ

∪ AT ′

αTγ
= A − {u} ∪ {v}. It follows that the trail

of T ′
α having vα as an internal edge, namely vvγuuα . . . v1vαvvβ . . . bT ′

α,v
must

have v and v1 as endpoints, a contradiction with Claim 2.

¤

4 On cubic graphs with chromatic index 4

A Snark is a bridgeless cubic graph with edge chromatic number of four. By
Proposition 10 a cubic graph with three compatible normal odd partitions
must be bridgeless. thus in this section we consider the problem of provid-
ing three compatible normal odd partitions for some known Snarks as an
extension of the Petersen graph as well as the family of Flower Snarks.
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(a) Partition T1 (b) Partition T2 (c) Partition T3

Fig. 6. three compatible normal odd partitions of the Petersen graph

4.1 An extension of the Petersen graph

In Figures 6(a), 6(b) and 6(c) we give three compatible normal odd partitions
of the Petersen graph. It can be pointed out that these three compatible
normal odd partitions are isomorphic. Indeed, we have, in each partition, a
path of length 5, 3 paths of lengths 3 and 1 path of length 1. In some sense
this shows that Theorem 12 is best possible.

We have seen that, given a cubic graph with three compatible normal odd
partitions, we can obtain a new cubic graph with the same property in sub-
diving an edge with 2 vertices an adding an edge between these two vertices
(see Lemma 13) or in expanding a vertex with a triangle (see Lemma 14). We
must say that these Lemmas are proved in a more restrictive context since we
deal with conformal odd partitions, but it is an easy task to see that these
lemmas remain true when we drop this constraint. We do not know whether
the converse operation of the expansion (shrinking a triangle into a single
vertex) allow us to preserve three compatible normal odd partitions in the
resulting graph.

Our purpose now is to construct an example of a cubic graph with chromatic
index 4 and three compatible normal odd partitions starting from two copies
of the Petersen graph and using a restricted form of the classical composition
(see Figure 7) operation. It’s a folklore’s result that such a composition has
chromatic index 4 as soon as one of the two graphs involved has itself chromatic
index 4. The interesting point is that we have provided the Petersen graph
with three compatible normal odd partitions but two of them are odd while
the third one contains 2 even trails.

Assume that G and G′ are two copies of a cubic graph. In order to be more
concise, when O denote an object (a vertex, a trail ...) of G, O′ will denote the
corresponding object (using the obvious isomorphism) of G′. Let u ∈ V (G)
and assume that N(u) = {a, b, c} (we do not claim that these vertices are
distinct since we do not consider only simple graphs). The composition on
{u, u′} of G and G′ is obtained in deleting u in G and u′ in G′ and joining

17
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b’
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Fig. 7. Composition of two cubic graphs

(a) The odd partition T1 (b) The odd partition T2

U

(c) The partition T3

Fig. 8. The partitions of the Petersen graph considered in Proposition 18

a to a′, b to b′ and c to c′. The restriction of the composition invoked above
comes from the fact that we impose to join similar vertices.

Proposition 17 Let G and G′ two copies of a cubic graph with u ∈ V (G)
and u′ ∈ V (G′). Let H be the cubic graph obtained by composition on {u, u′}.
Let T1, T2 and T3 be three compatible normal odd partitions of G and T ′

1 , T
′

2 ,
T ′

3 the corresponding normal partitions of G′.

Assume that u 6∈ ETi
(u), for all i ∈ {1, 2, 3} then, there exists three compatible

normal odd partitions Q1, Q2 and Q3 of H such that

for i ∈ {1, 2, 3}

• ∀v ∈ V (G − u) eQi
(v) = eTi

(v)
• ∀v′ ∈ V (G′ − u′) eQi

(v′) = eT ′
i
(v′)

Proof Let i ∈ {1, 2, 3}, since u 6∈ ETi
(u), we have, obviously u′ 6∈ ET ′

i
(u′).

Hence, in G−u the trace of the trails T1 and T2 of Ti using u give three distinct
trails A, B and C. It can be noticed that some of them may have length 0.
When A, by example, has length 0 this means that the marked edge eT1

(a)
associated to a is au. The concatenation of A, aa′ and A′ is a trail Q1 of H
and we define in the same way Q2 as the concatenation of B, bb′ and B′ and
Q3 with C, cc′ and C ′. Let Qi be the partition of H

Qi = {Ti − {T1, T2}} ∪ {T ′
i − {T ′

1, T
′
2}} ∪ {Q1, Q2, Q3}

18



It is a routine matter to check that Qi is a normal partition such that ∀v ∈
V (G−u) eQi

(v) = eTi
(v) since we only extend A, B and C with the edges aa′

bb′ and cc′ in order to get Q1, Q2 and Q3. This operation does not affect the
marked edges in G − u (be careful, in the example cited above, when A has
length 0, Q1 is reduced to aa′ and the marked edge associated to a is aa′ as
well as the marked edge associated to a′ is a′a). The same holds with eQi

(v′)
when v′ ∈ V (G′ − u′).

Since Q1 is the concatenation of A, aa′ and A′ Q1 has obviously odd length
since A and A′ are isomorphic trails. Hence Q1, Q2 and Q3 have all odd length.

Thus the partitions Q1, Q2 and Q3 are three compatible normal odd partitions
of H as claimed. ¤

Proposition 18 Let H be the graph obtained by composition of two Petersen
graphs on {u, u′} (where u is any vertex of the Petersen graph). Then H can
be provided with three compatible normal odd partitions.

Proof Figures 8(a), 8(b) and 8(c) show that the Petersen graph can be pro-
vided with three compatible normal odd partitions T1, T2 and T3. In Figures
8(a) and 8(b) we have two odd normal partitions T1 and T2 while Figure 8(b)
shows a normal partition T3 with exactly two even trails (of length 8 and 4).
These two even trails use u, the one as an internal vertex, the other as an end
vertex, moreover, we can check that u 6∈ ET3

(u)

Using Proposition 17, we see that T1 and T ′
1 give rise to a normal odd partition

Q1 of H, T2 and T ′
2 give a normal odd partition Q2 while T3 and T ′

3 give a
normal partition Q3. Moreover Q1, Q2 and Q3 are pairwise compatible.

We claim that Q3 is odd. Indeed the two even trails of T3 are now transformed
into the trails using aa′, bb′ and cc′ (where N(u) = {a, bc}) in the Petersen
graph). The last item of Proposition 17 insures us that these trails have odd
length. By construction of Q3 the other trails are trails of T3 or T ′

3 which have
odd lengths. ¤

4.2 Flower Snarks

For an odd k ≥ 3 the Flower Snark Fk (see [6]) is the cubic graph on 4k vertices
u1, u2, . . . uk, v1, v2, . . . vk, w1, w2, . . . wk, t1, t2, . . . tk such that u1u2 . . . uk is an
induced cycle of length k, w1w2 . . . wkt1t2 . . . tk is an induced cycle of length
2k and for i = 1 . . . k the vertex vi is adjacent to ui, wi and ti.
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Fig. 9. Three compatible normal odd partitions of the Flower Snark F3

Proposition 19 Let Fk (k ≥ 3, k odd) be a Flower Snark, Fk can be provided
with three compatible normal odd partitions.

Proof In Figure 9 we propose three compatible normal odd partitions,
namely T1, T2 and T3, of the Flower Snark Fk when k = 3. Moreover, when
considering the vertices u1, v1, w1, t1, u2, v2, w2, t2 we have the following
situation (recall that k = 3):

eT1
(u1) = u1v1, eT1

(v1) = v1w1, eT1
(w1) = w1w2, eT1

(t1) = t1t2 (1)

eT2
(u1) = u1uk, eT2

(v1) = v1t1, eT2
(w1) = w1v1, eT2

(t1) = t1wk (2)

eT3
(u1) = u1u2, eT3

(v1) = v1u1, eT3
(w1) = w1tk, eT3

(t1) = t1v1 (3)

eT1
(u2) = u2u3, eT1

(v2) = v2u2, eT1
(w2) = w2v2, eT1

(t2) = t2t1 (4)

eT2
(u2) = u2v2, eT2

(v2) = v2t2, eT2
(w2) = w2w3, eT2

(t2) = t2t3 (5)

eT3
(u2) = u2u1, eT3

(v2) = v2w2, eT3
(w2) = w2w1, eT3

(t2) = t2v2 (6)

Observe that, among the edges u1u2, w1w2 and t1t2 we have :

u1u2 is the unique odd edge in T1,

t1t2 is the unique odd edge in T2 and in T3

Assume by induction that for an odd integer k, k ≥ 3, the Flower Snark Fk

is provided with three compatible normal odd partitions, namely T1, T2 and
T3. Moreover, assume that the above Properties (1) to (6) are verified by T1,
T2 and T3.

We derive Fk+2 from Fk as follows :
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Fig. 10. Extension of three compatible normal odd partitions from the Flower Snark
Fk to the Flower Snark Fk+2

V (Fk+2) = V (Fk) ∪ {u′
1, v

′
1, w

′
1, t

′
1, u

′
2, v

′
2, w

′
2, t

′
2}

E(Fk+2) = E(Fk) −{u1u2, w1w2, t1t2}

∪ {u1u
′
2, w1w

′
2, t1t

′
2}

∪ {v′
2u

′
2, v

′
2w

′
2, v

′
2t

′
2}

∪ {u′
2u

′
1, w

′
2w

′
1, t

′
2t

′
1}

∪ {v′
1u

′
1, v

′
1w

′
1, v

′
1t

′
1}

∪ {u′
1u2, w

′
1w2, t

′
1t2}

In other words we add 8 new vertices to Fk, we delete the edges u1u2, w1w2,
t1t2 and add new edges in order to obtain the Flower Snark Fk+2.

Figure 10(a) 10(b) and 10(c) show three normal partitions of Fk+2, T
′

1 , T ′
2 and

T ′
3 , respectively obtained from T1, T2 and T3.

But now we rename some vertices of Fk+2 as follows : For i ≥ 2, ui, vi, wi and
ti are respectively renamed ui+2, vi+2, wi+2, ti+2. The vertices u′

1, v′
1, w′

1 and
t′1 are respectively renamed u3, v3, w3 and t3. The vertices u′

2, v′
2, w′

2 and t′2
are respectively renamed u2, v2, w2 and t2.

It’s a routine matter to check that those partitions are odd, compatible and
verify Properties (1) to (6). ¤
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5 Conjectures

Fan and Raspaud [3] conjectured that any bridgeless cubic graph can be pro-
vided with three perfect matchings with empty intersection.

Theorem 20 Let G be a cubic graph with three compatible normal odd parti-
tions then there exist 3 perfect matching M , M ′ and M” such that M ∩M ′ ∩
M” = ∅.

Proof Let M , M ′ and M” be the associated perfect matchings of T , T ′ and
T ” respectively. Let v be any vertex and u1, u2 and u3 its neighbors. T , T ′

and T ” being compatible, we can suppose that eT (v) = vu1, eT ′(v) = vu2 and
eT ”(v) = vu3. vu1 is an end edge of a trail in T , this edge is not an odd edge
in T and thus vu1 6∈ M . In the same way vu2 6∈ M ′ and vu3 6∈ M”. Hence,
any edge incident to v is contained in at most two perfect matchings among
M,M ′ and M”. Which means that M ∩ M ′ ∩ M” = ∅

¤

Theorem 20 above implies that the Fan Raspaud Conjecture is true for graphs
with three compatible normal odd partitions and we propose as a new con-
jecture:

Conjecture 21 Any bridgeless cubic graph can be provided with three com-
patible normal odd partitions.

We do not know whether this new conjecture is equivalent to the Fan Raspaud
conjecture or not. By the way, the Fan Raspaud conjecture seems to be orig-
inated independently by Jackson. Goddyn [5] indeed mentioned this problem
proposed by Jackson for r−graphs (r−regular graphs with an even number of
vertices such that all odd cuts have size at least r, as defined by Seymour [8])
in the proceedings of a joint summer research conference on graphs minors
which dates back 1991.

Conjecture 22 [5] There exists k ≥ 2 such that any r-graph contains k + 1
perfect matchings with empty intersection.

Seymour [8] conjectured that:
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Conjecture 23 [8] If r ≥ 4 then any r-graph has a perfect matching whose
deletion yields an (r-1)-graph.

Hence Seymour’s conjecture leads to a specialized form of Jackson’s conjecture
when dealing with cubic bridgeless graphs and the Fan Raspaud conjecture
appears as a refinement of Jackson’s conjecture.

Let S = {T1, T2, . . . Tk} (k ≥ 3) be a set of odd normal partitions of a cubic
graph G. The set S will be said a complete system of odd normal partitions
of order k whenever for any vertex v of G there is three partitions in S which
are compatible on v, that is there is T , T ′, T ′′ in S such that eT (v), eT ′(v)
and eT ′′(v) are three distinct edges.

Conjecture 24 There exists k ≥ 3 such that any bridgeless cubic graph has
a complete system of odd normal partitions of order at most k.

If a cubic graph has a complete system of normal odd partitions of order k
then it has k perfect matchings with empty intersection. Thus Conjecture 24
implies Conjecture 22 for bridgeless cubic graphs.
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