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The shapes of flat pebbles may be characterized in terms of the statistical distribution of curvatures
measured along their contours. We illustrate this new method for clay pebbles eroded in a controlled
laboratory apparatus, and also for naturally-occurring rip-up clasts formed and eroded in the Mont
St.-Michel bay. We find that the curvature distribution allows finer discrimination than traditional
measures of aspect ratios. Furthermore, it connects to the microscopic action of erosion processes
that are typically faster at protruding regions of high curvature. We discuss in detail how the
curvature may be reliable deduced from digital photographs.

PACS numbers: 45.70.-n,83.80.Nb,91.60.-x,02.60.Jh

I. INTRODUCTION

The roundness of pebbles on a beach has long been a
source of wonder and astonishment for scientists in many
fields [1, 2]. Explanations for the pebble shapes were born
from the simple pleasure of understanding nature but also
from the hope that a pebble, or a collection of pebbles,
might carry lithographically imprinted the signature of
their erosion history. Reading that imprint would then,
for instance, reveal if a pebble was eroded on a beach, a
river or a glacier, or if it traveled a long distance down
a stream. It even perhaps would reveal for how long
the erosion forces have been at work on that object. Of
obvious interest in Geology [3], a physical understand-
ing of the formation of erosion shapes would also allow
for a better control of many industrial processes lead-
ing to rounded objects such as gem stone or clay bead
grinding in tumblers or fruit and vegetable peeling in sev-
eral mechanical devices. Diverse mathematical tools have
been developed for geometrical shape analysis of crys-
talites, cell membranes, and other far from equilibrium
systems [4–7]; however, these do not seem applicable to
pebbles.

The evolution of a pebble shape under erosion can ar-
guably be viewed as a succession of elementary cuts that
act at the surface of the body to remove a given amount
of material. This converts young, polyhedral-like shapes
with a relatively small number of large sides and sharp
vertices into more mature shapes with a high number of
small sides and smooth vertices. The size and the shapes
of each of these successive ablations, as well as the surface
sites where the cutting happens, are determined both by
the conditions under which erosion takes place and by
the nature of the material being eroded. Exposure of a
young, polyhedral-like shape to the rough tumbling of a
steep stream slope will result in relatively large cuts of
the angular sections, while exposure to the gentle erosion
of wind or water is more likely to lead to small cuts al-
most parallel to the existing flat sides. Also, the same
sequence of external forces acting on two identical origi-
nal shapes of different materials will result into distinct

forms due to weight, hardness or anisotropy differences.
In spite of the diversity of factors at play in shape mod-
ification, the complete evolution of the pebble shape is
fully determined by (i) the initial form described by some
number of faces, edges and vertices and (ii) the position,
size and orientation of the successive ablations.

Given that the erosion process evolves by a succession
of localized events on the pebble surface, it is surprising
that the majority of the precedent attempts to charac-
terize the pebble shapes were restricted to the determi-
nation of global quantities such as the pebble mass or
the lengths of its three main axes [3]. Clearly, in order
to capture both the local nature of the erosion process
and the statistical character of the successive elementary
cuts, one needs to build a new detailed description of the
pebble shapes based on quantities that are more micro-
scopic and more closely connected to evolution processes.
In Ref. [8] we proposed curvature as a key microscopic
variable, since, intuitively, protruding regions with large
curvature erode faster than flatter regions of small cur-
vature. We then proposed the distribution of curvature
around a flat, two-dimensional, pebble as a new statisti-
cal tool for shape description. And finally we illustrated
and tested these ideas by measuring and modeling the
erosion of clay pebbles in a controlled laboratory appa-
ratus.

In this paper we elaborate on our initial Letter [8],
and we apply our methods to naturally-occurring rip-
up clasts found in the tidal flats of the Mont St.-Michel
bay. Section II begins with a survey of shape quantifi-
cation for two-dimensional objects, in general, and reca-
pitulates our new curvature-based method. Section III
provides further details of the laboratory experiments on
clay pebbles. Section IV presents a new field study of
the Mont St.-Michel rip-up clasts. And finally, following
the conclusion, two methods are presented in the Appen-
dix for reliably extracting the local curvature from digital
photographs.
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II. 2D SHAPE QUANTIFICATION

The issue of rock shape is of long-standing interest in
the field of sedimentology [9–17]. Two basic methods
have become sufficiently well established as to be dis-
cussed in introductory textbooks [3]. The simplest is a
visual chart for comparing a given rock against a stan-
dard sequence of rocks that vary in their sphericity and
angularity. A rock has high “sphericity” if its three di-
mensions are nearly equal. And it is “very angular”, inde-
pendent of its sphericity, if the surface has cusps or sharp
ridges; the opposite of “very angular” is “well rounded”.
While useful for exposition, such verbal distinctions are
subjective and irreproducible. The second method is to
form dimensionless shape indices based on the lengths of
three orthogonal axes. From the ratios, and the ratios
of differences, of the long to intermediate to short axes,
one can readily distinguish rods from discs from spheres.
And a given rock may be represented by a point on a
triangular diagram according to the values of three such
indices, with rod / disc / sphere attained at the corners.
This practice is nearly half a century old [18]. Neverthe-
less, there is still much debate about which of the infinite
number of possible shape indices are most useful [19–23].
In any case, such indices cannot capture fine distinctions
in shape, let alone the verbal distinctions of angular vs
rounded. Furthermore, they provide no natural connec-
tion to the underlying physical process by which the rock
was formed.

More recent methods of shape analysis employ
Fourier [24–28], or even wavelet [29], transforms of the
contour. This applies naturally to flat pebbles or grains,
but also to flat images of three-dimensional objects. The
advantage of Fourier analysis over shape indices is that,
with enough terms in the series, the exact pebble con-
tour can be reproduced. For simple shapes, the contour
may be described in polar coordinates by radius (eg dis-
tance from center of mass) vs angle, r(θ), and the corre-
sponding transform. However, this representation is not
single-valued for complex shapes with pits or overhangs.
Generally, the contour may be described by Cartesian co-
ordinates vs arclength, {x(s), y(s)}, and the correspond-
ing transforms. In any case, the relative amplitudes of
different harmonics give an indication of shape in terms
of roughness at different length scales. In a different
area of science, Fourier representations have proven es-
pecially useful for analysis of fluctuations and instabili-
ties of liquid interfaces, membranes, etc. [4–6]. In prac-
tice, for these systems, shape fluctuations are sampled
during some time interval and then the average Fourier
amplitudes extracted by averaging over many different
realizations of the shape. Also, because these phenom-
ena are linear, each Fourier component grows or shrinks
at some amplitude-independent rate and the evolution is
fully determined by a dispersion relation. Unfortunately
these features do not hold for the erosion of pebbles. Be-
cause each pebble shape only provides one configuration,
average quantities need to be built from a different pre-

scription. Also, there is no a priori guaranty that the
variables are Gaussian distributed, and one needs a di-
rect space method to better assess the importance of non-
linear phenomena. Non-linearity is, we suspect, intrinsi-
cally embedded in the erosion mechanisms of pebbles. If
one considers for instance a shape represented by a single
harmonic in the r(θ) representation, it is clear that the
peaks will wear more rapidly than the valleys. Therefore
the erosion rate cannot be a function of the harmonic
number only; it must either be a non-linear function of
the amplitude itself or a function coupling many harmon-
ics.

Our aim is to provide an alternative measure of pebble
shape that is well-defined, simple, and connects naturally
to local properties involved in the evolution process. We
restrict our attention to flat pebbles, where an obvious
shape index is the aspect ratio of long to short axes.
Since erosion processes generally act most strongly on
the rough, pointed portions of a rock, we will focus on
the local curvature of the pebble contour. Technically,
curvature is a vector given by K = dT/ds, the deriva-
tive of the unit tangent vector with respect to arclength
along the contour [30]. More intuitively, the magnitude
of the curvature is the reciprocal of the radius of a circle
that mimics the local behavior of the contour. Here we
shall adopt the sign convention K > 0 where the contour
is convex (as at the tip of a bump) and K < 0 where
the contour is concave (as where a chip or bite has been
removed from an otherwise round pebble). In the Ap-
pendix, we describe two means by which the curvature
may be reliably measured at each point along the peb-
ble contour. Note that the average curvature is simply
related to the perimeter of the contour:

P = 2π/〈K〉, (1)

which is obviously correct when the shape is a circle.
To describe the shape of a pebble, a very natural quan-

tity is the distribution of curvatures, ρ(K), defined such
that ρ(K)dK is the probability that the curvature at
some point along the contour lies between K and K+dK
[8]. In order to distinguish different distributions, as a
practical matter, it is more reliable [31] to use the cumu-
lative distribution of curvatures

f(K) =

∫ K

0

ρ(K ′)dK ′ (2)

Literally, f(K) is the fraction of the perimeter with cur-
vature less than K. Note that f(K) increases from 0
to 1 as K : 0 → ∞; the minimum curvature is where
f(K) first rises above 0, the maximum curvature is where
f(K) first reaches 1, and the median curvature is where
f(K) = 1/2. Unlike for ρ(K), it is not necessary to bin
the curvature data in order to deduce f(K). Instead, just
sort the curvature data from smallest to largest and keep
a running sum of the arclength segments, normalized by
perimeter. Finally, so that the shapes of pebbles of dif-
ferent sizes may be compared, it is useful to remove the
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FIG. 1: (Color online) (a) Radius, (b) normalized curvature
and (c) fraction of the perimeter f(K) with curvature less
than K, vs K divided by the average curvature 〈K〉, for a
superellipse, oval, ellipse, and circle. The curve types match
those for the shapes as shown in the inset. Note that, except
for the circle, all have the same aspect ratio a = 3/2. The
differences in shape are reflected in differences in the forms of
f(K).

scale factor 〈K〉, which is related to the total perimeter
as noted above in Eq. (1). Altogether, we thus propose to
quantify pebble shape by examining f(K) as a function
of K/〈K〉.

To help build intuition, examples of f(K) are given
in Fig. 1 for a few simple shapes. The simplest of all is
a circle, where the curvature is the same at each point
along the contour: K = 〈K〉 = 2π/P = 1/R. Thus
f(K) = 0(1) for K < (>)〈K〉. The curvature distribu-
tion is the derivative of this step function, giving ρ(K) =
δ(K − 〈K〉) as required. The other three shapes shown
in Fig. 1 are all tangent at four points to the rectangular
region {|x| < a = 3/2, |y| < 1}: an ellipse (x/a)2 +y2=1;
a superellipse (x/a)4 + y4 = 1; and an oval [x/a + (1 −
1/a)y2/2]2 + y2 = 1. For a general ellipse, with long and
short axes a and b respectively, one may compute f(K) =

E(sin−1[1/ǫ(1−(2
√

1 − ǫ2E(ǫ2)/(πK))2/3)1/2], ǫ2)/E(ǫ2)

where ǫ =
√

1 − b2/a2 is the ellipticity, E(x) is the com-
plete elliptical integral of the first kind and E(x,m) is
the incomplete elliptic integral of the second kind [30].

While the ellipse, superellipse, and oval in Fig. 1 all

have the same aspect ratio, a = 3/2, their shapes are
obviously different. This emphasizes how a single num-
ber is insufficient to quantify shape. The shape differ-
ences do, however, show up nicely in the forms of f(K).
The ellipse is closest to a circle, with a distribution of
curvatures that is most narrowly distributed around the
average and hence with an f(K) that is most like a step
function. The superellipse is farthest from a circle, with
four long nearly-flat sections and four high-curvature cor-
ners; its curvature distribution is broadest. The oval is
intermediate.

III. LABORATORY EXPERIMENT

The examples given in Fig. 1 correspond to regular,
highly symmetric shapes of two dimensional convex “peb-
bles”. In practice, natural or artificial erosion processes
lead to curvature functions with an important statistical
component. In this section we elaborate on the labora-
tory experiments of Ref. [8], designed to study both the
statistical nature of the curvature distribution and the in-
fluence of the original shapes of the pebbles on the final
output of a controlled erosion process.

Laboratory pebbles were formed from “chamotte” clay,
a kind of clay made from Kaolin and purchased from
Graphigro, France. The water content of the purchased
clay was 22% in a state that could easily be kneaded. The
clay was kept tightly packed before use in order to avoid
water evaporation. Clay pebbles were produced using
aluminium molds made in our laboratory. They consist
of a polygonal well of 0.5 cm depth. Once the mould
was filled with clay, it was left at rest for 24 hours, so
that 98.5% of the water was removed by evaporation.
All the experimental results presented here concern one
day old pebbles. We noticed that pebbles older than 2
days were too fragile for our experimental configuration.
The number of samples and the dimensions of the various
pebbles are as follows: four squares of side 5 cm, five
rectangles of sides 4 × 6 cm2, five regular pentagons of
side 4.25 cm, one triangle with sides {7 cm, 7.5 cm, 9 cm},
one irregular polygon with 7 sides, one lozenge with acute
angles of 45◦ and four sides of 5 cm, and one circle of
diameter 7 cm.

The wearing method that we chose relies on placing a
pebble in the rotating apparatus sketched in Fig. 2. The
apparatus is a square basin, of dimensions 30×30×7 cm3.
The basin bottom is a 1 cm thick aluminium plate and
the walls are made of 0.04 cm thick aluminium sheets.
This rotating plate is fixed to a rod held by the jaws
of a laboratory mixer, Heidolph RZR1. The mixer itself
is fixed to a tripod, so that its inclination angle can be
varied.

A typical trajectory of the pebble during the continu-
ous rotation of the plate can be described as follows. First
the pebble rotates with the basin until it reaches a high
position. After the plate has rotated an angle between
π/2 and π, the pebble begins to slide due to gravity, until



4

FIG. 2: The wearing apparatus used for the laboratory ex-
periments. The rotating metal tray is 30 × 30 × 7 cm3.

it hits one of the walls in the bottom part of the container,
and then rolls down along that wall as the basin keeps
its rotation. After a short stop at a container corner the
pebble starts a new cycle again. We performed prelimi-
nary tests in order to determine both ideal basin orien-
tation and ideal rotation frequency for our experiments.
As expected, above some maximum rotation frequency
the pebble becomes immobilized in the basin: centrifu-
gal forces maintain the pebble on a given position against
the wall. Also, under some minimum inclination angle,
no fall of the pebble is observed, while a high inclination
doesn’t allow the pebble to reach it’s maximum altitude.
Altogether, we found it suitable to operate at a basin
angle of 45◦ and a rotation frequency of one cycle per
second. Using the latter experimental conditions, we ob-
served that the in-plane dimension of a pebble decreased
by around a factor 2 after 30 minutes. Thus, a signifi-
cant wearing of a pebble could be observed after a few
minutes rotation. In practice, each pebble was eroded
under the described conditions during 30 minutes, while
a picture of the pebble was taken after each 5 minutes
wearing. Hence, for each of the pebbles studied, we ob-
tained about 7 pictures, corresponding to the initial peb-
ble and to six following states of the wearing pebble. For
some of the pebbles 8 or 9 pictures at 5 minutes interval
were taken. The images were then analyzed following the
method described in the appendix.

An example for the shape evolution produced by this
method is given in Fig. 3, with photographs shown every
five minutes. The corresponding cumulative curvature

FIG. 3: Shape evolution of a 5 × 5 cm square pebble eroded
in the laboratory, by the method explained in the text. The
images were taken at 5 min intervals, and are shown at the
same magnification.

distributions f(K) are given in Fig. 4, where the inset
shows the extracted contours. Here the initial shape
is square, with four long nearly-flat regions and four
short high-curvature regions. Thus the initial f(K) rises
steeply around K = 0 and extends with relatively little
weight out to K ≫ 〈K〉. At first, the action of ero-
sion is most rapid at the high-curvature corners, with
the flat regions in between relatively unaffected. Thus
the high-K tail of f(K) at first is suppressed, and weight
builds up across (0.5 − 2)〈K〉. Next the rounded cor-
ners erode further and gradually extend across the flat
sections. Thus weight in f(K) is gradually concentrated
more and more toward 〈K〉. After about 15-20 minutes,
when the flat sections are nearly gone, the form of f(K)
fluctuates slightly but ceases to change in any system-
atic manner. In otherwords, the shape of the pebble has
reached a final limiting form. Further erosion will affect
pebble size, but not pebble shape!

To test the universality of the final shape, we repeat
the same experiment both for other squares as well as
for a variety of other initial shapes such as rectangles,
triangles, and circles. A number of different examples
showing both the initial and final shapes are shown in
Fig. 5. In all cases, the cumulative curvature distrib-
ution f(K) shows a systematic evolution at short times
and slight fluctuations about some average shape at later
times, just as in Fig. 4. The more angular or oblong the
initial shape, the more erosion is needed to reach a sta-
tionary final shape. The average final f(K) is shown for
the various initial shapes in Fig. 6. Evidently, these all
display the same quantitative form independent of the
initial shape. Even f(K) for an initially-circular pebble
broadens from a step function to the same form as all the



5

1

0.8

0.6

0.4

0.2

0
-2 0 2 4 6 8

f(
K

)

 K/<K>

- 2 0 0

- 1 0 0

0

100

200

- 2 0 0 - 1 0 0 0 100 200

FIG. 4: (Color online) Cumulative curvature distribution,
f(K), for the evolving pebble depicted in the inset (and pic-
tured in Fig. 3). As the pebble becomes progressively rounder,
the curvature distribution narrows and approaches a final
shape. The time interval between successive contours is 5
minutes; the early contours of evolving shapes are shown as
different blue dashes, while the later contours of stationary
shape are shown as solid red. The same color and curve types
are used in the main plot. For the inset, the axes are given in
pixel units, equal to 0.132 mm. For contrast, a circle is shown
by points.

others.

The final f(K) for all initial shapes can thus be av-
eraged together for a more accurate description of the
stationary shape produced by the laboratory erosion ma-
chine. The result is shown by the open circles in the same
plot, Fig. 6. Differentiating, we obtain the actual curva-
ture distribution, ρ(K), shown on the right axis. It is
fairly broad, with a full-width at half-maximum equal to
about 1.6〈K〉. The actual shape is not quite symmetrical,
skewed toward higher curvatures. The closest simple ana-
lytic form would be a Gaussian, exp[−(K−〈K〉)2/(2σ2)].
The actual distribution is slightly skewed toward higher
curvatures, but the best fit gives a standard deviation of
σ = 0.70〈K〉, as shown in Fig. 6. It is easy to imagine
that the width of this distribution could be set by the
strength of the erosion process. For example, if the angle
of the rotating pan were lowered, then the erosion would
be more gradual and more like polishing; in which case
a rounder stationary shape may be attained with a nar-
rower distribution of curvatures. The form of f(K), as
well as its width, could also be affected. These types of
questions can be addressed, both in laboratory and field
studies, now that we have an incisive tool like f(K) for
quantifying shape.

To further study the erosion produced by our labo-
ratory apparatus, we now consider how the perimeter
of the pebble decreases with time, P (t). Since the ini-
tial behavior depends on the specific initial shape, we
focus on subsequent erosion once the (universal) station-
ary shape is achieved. If the final stationary shape of
the curvature distribution is reached at time t0, then
the quantity of interest is really P (t)/P (t0) vs t − t0.
The results, averaged over all laboratory pebbles, are

FIG. 5: The initial and final forms of different shapes eroded
in our experiment, all shown with the same magnification.
The erosion times for the final shapes are 40 min for square,
30 min for rectangle, 30 min for triangle, 35 min for polygon,
35 min for circle, and 30 min for lozenge. Note that the final
shapes are all roughly circular.

shown in Fig. 7. Though the dynamic range is not
great, the data are consistent with an exponential de-
crease, P (t) = P (t0) exp[−(t − t0)/τ ]. The best fit to
this form is shown by a solid curve; it gives a decay con-
stant of τ = 44 min. Exponential erosion is, in fact,
observed in field and laboratory studies [12]. It is to be
expected whenever the strength of the erosion is propor-
tional to the pebble size, as in our lab experiments where
the impulse upon collision is proportional to the pebble’s
weight.

IV. FIELD STUDY

As a first field test of our method of analysis, we col-
lected mud pebbles in the Mont St.-Michel bay, France.
The littoral environment located at the inner part of the
Norman-Breton Gulf is characterized by a macro-tidal
dynamics. This location exhibits the second largest tide
in the world after the Bay of Fundy, Canada. During
the spring tide periods the upper part of the tidal flats
collects a muddy sediment. This mud dries up during
the following neap tide period where the sediments are
exposed to the air. In certain areas, between the large
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the stationary shape has been reached.

equinoxial neap tides, the exposure of mud sediments
to air may last for several months. During this period,
this mud layer will develop a vast network of desiccation
cracks. This network then leads to fragmented plates of a
polygonal shape with 20 to 40 cm size. During the next
spring tide period, the plates in the erosional area can
be eroded by tide currents, thus re-incorporated into the
sedimentary cycle. During the tide process these clasts
are progressively eroded over many months. Thus the
mud cohesion allows enough observation time for the life
of a clast to be observed within a distance of order of
one hectometer, from the original erosional area down to
the latest stages of abrasion. Our approach is similar in
spirit to field studies of river pebbles, where downstream
distance serves as a surrogate for time. The mud clasts
here have the advantage of remaining in a smaller area
and of eroding on a human timescale.

We have analyzed the shapes of three classes of rip-
up clast photographed at three distinct locations on the
tidal flats near Mont St.-Michel. The first is large sub-
angular cobble found near the site of formation. Ten
samples were examined; for these immature pebbles, the
average perimeter is 550 mm. The second class is medium

FIG. 8: Typical shapes of Mont St.-Michel rip-up clasts. The
immature pebbles in the top row were collected close to their
origin; the sub-mature pebbles in the middle row were col-
lected further downstream; the smooth, mature pebbles in
the bottom row were collected on a nearby sandbar. As these
pebbles eroded, their shapes became rounder, an effect quan-
tified in the next figure. The bars indicate, in each row, a
length of 2 cm.

sub-mature pebbles found further “downstream”. As a
result of erosion, these pebbles are smaller and smoother
than the cobble. Thirty five samples were examined; for
these, the average perimeter is 180 mm. The third class
is rounded, mature pebbles found on a nearby sand bar.
The relation of these pebbles to the other two classes is
not clear. Seventeen samples were examined; for these,
the average perimeter is 220 mm.

Typical photographs for each of these classes are shown
in Fig. 8. The average of the cumulative curvature distri-
bution for all samples in each class is shown in Fig. 9. The
angularity of the large cobble is reflected in the breadth
of the curvature distribution. Roughly a quarter of the
perimeter has negative curvature, and roughly a tenth
has curvature five times greater than the average. For
the other two classes, the curvature distribution is pro-
gressively more narrow. The relative steepness of the
f(K)’s shows that all of these shapes are less round than
the final pebbles produced by the laboratory erosion ma-
chine.

The width of the curvature distribution can be speci-
fied quantitatively by the standard deviation, σ. Results
are normalized by the average curvature, and are shown
for the field and laboratory pebbles in Table I. The peb-
bles with steeper f(K) indeed have smaller widths. For
example, the width for the immature field cobble is about
3-4 times that of the average laboratory pebble. While
the dimensionless width of the distribution, σ/〈K〉, is a
useful number for comparisons, it does not distinguish
between curvature distributions of different shape. The
actual functional form of the curvature distribution can
be specified to some extent by comparing its moments
with that of a Gaussian. In particular, the “skewness”
and “kurtosis” are dimensionless numbers defined by the
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FIG. 9: (Color online) Cumulative curvature distribution,
f(K), for the average shapes of Mont St.-Michel rip-up clasts.
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shape in the laboratory study.

third and fourth moments, respectively, in such a way as
to vanish for a perfect Gaussian. The results in Table I
show that the four classes of pebbles have curvature dis-
tributions of four distinct forms. Of these, the laboratory
pebbles are closest to a Gaussian.

Note that the curvature distribution data show no ev-
idence of a stationary shape, in which the clasts erode
away without changing shape. Rather, the three classes
of clasts all have different sizes and shapes. Thus it would
not be fruitful to compare or fit the clast erosion to the
cutting model we introduced in Ref. [8]. However, since
the sub-mature and mature clasts are smaller than the
immature clasts but are not circular, we can rule out the
polishing model.

Class Perimeter (mm) σ/〈K〉 Skewness Kurtosis

immature 550±100 2.4±0.3 1.4±0.3 3.8±1.4

sub-mature 180±60 2.0±0.6 0.0±0.9 3.3±2.9

mature 220±70 1.4±0.3 -0.2±0.5 1.3±1.0

lab-final 122±25 0.8±0.1 0.1±0.5 1.0±1.5

TABLE I: Characteristics of curvature distribution for the
three classes of field pebbles. Final laboratory pebble shape
is added for comparison.

V. CONCLUSION

We have studied the formation of two-dimensional peb-
ble shapes. As in Ref. [8] we introduced a local descrip-
tion of the erosion process, based on the distribution
function of the curvature, measured along the pebble con-
tours. This description captures both the local character
of the erosion events, and the statistical nature of the
erosion process.

For pebbles generated in the laboratory, we have shown
that the curvature distribution has two important prop-
erties. First, the erosion drives the distribution towards

a stationary form. When this stationary state is reached,
the pebble contour still changes but, within small fluc-
tuations, its curvature distribution remains the same,
provided that the curvature is normalized by its average
value. Secondly, we have found that the final stationary
form of the distribution is independent of the original
pebble shapes. This not only shows that the curvature
distribution is a property of the erosion process itself, but
it also opens the interesting possibility of establishing a
classification of different erosion processes according to
the type of curvature distribution they generate.

For pebbles collected in the field, we have made a first
attempt to study a special class of rip-up clasts from
the St.-Michel bay. These mud pebbles can be collected
at very different erosion stages within a relatively small
area of the tidal flats. We showed that the curvature
distribution sharpens with the wearing degree, without
getting however as sharp as the distribution obtained in
the laboratory experiments.

The results presented in this experimental paper sug-
gest a number of directions for modeling the formation of
flat pebbles. Of central importance is the intrinsic statis-
tical nature of the erosion process itself. As first hinted
in Ref. [8], a sequence of cuts of a noiseless, deterministic
nature typically leads to a trivial curvature distribution
like that of a circle. We also demonstrated in Ref. [8]
that a “cutting” simulation, with an appropriate distrib-
ution of cutting lengths, acting most strongly on regions
of high curvature in accord with Aristotle’s intuition [1],
can reproduce the curvature distribution from the lab-
oratory experiments. We will address these and other
questions relevant for the theoretical modeling of pebble
formation in a forthcoming paper.
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APPENDIX: CURVATURE ANALYSIS

The goal of this section is to provide a detailed, prac-
tical description of two means to measure the local cur-
vature at each point along the pebble contour. In both
cases the starting point is an image of the pebble. For
our work we use a digital camera Canon Power Shot G1
with a resolution of 1024 × 768 pixels. It should be just
as effective to scan conventional photographs, or even to
scan pebbles themselves. To determine the {x,y} coor-
dinates of the contour, we import the images into NIH
Image [32], which includes routines for finding edges and
for skeletonizing the result. An example of the digitized
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pebble contour, and the smooth reconstructions to be dis-
cussed below, is given in Fig. 10. We show the contour
in pixel units, since the actual calibration is needed only
to determine size, not shape. Note from the inset that
the contour points are indeed pixelized and skeletonized,
with each point having only two neighbors located at ei-
ther ±1 or 0 units away in the x- and y-directions. If the
digitization process is faithful, then the uncertainty in
each pixel is about ±0.5 units in each direction. This is
not small compared to the distance between neighboring
pixels, so a smoothing or fitting routine is necessary to
reconstruct the actual contour and thereby extract the
curvature distribution.

To illustrate the difficulties of extracting curvature, let
us begin with two methods that are, in fact, unsatis-
factory. It is perhaps tempting to simply smooth the
data, replacing each point with a weighted average of
neighbors lying within some window. Weights could be
cleverly chosen to de-emphasize points at the edge of the
window, for example. This fails, however, since it’s far
from obvious how to choose a suitable window size. For
instance, the pixelized representation of the straight sec-
tion given by y = 0.1x for 0 < x < 10 is a step function
y = 0(1) for x < (>)5. A large window would be needed
to even approximately reconstruct the original line. How-
ever, such a sufficiently large smoothing window would
erase fine features if applied elsewhere along the contour.
Since smoothing filters provide no feedback on quality, vi-
sual inspection of the result would be necessary to choose
an optimal window size at each point along the contour.
This is not only subjective, but rather impractical. As
an alternative, it is perhaps tempting to implement an
automated version of Wentworth’s curvature gauge [9].
This is a device with circular notches of various diam-
eters into which portions of a pebble may be pressed.
The computational analogue would be to find the best
nonlinear-least-squares fit to a circle at each point along
the pebble contour. As with smoothing, one difficulty is
to find the optimal window over which to do the fitting.
A compounding difficulty is that essentially nowhere is
the pebble exactly circular, so even with ‘the’ optimal
window there is substantial disagreement between data
and fit. A spectacular example of this problem is at an
inflection point, where the curvature changes from posi-
tive to negative.

To overcome such difficulties, we propose to fit digi-
tized contour data to a cubic polynomial at each point
along the contour. A cubic is the lowest order polynomial
needed in order to avoid systematic error when the cur-
vature varies gradually across the fitting window, which
is the usual case. In order to avoid having to rotate
the coordinate system to ensure that the contour y(x)
is a single-valued function, we instead convert to polar
coordinates. Thus we define the origin by the center-
of-mass of the contour and perform fits to r(θ) where

r =
√

x2 + y2 and θ = tan−1(y/x). Once a satisfactory
fit is achieved, the curvature may be deduced from the
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FIG. 10: (Color online) Reconstruction of a smooth pebble
contour from the pixelized digital representation. The solid
curve is based on fitting to cubic polynomials at each point.
The dashed curve is based on the iteration scheme of Fig. 11.

value and derivatives of the cubic polynomial by

K =
r2 + 2r2

θ − rrθθ

(r2 + r2

θ)3/2
, (A.1)

where rθ = dr/dθ and rθθ = d2r/dθ2 [30].
Two tricks seem necessary to achieve satisfactory re-

sults. The first is to weight the data most heavily near
the center of the window. We use a Gaussian weighting
function with a standard deviation equal to 1/4 of the
width of the window. This ensures that points at the
edges have essentially no influence. Therefore, the fitting
results do not vary rapidly as the window is slid along the
contour. This guarantees that the reconstructed curve
and its first two derivatives are continuous, which is a
crucial requirement for measuring the curvature.

The second trick is to choose the window size appro-
priately. This is actually the most difficult and subtle
aspect of the whole problem. If the window is too small,
then the fit will reproduce the bumps and wiggles of the
pixelization process; usually the curvature will be over-
estimated. If the window is too large, then the fit will
significantly deviate from the data; usually the curvature
will be underestimated. And while the curvature tends
to decrease systematically with window size, there is in
general, unfortunately, no plateau between these two ex-
tremes where the curvature is relatively independent of
window size and hence clearly represents the true value.
To pick the window appropriately requires careful un-
derstanding of the numerical fitting procedure and the
feedback it provides. Since the fitting function is a poly-
nomial, the minimization of the χ2 total square deviation
from the data reduces to solving a set of linear equations.
This in turn reduces to inverting a matrix. If the window
is too small then the fit will be ‘ambiguous’ in the sense
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that χ2 is small but the error in the fitting parameters is
large. Mathematically, the matrix to be inverted is essen-
tially singular. A good strategy is therefore to start with
a small window and increase its size until the matrix is
no longer singular. This can be accomplished using a lin-
ear least-squares fitting routine based on singular-value
decomposition [31]. However, the uncertainty in fitting
parameters for the first suitable window is generally too
large (nearly 100%). So we increase the window size two
pixels at a time until the error in curvature has been re-
duced by a factor of ten. This defines the largest suitable
window, beyond which systematic errors due to incorrect
functional form begin to appear. We have not been able
to define the largest suitable window based on the value
of χ2. For the final result, we take a weighted average of
the cubic fit parameters over all suitable windows, where
the weights are set by the uncertainties in fitting para-
meters as returned by the fitting routine. An example
of a reconstructed contour from this procedure is shown
by the solid curve in Fig. 10. The recontruction is sat-
isfactorily smooth; also, it clearly avoids the pixel noise
without smoothing over significant small-scale features in
the contour.

Since the cubic fitting method is rather involved, and
since the choice of window sizes is still slightly subjective,
we have developed an alternative method. The starting
point is the fact that the actual digital representation
of the contour depends on the location and orientation
of the pebble with respect to the grid of pixels. If the
pebble were shifted or rotated, then the pixelized repre-
sentation would be slightly different. For example, imag-
ine the pixelization of a line making various angles with
the grid. Perhaps the ideal experimental measurement
procedure would be to systematically reposition the peb-
ble, pixelize, then compute the average of all such rep-
resentations. However this procedure does not lend it-
self to automatization, and would be impractically time-
consuming. Instead, we propose to do more or less the
same thing numerically. The idea is to take the current
best guess for the contour, pixelize it with respect to a
random grid position and orientation, then use the new
representation to update the best guess. When iterated,
this procedure converges to a satisfactory reconstruction

of the actual contour with two provisos. First, at each
step, we locally smooth the trial pixelization by replacing
each point by its average with its two immediate neigh-
bors. Second, we keep only every fourth or fifth point
in the original pixelized data and perform all operations
on this subset. When done, we compute the curvature
literally by the change of slope with respect to arclength
using the straight segments between adjacent points.

The cumulative curvature distribution given by this it-
eration scheme is shown in Fig. 11 as a function of the
number of points kept. When too many are kept, the re-
constructed curve follows the bumps and wiggles of the
original pixelization too closely; the curvature distribu-
tion is too broad. When too few are kept, the recon-
structed curve incorrectly smooths over small-scale fea-
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FIG. 11: (Color online) Trial integrated curvature distribu-
tions from the iterative smoothing scheme, vs the number of
points kept. Keeping either 4 or 5 points seems optimal: the
resulting distributions are identical and they agree with that
based on cubic fits.

tures; the curvature distribution is too narrow. When
only every fourth or fifth point are kept, the distributions
are nearly equal; furthermore, they are indistinguishable
from that given by the cubic polynomial fitting. The ac-
tual reconstructed contour is also shown in Fig. 10. The
plateau in the curvature distribution vs number of points
kept, and the good agreement with the other method,
both give confidence in this new iterative reconstruction
scheme.
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Pasteur (1988).
[18] E. D. Sneed and R. L. Folk, Journal of Geology 66, 114

(1958).
[19] W. K. Illenberger, Journal of Sedimentary Petrology 61,

756 (1991).
[20] D. I. Benn and C. K. Ballantyne, Journal of Sedimentary

Petrology 62, 1147 (1992).
[21] J. L. Howard, Sedimentology 39, 471 (1992).
[22] H. J. Hofmann, Journal of Sedimentology Research 64,

916 (1994).
[23] D. J. Graham and N. G. Midgley, Earth Surface

Processes and Landforms 25, 1473 (2000).
[24] H. P. Schwarcz and K. C. Shane, Sedimentology 13, 213

(1969).
[25] R. Ehrlich and B. Weinberg, Journal of Sedimentary

Petrology 40, 205 (1970).
[26] M. W. Clark, Journal of the International Association for

Mathematical Geology 13, 303 (1981).
[27] M. Diepenbroek, A. Bartholoma, and H. Ibbeken, Sedi-

mentology 39, 411 (1992).
[28] E. T. Bowman, K. Soga, and W. Drummond, Geotech-

nique 51, 545 (2001).
[29] H. Drolon, F. Druaux, and A. Faure, Pattern Recognition

Letters 21, 473 (2000).
[30] E. W. Weisstein, The CRC concise encyclopedia of math-

ematics (CRC Press, New York, 1999).
[31] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T.

Vetterling, Numerical Recipes in C (Cambridge Univer-
sity Press, New York, 1992), 2nd ed.

[32] NIH Image, public domain software available at
http://rsb.info.nih.gov/nih-image/.


