
HAL Id: hal-00144234
https://hal.science/hal-00144234v1

Submitted on 2 May 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Dynamic Clustering in Object-Oriented Databases: An
Advocacy for Simplicity

Jérôme Darmont, Christophe Fromantin, Stéphane Régnier, Le Gruenwald,
Michel Schneider

To cite this version:
Jérôme Darmont, Christophe Fromantin, Stéphane Régnier, Le Gruenwald, Michel Schneider. Dy-
namic Clustering in Object-Oriented Databases: An Advocacy for Simplicity. ECOOP 2000 Sympo-
sium on Objects and Databases, Jun 2000, Sofia Antipolis, France. pp.71-85. �hal-00144234�

https://hal.science/hal-00144234v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Dynamic Clustering in Object-Oriented Databases:  
An Advocacy for Simplicity 

J. Darmont1, C. Fromantin2, S. Régnier2+3, L. Gruenwald3, M. Schneider2 

1E.R.I.C. 
Université Lyon 2 

69676 Bron Cedex, France 

2L.I.M.O.S. 
Université Blaise Pascal 

63177 Aubière Cedex, France 

3School of CS 
University of Oklahoma 
Norman, OK 73019, US 

jdarmont@univ-lyon2.fr michel.schneider@isima.fr ggruenwald@ou.edu 

Abstract. We present in this paper three dynamic clustering techniques for 
Object-Oriented Databases (OODBs). The first two, Dynamic, Statistical & 
Tunable Clustering (DSTC) and StatClust, exploit both comprehensive usage 
statistics and the inter-object reference graph. They are quite elaborate. 
However, they are also complex to implement and induce a high overhead. The 
third clustering technique, called Detection & Reclustering of Objects (DRO), is 
based on the same principles, but is much simpler to implement. These three 
clustering algorithm have been implemented in the Texas persistent object store 
and compared in terms of clustering efficiency (i.e., overall performance 
increase) and overhead using the Object Clustering Benchmark (OCB). The 
results obtained showed that DRO induced a lighter overhead while still 
achieving better overall performance. 
Keywords: Object-Oriented Databases, Dynamic Object Clustering, 
Performance Comparison. 

1. Introduction 

Object-Oriented Database Management Systems (OODBMSs) always showed 
performance problems when compared to Relational Database Management Systems 
(RDBMSs). They really won an edge over RDBMSs only in niche markets, mainly 
engineering and multimedia applications. This performance problem is essentially 
caused by secondary storage Input/Output (I/O). Despite numerous advances in hard 
drive technology, I/Os still require much more time than main memory operations. 
Several techniques have been devised to minimize I/O transfers and improve the 
performances of OODBMSs, like query optimization, indexing, buffering, or 
clustering. Object clustering is a collaborative research topic at Blaise Pascal 
University (BPU) and the University of Oklahoma (OU) since the early 90’s. The 
principle of clustering is to store related objects close to each other in order to 
maximize the amount of relevant information returned when a disk page is loaded into 
the main memory. 

Early clustering methods were static [1, 2, 12, 13, 14, 15], i.e., objects were 
clustered only once at creation time. With these methods, modifying the placement to 
suit changes in data usage necessitates reorganizing the whole database. This is a 
heavy task that can only be performed manually when the system is idle. To support 



databases that are intended to be accessible on a 7 days a week / 24 hours a day basis 
(e.g., web-accessed databases), dynamic clustering techniques that cluster and 
recluster objects automatically and incrementally have been designed both by 
researchers and OODBMS vendors. However, since publications by the latter are very 
few and research proposals are not always implemented or evaluated, it is hard to 
select the best technique in a given context. 

The objectives of this paper are to propose an overview of the research dealing 
with dynamic object clustering techniques; to present two methods designed at BPU 
and OU called DSTC and StatClust, as well as a new one called Detection & 
Reclustering of Objects (DRO); and to compare these techniques in terms of 
efficiency and clustering overhead. These comparisons have been performed on the 
Texas system using the OCB benchmark [9], which has been specially designed to 
evaluate clustering algorithms. 

The remainder of this paper is organized as follows. Section 2 establishes a state of 
the art regarding dynamic clustering techniques. Section 3 presents DSTC [3], 
StatClust [10], and eventually details DRO. Section 4 presents the performance 
evaluations we performed on Texas. We finally conclude the paper and discuss future 
research issues. 

2. Related Work: Dynamic Object Clustering Methods 

Most dynamic object clustering methods have been motivated by needs in 
engineering applications like CAD, CAM, or software engineering applications. A 
first class of clustering strategies is based on the analysis of database usage statistics. 
Chang and Katz [5] proposed a physical clustering method based on a particular 
inheritance link called instance to instance and the declaration of estimated access 
frequencies associated with three types of relationships (aggregation, equivalence, 
version). The idea is allowing inheritance of data along any type of attribute and 
particularly along inter-object links. For instance, it is interesting, when a new version 
of an object is created, to automatically make it inherit from its ancestor’s aggregation 
links toward other objects. Inherited data are stored only once, which allows an 
important gain in terms of disk space, but forces a physical object to be placed as 
close to inherited data as possible. The access frequencies and the computation of 
inherited attributes costs help identifying the destination page of a newly created 
object. If the target page is full, the system can either split the page or elect the next 
best page as a target page. Dynamic clustering is also coupled with an appropriate 
buffering strategy that is a variation of Least Recently Used (LRU) allowing a better 
usage of existing clustering. It is based on prioritizing all pages in memory. 
Frequently used pages have their priority increased along with their structurally 
related pages, while unused pages have their priority decreased with time. This 
method has never been implemented, except within simulation models [5, 8, 10] that 
hint a potential increase in performance of 200% under certain conditions. 

Another method based on statistics has been proposed by McIver and King [17], 
who advocate that object placement determination phases must be independent of the 
actual placement. The strategy leans on the exploitation of three modules running 



concurrently. The statistics collection module collects general database usage 
statistics and also selective database usage statistics concerning depth-first or breadth-
first traversals, which are assimilated to navigational and associative accesses, 
respectively. The cluster analysis module uses a variation of the Cactis algorithm 
[12]. It first finds out the most referenced object in the database. Then, objects linked 
to it are grouped on the same disk page in depth-first, by decreasing order of co-usage 
frequency. An advised variation is to use depth-first traversals when navigational 
accesses are preponderant and breadth-first traversals when associative accesses are 
preponderant. The type of access to select is provided by usage statistics. Clustering 
analysis is triggered after collection of a significant amount of statistics. The 
reorganization module rearranges objects on disk so that the database physical 
organization corresponds to the page assignments suggested by clustering analysis. A 
reorganization phase is not always necessary after each clustering analysis phase. 
When a reorganization phase is triggered, it deals only with objects that have not been 
clustered. The performance of this method has been evaluated by simulation using the 
Trouble Ticket Benchmark [16]. This study shows that the collected statistics and the 
proposed clustering are pertinent, and that a high overhead is caused by the database 
reorganization phases, where the entire database is locked and the transactions are 
postponed. 

Cheng and Hurson state that existing strategies are generally based on one single 
clustering criterion [7]. Their multi-level clustering allows clustering objects using 
several criteria at once. The method associates a criterion to each of three types of 
relationships identified by [5]: equivalence, aggregation, and version. A proximity 
degree between two objects can be elaborated using the values of these criteria. 
Clustering is recommended when this proximity degree is sufficiently small. The 
clustering algorithm actually orders objects on the basis of their proximity degree. 
Clustering is performed by the system, without any external intervention. 
Furthermore, this strategy is backed up by a cost model that evaluates the benefit of a 
possible dynamic reorganization. This proposal has never been implemented. 

Finally, an innovative strategy has been proposed to handle object clustering in the 
EOS distributed system [11]. This method exploits the system’s garbage collector and 
induces a very low overhead. Clustering specifications are provided by the database 
administrator, who weights arcs in the class aggregation graph according to estimated 
access probabilities. Objects are clustered with their stronger weighted parent when 
created. Placements are re-evaluated afterward by the disk garbage collection process 
and may be modified asynchronously. This proposal has not been implemented. The 
authors do provide elements regarding feasibility and low cost, but this technique is 
intimately related to the presence of a disk garbage collector continuously working, 
which is costly and thus not much used in existing OODBMSs.  



3. Studied Dynamic Clustering Algorithms 

3.1. DSTC 

DSTC is actually both a dynamic object clustering policy and its associated 
buffering policy, which aims at clustering together objects that are used together at 
near instants in time [3]. It measures object usage statistics, while respecting the 
following constraints: minimize the amount of data managed, maximize the 
pertinence of collected statistics, reduce the cost of persistent storage for these data, 
and minimize perturbations on running transactions. This goal is achieved by scaling 
collected data at different levels and using gradual filters on main memory-stored 
statistics. Hence, it is possible to store on disk only presumably significant statistics. 

Database usage statistics concern object access frequencies and inter-object 
reference usage frequencies. All types of links are considered as physical references, 
whether they are structural links built at the schema level or logical links depending 
on applications or induced by physical object fragmentation. All physical accesses 
from one object toward another are detected and counted. Physical object 
reorganization is started by a trigger mechanism. Object disk storage is organized 
through an ordering algorithm that builds linear sequences of objects that capture 
“attraction forces” between objects. This sequence is sequentially transcribed in a 
cluster, i.e., a contiguous disk segment of variable size. The underlying algorithm was 
inspired by [7]. Flexibility in this approach is achieved through various parameters 
allowing the adaptation of system reactivity to database behavior. These parameters 
are set up by the database administrator. The DSTC strategy is organized into five 
phases. 
1. Observation phase: During a predefined observation period, object usage statistics 

are collected and stored in an observation matrix in main memory. 
2. Selection phase: Data stored in the observation matrix are sorted and filtered. Only 

significant statistics are retained. 
3. Consolidation phase: Results from the selection phase are used to update data 

collected in previous observation phases, which are stored in a persistent 
consolidated matrix. 

4. Dynamic cluster reorganization: Statistics from the consolidated matrix are 
exploited to suggest a reorganization of the physical space. Existing clustering 
units can be modified and new clustering units can be created. 

5. Physical database reorganization: Clustering units are eventually used to consider 
a new object placement on disk. This phase is triggered when the system is idle. 
The principle of the buffering management associated with DSTC is the following. 

When an object belonging to a cluster is accessed, the whole cluster is loaded. This 
avoids useless I/Os since objects in the cluster have a good probability to be used by 
the current transaction. A page replacement algorithm named LRU-C is also 
proposed. Its principle is to date clusters in the buffer rather than pages. 

The DSTC strategy has been implemented in Texas [18] on Sun workstations and 
PCs under Linux. Performance studies have been performed with a benchmark based 



on OO1 [4] and baptized DSTC-CluB. They showed the efficiency of DSTC 
compared to a no-clustering policy on simple cases. 

3.2. StatClust (Statistical Clustering) 

This method extends Chang and Katz’ method (see Section 2) [5]. Its authors 
advocate replacing user-estimated access frequencies by more reliable usage statistics 
[10], for each of the considered types of links (aggregation, equivalence, version). 
Statistics regarding read or write accesses have also been added. Clustering is 
automatic at object creation or update time and when a bad clustering is detected. The 
user can influence the clustering process through a set of parameters. A bad clustering 
is detected when the ratio between the number of blocks (set of contiguous pages) 
read in the buffer and the number of blocks read on disk is smaller than a threshold 
computed by the system, and the amount of collected statistics is sufficient. The 
detection of a bad clustering ends the collection of statistics and starts up a 
reclustering phase that specifies which objects might be reclustered (i.e., which 
objects show satisfying usage statistics). The physical placement of objects uses an 
algorithm close to [5], but also supports object duplication. Objects may be duplicated 
to increase reference locality. An object that is more read than updated is a candidate 
for duplication. 

StatClust has been compared by simulation to static clustering techniques (ORION 
and Cactis) [10], but not to dynamic clustering techniques, including Chang and Katz’ 
method, on which it is based. The results are actually very similar to those reported in 
[8]. 

3.3. DRO 

Overview. The design of DRO makes use of the experience accumulated with both 
the DSTC and StatClust clustering methods, especially at the implementation level. 
Since these methods were quite sophisticated, they were also very difficult to 
implement properly and lots of problems occurred in the development process. 
Furthermore, though they attempt to minimize the amount of usage statistics stored, 
they use various statistical data that are not easy to manage and whose size often 
increases drastically. DRO is much easier to implement. It exploits both basic usage 
statistics and the graph of inter-object references (derived from the schema) to 
dynamically cluster the database. Its principle is to store together the objects that are 
the most frequently accessed overall. DRO has been implemented in Texas. 

Usage Statistics. DRO stores and exploits two principal types of indicators. They are 
updated dynamically when the database is in use. 
!"The object access frequency measures the number of times each object is 

accessed. During the clustering phase, only the objects with the highest access 
frequencies are taken into account. 



!"The page usage rate is the ratio between the size of the data effectively stored in 
the page and the page size, a page being the unit of transfer between disk and 
memory. This ratio helps determining which pages degrade the system 
performance. The mean usage rate for all pages and the number of pages loaded 
are also computed. 

The data structure presented in Fig. 1 as a UML static structure diagram is used to 
store DRO’s usage statistics. The PageStat class concerns page statistics. It has three 
attributes: a page identifier, the number of times this page has been loaded into 
memory, and its page usage rate. The ObjectStat class concerns object statistics. It 
also has three attributes: an object identifier, the object access frequency, and a 
boolean usage indicator. The PageObjectStat class allows large objects to be stored 
on several pages. It has only one attribute: the size occupied by a given object in a 
given page. 

1..*1

ObjectStat
Object_ID : Integer
Access_Frequency : Integer
Usage_Indicator : Boolean 0..1

PageStat
Page_ID : Integer
Nb_Load : Integer
Usage_Rate : Real1..*

PageObjectStat
Object_Size : Integer1..*1

Is_Split

0..11..*

Contains_Object

 

Fig. 1. DRO usage statistics 

Whenever an object is accessed, its access frequency is incremented by 1 and its 
usage indicator is set to true. Page statistics are updated whenever a page moves from 
the main memory to disk. The statistics attached to all the objects on this page are 
used to compute the size occupied on the page by objects that have actually been 
used. The page usage rate is then computed and Nb_Load is increased by 1. If an 
object is deleted from the database, the corresponding usage statistics are also deleted. 
If the page that contains this object does not have any more objects in its associated 
PageObjectStat object, its statistics are also deleted. If an object is merely moved 
from one page to another, its usage indicator is reset to false and its link to the starting 
page is deleted. Its statistics will then be linked to the destination page’s statistics 
when the object is used again. 

Clustering. The clustering phase can be triggered manually or automatically. It is 
subdivided into four steps. Until physical object placement, a control procedure 
checks out after each step whether clustering must abort or resume. 

Step 1: Determination of Objects to Cluster. This step helps defining the objects 
belonging to pages with usage rate lower than the minimum usage rate (MinUR) and 
that have been loaded in memory more times than the minimum loading threshold 
(MinLT). MinUR and MinLT are user-defined parameters. MinUR helps selecting 
pages containing a majority of unused objects or objects that are not used together. 
Objects stored into these pages and whose usage statistics (i.e., an ObjectStat object) 
are instantiated are selected for clustering. They are attached to instances of the 
Clustering class. Objects of class Clustering are linked together by two bi-directional 
relations called Object_Sort and Object_Placement, which store objects sorted by 
access frequency and a placement order of objects on disk, respectively. To proceed 



to step 2, two conditions must be met: a) the number of pages to cluster must be 
greater than one, and b) the ratio between the number of pages to cluster and the 
number of pages actually used is greater than the page clustering rate parameter 
(PCRate). 

Step 2: Clustering Setup. This step helps defining a sequential placement order of 
objects on disk. The algorithm input is the list of objects to cluster sorted by 
decreasing access frequency. This step is subdivided into three phases. 
!"Object clustering using inter-object references. This first phase links objects 

regarding reference links. The algorithm shown in Figure 2 runs up to a user-
defined maximum distance MaxD, i.e., the first iteration considers all the objects 
referenced by the starting object (distance 1), then the process reiterates for each 
object found, up to distance MaxD. When linking together objects Oi and Oj of 
access frequencies AFi and AFj, the dissimilarity rate |AFi – AFj| / max(AFi, AFj) 
must be lower than the maximum dissimilarity rate MaxDR not to link objects that 
are too weakly bound. Objects are sorted by descending order of access frequency 
to generate a list defining a placement order of objects so that they can be 
sequentially written on disk. 

!"Linking of placement order lists. This phase links together the list parts made up in 
the first phase to obtain a single list. The list parts are considered in their 
generation order and simply concatenated. 

!"Resemblance rate computation. The third phase establishes a resemblance rate 
between the current object placement and the new placement proposed by the 
clustering algorithm. This resemblance rate helps evaluating how different the 
new clustering proposal is from the current physical placement of the objects. If 
the new cluster is found similar (for instance, if the considered objects have 
already been clustered), no action is undertaken. The resemblance rate is the 
number of objects in the proposed cluster that are not moved regarding current 
object placement divided by the number of objects in the cluster. 

Step 3: Physical Object Clustering. Physical clustering is performed if the 
resemblance rate computed at step 2 is lower than a user-defined maximum 
resemblance rate (MaxRR). This operation clusters objects identified in the previous 
steps, but must also reorganize the database in order to retrieve space made available 
by movement or deletion of objects. 

Step 4: Statistics Update. This update depends on a user-defined statistics update 
indicator (SUInd). If SUInd is set to true, all statistics are deleted. Otherwise, only 
statistics regarding pages containing objects that have been moved are deleted. 

DRO Parameters. The parameters defining the behavior of the DRO strategy are set-
up by the database administrator. They are recapitulated in Table 1. We obtained the 
default values through many experiments on Texas. 
 



D = 0 
End = false 
While D < MaxD and not End do 
 D = D + 1 
 // Browse objects to cluster 
 Starting_object = Clustering.Sort_first 
 While Starting_object ≠ NIL and  
 Starting_object.Placement_previous ≠ NIL do 
  Starting_object = Starting_object.Sort_next 
 End While 
 While Starting_object ≠ NIL do 
  Object_to_link = Starting_object 
  While Object_to_link ≠ NIL and  
  Object_to_link.Placement_previous ≠ NIL do 
   Object_to_link = Object_to_link.Placement_next 
  End while 
  Found = TRUE 
  While Found do 
   // Find an object to cluster different from Starting_object,  
   // referenced on a distance lower than MaxD, with a  
   // dissimilarity rate lower than MaxDR, and attribute 
   // Clustering.Placement_previous set to NIL 
   Found_object = Research_procedure_result() 
   If Found_object ≠ NIL then 
    Object_to_link.Placement_next = Found_object 
    Object_found.Placement_previous = Object_to_link 
    Object_to_link = Object_found 
   Else 
    Found = FALSE 
   End if 
  End while 
 While Starting_object ≠ NIL and  
 Starting_object.Placement_previous ≠ NIL do 
  Starting_object = Starting_object.Sort_next 
 End while 
End while 

Fig. 2. Object clustering 

Parameter Name Type Default value 
Minimum usage rate MinUR Real 0.8 
Minimum loading threshold MinLT Real 1 
Page clustering rate PCRate Real 0.05 
Maximum distance MaxD Integer 1 
Maximum dissimilarity rate MaxDR Real 0.05 
Maximum resemblance rate MaxRR Real 0.9 
Statistics update indicator SUInd Boolean True 

Table 1. DRO parameters 

Example of Clustering with DRO. Let us consider the graph of inter-object 
references from Fig. 3 and the associated access frequencies from Table 2. With the 
MaxDR parameter set up to 0.1, Fig. 4 shows how the clustering algorithm builds an 
ordered sequence of objects that will be sequentially written on disk. 



 

 OID Access Frequency 
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 4 60 
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Fig. 3. Sample inter-object reference graph  Table 2. Sample access frequencies 

Let MaxD be 1. Objects are considered by the order of access frequency. The 
dissimilarity rates between object couples (6, 5) and (5, 4) are both 0. The 
dissimilarity rates of the (6, 3), (5, 3), (5, 8), and (4, 7) couples are all greater than 
MaxDR, so the first sub-list we obtain is (6, 5, 4). The dissimilarity rate for the (7, 8) 
couple is 0.575 and hence greater than MaxDR, so (7) remains a singleton. The 
dissimilarity rates for the (1, 3), (3, 2), and (3, 10) couples are 0, 0, and 0.1, 
respectively (links to already treated objects are not considered), so the third sub-list 
is (1, 3, 2, 10). (8) forms the last sub-list since object #9 has never been accessed and 
thus must not be clustered. Now if MaxD is 2, we have to consider dissimilarity rates 
up to a “distance” (in number of objects) of 2 from the starting object. For instance, 
we must consider the (6, 10) couple. Its dissimilarity rate is 0.7, greater than MaxDR. 
The only change regarding the sub-lists obtained with MaxD set to 1 is the integration 
of object #8 in the (1, 3, 2, 10) sequence, because the dissimilarity rate of the (10, 8) 
couple is 0.05, lower than MaxDR. Eventually, the sub-lists are merged in one list by 
the order of creation. 

6 5 4

7

1 3 2 10

8  

 6 5 4

7

1 3 2 10 8  

Distance = 1  Distance = 2 
   
 6 5 4 7 1 3 2 10 8   
 Final placement order  

Fig. 4. Sample execution of the DRO clustering algorithm 



4. Performance Comparison 

4.1. Experiment Scope 

Our initial goal was to compare the performances of StatClust, DSTC, and DRO. 
However, StatClust proved exceedingly difficult to implement in Texas. Since Texas 
exploits the operating system’s virtual memory, it considers the memory buffer to be 
of infinite size. Thus, it is impossible to implement StatClust’s module for detecting a 
bad clustering, because it needs to count the number of pages accessed from the disk 
and the buffer. Furthermore, substantial additions to Texas would be necessary to 
support the object replication process advocated by StatClust. Eventually, the object 
clustering algorithm initially builds a list of candidate pages containing objects related 
to the current object. To build this list, the database schema must be known. 
Techniques can be devised to automatically infer the schema, but none of them is easy 
to implement. In addition, when implementing StatClust, we found that Texas could 
not handle numerous transactions and the associated statistics on reasonably large 
databases and invariably crashed. Thus, we were not able to properly compare 
StatClust to the other algorithms. Hence, we only compare DSTC and DRO here. 

To compare the performances of DSTC and DRO, we used a mid-sized OCB 
database composed of 50 classes and 100,000 objects, for a size of about 62 MB. The 
other OCB parameters defining the database were set to default. Two series of 
standard OCB transactions (1000 transactions and 10,000 transactions) were executed 
on this database, before and after object clustering. System performance was 
measured in terms of I/Os, response time, and relative performance improvement due 
to clustering. Only the results concerning I/Os are presented in this paper because 
response time plots present exactly the same tendencies and do not bring additional 
insight. Eventually, these experiments have been performed in several memory 
configurations. Since Texas makes an intensive use of virtual memory, it was 
interesting to see how the system behaved when the ratio main memory size / 
database size varied. The whole process was reiterated 100 times so that mean 
tendencies could be achieved. In each iteration, the same random seed was selected 
for the DSTC and DRO experiments so that they were rigorously identical. 

4.2. Experiment Hardware and Software 

The version of Texas we used is a prototype (version 0.5) running on a PC Pentium 
166 with 64 MB of RAM, and version 2.0.30 of Linux. The swap partition size was 
64 MB. StatClust, DSTC and DRO are integrated in Texas as a collection of new 
modules, and a modification of several Texas modules. Texas and the additional 
StatClust, DSTC and DRO modules were written in GNU C++ version 2.7.2.1. 



4.3. Experiment Results 

DSTC. Fig. 5 and 6 show that clustering with DSTC indeed allows a significant gain 
in performance, especially when the amount of main memory available is small. 
Clustering is definitely more useful when the database does not fit wholly within the 
main memory, since its effects are felt as soon as the system swaps and not only at 
page load time. This assumption is neatly confirmed by the clustering gain factor 
graph in Fig. 6. Clustering gain factor is equal to the number of I/Os necessary to 
execute the transactions after clustering divided by the number of I/Os necessary to 
execute the transactions before clustering. A discrepancy appears between Fig. 5 and 
6 due to the fact that 1000 transactions are not enough: objects are used, clustered, but 
rarely reused following the same patterns, thus provoking an useless clustering) on 
small memory configurations. On the other hand, the 10,000 transaction workload 
appears more representative of actual database usage, allowing an average gain factor 
of about 2.5. 
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Fig. 5. DSTC results – 1000 transactions 
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Fig. 6. DSTC results – 10,000 transactions 



DRO. Fig. 7 and 8 show that DRO bears the same overall behavior as DSTC. 
However, the gain factor achieved with DRO on the 10,000 transaction workload 
looks much better. It is indeed about 15. The comparison is unfair, though, because 
we selected the optimal set of parameters for DRO clustering, while we could not do 
it for DSTC. Due to technical problems with big databases, we had to parameterize 
DSTC so that clustering was not the best possible. There was a threshold effect on a 
set of DSTC parameters. Below this “threshold”, everything worked out fine but 
clustering was average. Beyond the “threshold”, clustering units were too big for 
Texas to manage and the system invariably crashed. 
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Fig. 7. DRO results – 1000 transactions 
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Fig. 8. DRO results – 10,000 transactions 



Comparison of DSTC and DRO. To eventually compare DSTC and DRO on a fair 
ground, we used a smaller database so that DSTC could properly work. We used 
OCB’s default database (50 classes, 20,000 instances, about 20 MB) and ran two 
series of typical transactions that were likely to benefit from clustering: depth-3 
hierarchy traversals (that always follow the same type of reference) and depth-2 
simple traversals (depth-first traversals). The depth of traversals was reduced 
regarding OCB’s default parameters so that the generated clusters were not too big 
and the effects of clustering were clear. The traversals have been performed from 100 
predefined root objects and each of them was executed 10 times. 

Table 3 displays the mean number of I/Os concerning database usage before and 
after clustering. It shows that DSTC and DRO both achieve a substantial increase in 
performance (factor 6-7). DRO looks even better, though more tuning with DSTC 
should bring this method on the same level. Unfortunately, such tuning still provoked 
execution errors in Texas. The big difference between DSTC and DRO lies in 
clustering overhead (the number of I/Os necessary for an algorithm to cluster the 
database). DSTC induces a high overhead, which renders it difficult to implement 
truly dynamically. Its authors actually advocate its triggering when the database is 
idle. On the contrary, DRO, which is much simpler, present a lower overhead (about 4 
times lower) and is certainly better suited to a dynamic execution. 
 

 Hierarchy traversals Simple traversals 
 DSTC DRO DSTC DRO 

Pre-clustering usage 1682.6 1686 1682 1683 
Post-clustering usage 270.8 226 281.75 236.75 
Clustering gain factor 6.21 7.46 5.97 7.11 
Clustering overhead 12219.4 3286.8 12174 2804.5 

Table 3. Clustering efficiency comparison between DSTC and DRO (I/Os) 

5. Conclusion 

We have presented in this paper a representative panel of dynamic object clustering 
techniques, including our first effort in this field: the DSTC and StatClust techniques, 
which both make an intensive use of statistical counters and include clustering 
mechanisms with elaborated features. We have also presented a new clustering 
method, DRO, whose principles are based on those of DSTC and StatClust, but that is 
much simpler and deals with fewer statistical counters. The idea behind DRO is to 
provide a clustering method equivalent to or better than DSTC and StatClust while 
achieving simplicity of implementation. 

We validated the idea that a simple dynamic clustering technique could provide 
better results than an elaborated one by comparing DSTC and DRO. Our results 
showed that DRO indeed performed better than DSTC, which could not be set up in 
an optimal fashion due to its inherent complexity. Furthermore, the clustering 
overhead induced by DRO was much lower than that induced by DSTC, definitely 
proving that a simple approach is more viable in dynamic context than a complex one. 



To summarize, we showed that DRO was a better choice than DSTC in all 
circumstances. We also underlined the fact that a dynamic clustering technique is 
perfectly viable in an OODBMS and could achieve significant gains in performances. 
Since DRO is based on usage statistics, it fits well with the concept of autoadmin 
databases that is currently researched in major companies to automate the database 
tuning process [6]. 

The perspectives opened by this study are divided into two axes. First, the 
evaluation of DRO should be carried on on other systems besides Texas, which is a 
persistent object store rather than a full OODBMS. Such evaluations could be 
conducted on real OODBMSs like O2, or achieved by simulation. Second, DRO itself 
could be improved so that clustering overhead is minimized. Some optimizations can 
be achieved in its code itself (at the list manipulation level, for instance), while others 
relate more to tuning DRO’s parameters, which could also be achieved by simulation. 
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