
HAL Id: hal-00144233
https://hal.science/hal-00144233v1

Submitted on 3 May 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

VOODB: A Generic Discrete-Event Random Simulation
Model to Evaluate the Performances of OODBs

Jérôme Darmont, Michel Schneider

To cite this version:
Jérôme Darmont, Michel Schneider. VOODB: A Generic Discrete-Event Random Simulation Model
to Evaluate the Performances of OODBs. 25th International Conference on Very Large Databases
(VLDB 1999), Sep 1999, Edinburgh, United Kingdom. pp.254-265. �hal-00144233�

https://hal.science/hal-00144233v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

ha
l-

00
14

42
33

, v
er

si
on

 1
 -

 3
 M

ay
 2

00
7

VOODB: A Generic Discrete-Event Random Simulation

Model to Evaluate the Performances of OODBs

Jérôme Darmont † Michel Schneider ‡

Laboratoire d’Informatique (LIMOS)
Université Blaise Pascal – Clermont-Ferrand II

Complexe Scientifique des Cézeaux
63177 Aubière Cedex

FRANCE
† darmont@libd2.univ-bpclermont.fr ‡ schneider@cicsun.univ-bpclermont.fr

Abstract

Performance of object-oriented database sys-
tems (OODBs) is still an issue to both design-
ers and users nowadays. The aim of this pa-
per is to propose a generic discrete-event ran-
dom simulation model, called VOODB, in or-
der to evaluate the performances of OODBs in
general, and the performances of optimization
methods like clustering in particular. Such op-
timization methods undoubtedly improve the
performances of OODBs. Yet, they also al-
ways induce some kind of overhead for the
system. Therefore, it is important to eval-
uate their exact impact on the overall per-
formances. VOODB has been designed as
a generic discrete-event random simulation
model by putting to use a modelling approach,
and has been validated by simulating the be-
havior of the O2 OODB and the Texas persis-
tent object store. Since our final objective is
to compare object clustering algorithms, some
experiments have also been conducted on the
DSTC clustering technique, which is imple-
mented in Texas. To validate VOODB, per-
formance results obtained by simulation for a
given experiment have been compared to the
results obtained by benchmarking the real sys-
tems in the same conditions. Benchmarking
and simulation performance evaluations have
been observed to be consistent, so it appears

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 25th VLDB Conference,

Edinburgh, Scotland, UK, 1999

that simulation can be a reliable approach to
evaluate the performances of OODBs.

Keywords: Object-oriented database systems,
Object clustering, Performance evaluation,
Discrete-event random simulation.

1 Introduction

The needs in terms of performance evaluation
for Object-Oriented Database Management Systems
(OODBMSs) remain strong for both designers and
users. Furthermore, it appears a necessity to perform
a priori evaluations (before a system is actually built
or achieved) in a variety of situations. A system de-
signer may need to a priori test the efficiency of an
optimization procedure or adjust the parameters of a
buffering technique. It is also very helpful to users to
a priori estimate whether a given system is able to
handle a given workload.

The challenge of comparing object clustering tech-
niques motivated us to contribute to OODBMSs per-
formance evaluation. The principle of clustering is to
store related objects close together on secondary stor-
age. Hence, when one of these objects is loaded into
the main memory, all its related objects are also loaded
at the same time. Subsequent accesses to these objects
are thus main memory accesses that are much faster
than disk I/Os. However, clustering induces an over-
head for the system (e.g., to reorganize the database,
to collect and maintain usage statistics...), so it is im-
portant to gauge its true impact on the overall perfor-
mances. For this particular problem, a priori evalua-
tion is very attractive since it avoids coding inefficient
algorithms in existing systems.

Discrete-event random simulation constitutes a tra-
ditional approach to a priori performance evaluation.
Numerous simulation languages and/or environments
exist nowadays. They allow the simulation of vari-
ous classes of systems (computer systems, networks,

production systems...). However, the use of simula-
tion is not as widely disseminated as it could be in
the database domain. The main difficulty is to elab-
orate a ”good” functioning model for a system. Such
a good model must be representative of the perfor-
mances to evaluate, with the requested precision de-
gree. For this sake, finding out the significant charac-
teristics of a system and translating them into entities
in the chosen simulation language often remains a spe-
cialist issue. Hence, users must call on consulting or
specialized firms, which stretches out study times and
costs.

In the field of OODBs, discrete-event random sim-
ulation has been chiefly used to validate proposals
concerning optimization techniques, especially object
clustering techniques. For instance, a dedicated model
in PAWS was proposed in [Cha89] to validate a cluster-
ing and a buffering strategy in a CAD context. The
objective was to find out how different optimization
algorithms influence performances when the charac-
teristics of the application accessing data vary, and
which relationship exists between object clustering and
parameters such as read/write ratio. Discrete-event
random simulation was also used by [Dar96, Gay97]
in order to compare the efficiency of different cluster-
ing strategies for OODBs. The proposed models were
coded in SLAM II.

Some other studies use simulation approaches that
are not discrete-event random simulation approaches,
but are nevertheless interesting. [Che91] conducted
simulation to show the effectiveness of different clus-
tering schemes when parameters such as read/write
ratio vary. The authors particularly focused on disk
drive modelling. The CLAB (CLustering LAboratory)
software [Tsa92] was designed to compare graph par-
titioning algorithms applied to object clustering. It
is constituted of a set of Unix tools programmed in
C++, which can be assembled in various configura-
tions. Yet other studies from the fields of distributed
or parallel databases prove helpful, e.g., the modelling
methodologies from [Iae95] or the workload models
from [He93, Bat95].

These different studies bring forth the following ob-
servations.

First, most proposed simulation models are dedi-
cated: they have been designed to evaluate the perfor-
mance of a given optimization method. Furthermore,
they only exploit one type of OODBMS, while vari-
ous architectures influencing performances are possi-
ble (object server, page server, etc.). We advocate a
more generic approach that would help modelling the
behavior of various systems, implanting various object
bases into these systems, and executing various trans-
actions on these databases.

Besides, precision in specifications for these simula-
tion models varies widely. It is thus not always easy to
reproduce these models from the published material.

Hence, it appears beneficial to make use of a modelling
methodology that allows, step by step, analyzing a sys-
tem and specifying a formalized knowledge model that
can be distributed and reused.

Finally, as far as we know, none of these models
has been validated. The behavior of the studied al-
gorithm, if it is implemented in a real system, is thus
not guaranteed to be the same than in simulation, es-
pecially concerning performance results. Confronting
simulated results to measurements performed in the
same conditions on a real system is a good method to
hint whether a simulation model actually behaves like
the system it models or not.

Considering these observations, our motivation is
to propose a discrete-event random simulation model
that addresses the issues of genericity, reusability and
reliability. This model, baptized VOODB (Virtual
Object-Oriented Database), is indeed able to take into
account different kinds of Client-Server architectures.
It can also be parameterized to serve various pur-
poses, e.g., to evaluate how a system reacts to differ-
ent workloads or to evaluate the efficiency of optimiza-
tion methods. Eventually, VOODB has been validated
by confronting simulation results to performance mea-
sures achieved on real systems (namely O2 and Texas).

The remainder of this paper is organized as fol-
lows. Section 2 introduces our modelling approach.
Section 3 details the VOODB simulation model. Sec-
tion 4 presents validation experiments for this model.
We eventually conclude this paper and provide future
research directions in Section 5.

2 Modelling approach

In order to clearly identify the interest of a structured
approach, let us imagine that a simulation program
is directly elaborated from informal knowledge con-
cerning the studied system (Figure 1). Only experts
mastering both the system to model and the target
simulation language can satisfactorily use such an ap-
proach. It is thus only usable for punctual studies
on relatively simple systems. The obtained simulation
program is not meant to be reusable or later modified,
and its documentation is minimal at best.

Informal
knowledge

about a system

Dedicated
simulation
program

Coding

Figure 1: Unstructured approach to simulation

In opposition, a structured approach first consists

in translating informal knowledge into an organized
knowledge model (Figure 2). This knowledge model
rests on concepts close to those of the study domain.
It may be more or less formalized, and must enable
the systematic generation of a simulation program.
This approach helps focusing on the modelled system’s
properties and to make abstractions of constraints re-
lated to the simulation environment. It facilitates feed-
back to improve simulation quality: it is possible to re-
consider functioning hypothesis or detail some pieces
by modifying the knowledge model and generating
new code. Low-level parameters may be introduced
(e.g., mean access time to a disk block). The work-
load model may be directly included into the knowl-
edge model and may itself incorporate some param-
eters (e.g., the proportion of objects accessed within
a given class). Since long, specialists in simulation
worked on defining the principles of such an approach
[Sar79, Nan81, Sar91, Bal92, Gou92, Kel97].

Informal
knowledge

about a system

Dedicated
knowledge
model and

workload model

Dedicated
simulation
program

Formalization Coding

Figure 2: Structured modelling approach

The approach we recommend (Figure 3) is a generic
extension to the former approach. Its consists in
broadening the study field to take into account a whole
class of systems. The knowledge model must hence be
tunable (e.g., high-level parameters may help selecting
the system’s architecture) and modular (some func-
tionalities are included in specific modules that may
be added or removed at will). The knowledge model,
which is necessarily more complex, must be described
in a hierarchical way up to the desired detail level.
We used the concepts and diagrams of UML [Rat97]
to describe it.

We also propose that the workload model be sep-
arately characterized. It is then possible to reuse
workload models from existing benchmarks (like Hy-
perModel [And90], OO1 [Cat91] or OO7 [Car93]) or
establish a specific model. We chose to incorporate
the workload model from the OCB (Object Cluster-
ing Benchmark) generic benchmark [Dar98]. Thanks
to numerous parameters, this workload model can
be adapted to various situations (existing benchmark
workload, specific application workload...).

The generic simulation program is obtained in a sys-
tematic way. Its modular architecture is the result
of the two models it is based on. The final simula-
tion program for a specific case study is obtained by
instantiation of this generic program. This approach

guarantees a good reusability. It is possible after a first
simulation experiment to broaden the study specter by
changing the parameters’ values (especially those con-
cerning the workload), by selecting other modules (for
instance, by replacing a clustering module by another),
or by incorporating new modules.

3 The VOODB simulation model

3.1 Knowledge model

In our context, the knowledge model describes the ex-
ecution of transactions in an OODBMS (Figure 4).

Transactions are generated by the Users, who sub-
mit them to the Transaction Manager. The Trans-
action Manager determines which objects need to be
accessed for the current transaction, and performs the
necessary operations on these objects. A given ob-
ject is requested by the Transaction Manager to the
Object Manager that finds out which disk page con-
tains the object. Then, it requests the page from the
Buffering Manager that checks if the page is present in
the memory buffer. If not, it requests the page from
the I/O Subsystem that deals with physical disk ac-
cesses. After an operation on a given object is over, the
Clustering Manager may update some usage statistics
for the database. An analysis of these statistics can
trigger a reclustering, which is then performed by the
Clustering Manager. Such a database reorganization
can also be demanded externally by the Users. The
only treatments that differ when two distinct cluster-
ing algorithms are tested are those performed by the
Clustering Manager. Other treatments in the model
remain the same, whether clustering is used or not,
and whatever the clustering strategy.

The knowledge model is hierarchical. Each of its
activities (rounded boxes) can be further detailed, as
is illustrated in Figure 5 for the ”Access Disk” func-
tioning rule.

The system’s physical resources that appear as
swimlanes in the knowledge model may be qualified
as active resources since they actually perform some
task. However, the system also includes passive re-
sources that do not directly perform any task, but are
used by the active resources to perform theirs. These
passive resources do not appear on Figure 4, but must
nevertheless be exhaustively listed (Table 1).

3.2 Evaluation model

3.2.1 Simulator selection

We first selected the QNAP2 (Queuing Network Anal-
ysis Package 2nd generation, version 9) discrete-event
random simulation software [Sim95] to implement
VOODB, because it proposes the following essential
features:

• QNAP2 is a validated and reliable simulation tool;

Informal
knowledge

about a class of
systems

Generic
knowledge

model

Generic
workload model
or generic user
behavior model

Generic
evaluation

model

Instanciated
simulation
program

Formalization Coding Parameters fixing

Reuse

Figure 3: Generic, structured modelling approach

Passive resource

Processor and main memory in a centralized architecture,

or server processor and main memory in a Client-Server

architecture

Clients processor and main memory in a Client-Server

architecture

Server disk controller and secondary storage

Database. Its concurrent access is managed by a sched-

uler that applies a transaction scheduling policy that de-

pends on the multiprogramming level.

Table 1: VOODB passive resources

• QNAP2 allows the use of an object-oriented ap-
proach (since version 6);

• QNAP2 includes a full algorithmic language, de-
rived from Pascal, which allows a relatively easy
implementation of complex algorithms (object
clustering, buffer page replacement, prefetching,
etc.).

However, QNAP2 is an interpreted language. The
models written in QNAP2 are hence much slower at
execution time than if they were written in a com-
piled language. Therefore, we could not achieve the
intensive simulation campaign we intended to. For in-
stance, the simplest simulation experiments (without
clustering) were 8 hours long, while the most complex
were more than one week long. Thus, we could not
gain much insight beyond basic results.

We eventually considered the use of C++, which is
both an object-oriented and compiled language. This
also allowed us reusing most of the OCB benchmark’s
C++ code. But the existing C++ simulation packages
were either not completely validated, featured much
more than we actually needed, and hence were get-
ting as complicated to use as general simulation lan-
guages, or were not free. Hence, we decided to design

I/O Subsystem

I/O Request

[Page contiguous to
previously loaded page]

Latency
Time

Transfer
Time

Page in
memory

Search
Time

Access Disk

Figure 5: ”Access disk” functioning rule detail

our own C++ simulation kernel. It has been bap-
tized DESP-C++ (Discrete-Event Simulation Package
for C++). Its main characteristics are validity, sim-
plicity and efficiency. DESP-C++ has been validated
by comparing the results of several simulation experi-
ments conducted with DESP-C++ and QNAP2. Sim-
ulation experiments are now 20 to 1,000 times quicker
with DESP-C++, depending on the model’s complex-
ity (the more a model is complex, the more QNAP2
performs poorly).

3.2.2 Knowledge model translation

Once the knowledge model is designed, it can be quasi-
automatically translated into an evaluation model us-
ing any environment, whether it is a general simula-
tion language or a usual programming language. Each
entity in the knowledge model appears in the evalua-

User(s)
Transaction

Manager
Clustering
Manager

Object
Manager

Buffering
Manager

I/O
Subsystem

Generate
Transaction

Transaction

Extract
Object

Object
[to access]

Extract
Page(s)

Page(s)

Access
Disk

[Page
to load]

Object
[in memory]

[Page in memory]

Perform
Transaction

[Transaction
in process]

[Complete
Transaction]

Perform
treatment
related to
clustering
(statistics
collection,

etc.)

Perform
Clustering

[Necessary
Clustering]

[No
Clustering]

Varies with the
tested algorithm

Usage of a page
replacement

policy (FIFO,
LRU, LFU, etc.)

External
triggering

Clustering
Demand

Automatic
triggering

I/O

Access
Page(s)

Varies with the
tested algorithm

Figure 4: Knowledge model

tion model some way. In an object-oriented environ-
ment, resources (active and passive) become instanti-
ated classes, and functioning rules are translated into
methods.

More precisely, the translation from the knowledge
model to the evaluation model proceeds as follows:

• each active resource (swimlanes in Figure 4) be-
comes a component of the simulation program
(i.e., a class);

• each object (square boxes in Figure 4) becomes
an interface to these components (i.e., it is used
as a parameter in messages between two classes);

• each activity (round boxes in Figure 4) becomes
a method within a component.

Passive resources are classes bearing mainly two
methods: one to reserve the resource and another one

to release it.
Table 2 recapitulates how entities from the knowl-

edge model are translated in QNAP2 and DESP-C++,
which both use a resource view (where the demeanor
of each active resource is described). Table 2 also pro-
vides a translation in SLAM II [Pri86], which uses a
transaction view (where the specification concerns the
operations undergone by the entities flowing through
the system). This is simply to show that the im-
plementation of VOODB with a simulator using the
transaction view is also possible.

3.3 Genericity in VOODB

Genericity in VOODB is primarily achieved through
a set of parameters that help tuning the model in a
variety of configurations, and setting up the differ-
ent policies influencing the eventual behavior of an in-
stance of the generic evaluation model. VOODB also

Subsystem Entity QNAP2 translation DESP-C++ translat. SLAM II translation

Workload (Sub)Transaction CUSTOMER object Instance of class Client SLAM Entity

Physical Passive resource RESOURCE STATION

object

Instance of class Re-

source

RESOURCE block

Active resource Standard STATION ob-

ject

Instance of an active re-

source class inheriting

from class Resource

Set of SLAM nodes

(ACTIVITY, EVENT,

FREE, GOON...)

Control Functioning rule PROCEDURE called in

the SERVICE clause of

an active resource

Method of an active re-

source class

FORTRAN subroutine

called in an EVENT

node

Table 2: Translation of the knowledge model entities

benefits from the genericity of the OCB benchmark
[Dar98] at the workload level, since OCB is itself tun-
able through a thorough set of 26 parameters. The
parameters defining an instance of the VOODB eval-
uation model are presented in Table 3. Each active
resource is actually associated to a set of parameters.
These parameters are normally directly deduced from
the studied system’s specifications. However, some pa-
rameters are not always readily available and have to
be worked out from benchmarks or measures (e.g., to
determine network throughput or disk performances).

Our generic model allows simulating the behavior
of different types of OODBMSs. It is in particu-
lar adapted to the different configurations of Client-
Server architectures, which are nowadays the standard
in OODBs. Our model is actually especially suitable to
page server systems (like ObjectStore [Lam91], or O2

[Deu91]), but can also be used to model object server
systems (like ORION [Kim88] or ONTOS [And91]),
or database server systems, or even multiserver hybrid
systems (like GemStone [Ser92]). The organization of
the VOODB components is controlled by the ”System
class” parameter.

4 Validation experiments

4.1 Experiments scope

Though we use validated tools (QNAP2, or DESP-
C++), the results provided by simulation are not guar-
anteed to be consistent with reality. To check out if
our simulation models were indeed valid, we simulated
the behavior of two systems that offer object persis-
tence: O2 [Deu91] and Texas [Sin92]. We compared
these results to those provided by benchmarking these
real systems with OCB. The objective here was to use
the same workload model in both sets of experiments.

In a second step, we seeked to evaluate the impact
of an optimization method (the DSTC clustering tech-
nique [Bul96], which has been implemented in Texas).
We again compared results obtained by simulation and
direct measures performed under the same conditions
on the real system.

Due to space constraints, we only present here our

most significant results. Besides, our goal is not to per-
form sound performance evaluations of O2, Texas and
DSTC. We just seek to show our simulation approach
can provide trustworthy results.

4.2 Experimental conditions

4.2.1 Real systems

The O2 server we used (version 5.0) is installed on
an IBM RISC 6000 43P240 biprocessor workstation.
Each processor is a Power PC 604e 166. The work-
station has 1 GB ECC RAM. Its operating system is
AIX version 4. The O2 server cache size is 16 MB by
default.

The version of Texas we use is a prototype (ver-
sion 0.5) running on a PC Pentium-II 266 with 64 MB
of SDRAM, which operating system is Linux, ver-
sion 2.0.30. The swap partition size is 64 MB. DSTC
is integrated in Texas as a collection of new modules,
and a modification of several Texas modules. Texas
and the additional DSTC modules were compiled us-
ing the GNU C++ (version 2.7.2.1) compiler.

4.2.2 Simulation

Our C++ simulation models were compiled with the
GNU C++ (version 2.7.2.1) compiler. They run on
a PC Pentium-II 266 with 64 MB of SDRAM, under
Windows 95.

In order to simulate the behavior of O2 and Texas,
VOODB has been parameterized as showed in Table 4.
These parameters were all fixed up from the specifica-
tion and configuration of the hardware and software
systems we used.

Our simulation results have been achieved with 95%
confidence intervals (c = 0.95). To determine these
intervals, we used the method exposed in [Ban96].
For given observations, sample mean X̄ and sam-
ple standard deviation σ are computed. The half-
interval width h is h=tn-1,1-α/2.σ/

√
n, where t is given

by the Student t-distribution, n is the number of repli-
cations and α=1 − c. The mean value belongs to
the [X̄-h,X̄+h] confidence interval with a probability
c = 0.95.

Active resource Parameter Code Range Default

System System class SYSCLASS {Centralized | Object Server

| Page Server | DB Server |

Other}

Page Server

Network throughput NETTHRU – 1 MB/s

Buffering Manager Disk page size PGSIZE {512 | 1024 | 2048 | 4096 }

bytes

4096 bytes

Buffer size BUFFSIZE – 500 pages

Buffer page replacement

strategy

PGREP {RANDOM | FIFO |

LFU | LRU-K | CLOCK |

GCLOCK | Other}

LRU-1

Prefetching policy PREFETCH {None | Other} None

Clustering Manager Object clustering policy CLUSTP {None | Other} None

Objects initial placement INITPL {Sequential | Optimized se-

quential | Other}

Optimized Se-

quential

I/O Subsystem Disk search time DISKSEA – 7.4 ms

Disk latency time DISKLAT – 4.3 ms

Disk transfer time DISKTRA – 0.5 ms

Transaction Manager Multiprogramming level MULTILVL – 10

Locks acquisition time GETLOCK – 0.5 ms

Locks release time RELLOCK – 0.5 ms

Users Number of users NUSERS – 1

Table 3: VOODB parameters

Since we wish to be within 5% of the sample mean
with 95% confidence, we first performed a pilot study
with n = 10. Then we computed the number of nec-
essary additional replications n

* using the equation:
n

*=n.(h/h
*)2, where h is the half-width of the confi-

dence interval for the pilot study and h
* the half-width

of the confidence interval for all replications (the de-
sired half-width).

Our simulation results showed that the required
precision was achieved for all our performance criteria
when n+n

*≥100, with a broad security margin. We
thus performed 100 replications in all our experiments.
In order to preserve results clarity in the following fig-
ures, we did not include the confidence intervals. They
are however computed by default by DESP-C++.

4.3 Experiments on O2 and Texas

First, we investigated the effects of the object base
size (number of classes and number of instances in the
database) on the performances (mean number of I/Os
necessary to perform the transactions) of the studied
systems. In this series of experiments, the number
of classes in the schema (NC) is 20 or 50, and the
number of instances (NO) varies from 500 to 20,000.
The workload configuration is showed in Table 5. The
other OCB parameters were set up to their default
values.

In a second step, we varied the server cache size
(O2) or the available main memory (Texas) in order
to study the effects on performances (mean number of

I/Os). The objective was also to simulate the system’s
reaction when the (memory size / database size) ra-
tio decreases. In the case of O2, the server cache size
is specified by environment variables. Our Texas ver-
sion is implanted under Linux, which allows setting
up memory size at boot time. Cache or main mem-
ory size varied from 8 MB to 64 MB in these experi-
ments. Database size was fixed (NC=50, NO=20,000),
we reused the workload from Table 5, and the other
OCB parameters were set up to their default values.

4.3.1 Results concerning O2

Database size variation

Figures 6 and 7 show how the performances of O2 vary
in terms of number of I/Os when the number of classes
and the number of instances in the database vary. We
can see that simulation results are in absolute value
lightly different from the results measured on the real
system, but that they clearly show the same tendency.
The behavior of VOODB is indeed conforming to re-
ality.

Cache size variation

The results obtained in this experiment in terms of
number of I/Os are presented in Figure 8. They show
that the performances of O2 rapidly degrade when the
database size (about 28 MB on an average) becomes
greater than the cache size. This decrease in perfor-
mance is linear. Figure 8 also shows that the perfor-

Parameter Code Value for O2 Value for Texas

System class SYSCLASS Page server Centralized

Network throughput NETTHRU +∞ N/A

Disk page size PGSIZE 4096 bytes 4096 bytes

Buffer size BUFFSIZE 3840 pages 3275 pages

Buffer page replacement strategy PGREP LRU LRU

Prefetching policy PREFETCH None None

Object clustering policy CLUSTP None DSTC

Objects initial placement INITPL Optimized Sequential Optimized Sequential

Disk search time DISKSEA 6.3 ms 7.4 ms

Disk latency time DISKLAT 2.99 ms 4.3 ms

Disk transfer time DISKTRA 0.7 ms 0.5 ms

Multiprogramming level MULTILVL 10 1

Locks acquisition time GETLOCK 0.5 ms 0

Locks release time RELLOCK 0.5 ms 0

Number of users NUSERS 1 1

Table 4: Parameters defining the O2 and the Texas systems within VOODB

Parameter Val. Parameter Val.

COLDN: Number of transactions (cold run) 0 HOTN: Number of transactions (warm run) 1000

PSET: Set-oriented access occurrence probability 0.25 SETDEPTH: Set-oriented access depth 3

PSIMPLE: Simple traversal occurrence probability 0.25 SIMDEPTH: Simple traversal access depth 3

PHIER: Hierarchy traversal occurrence probability 0.25 HIEDEPTH: Hierarchy traversal access depth 5

PSTOCH: Stochastic traversal occurrence probability 0.25 STODEPTH: Stochastic traversal access depth 50

Table 5: OCB workload definition

mances of O2 can be reproduced again with our simu-
lation model.

4.3.2 Results concerning Texas

Database size variation

Figures 9 and 10 show how the performances of Texas
vary in terms of number of I/Os when the number
of classes and the number of instances in the database
vary. As is the case with O2, we can see that simulation
results and results measured on the real system lightly
differ in absolute value, but that they bear the same
tendency.

Memory size variation

Since Texas uses the virtual memory mechanisms from
the operating system, we studied the effects of a de-
crease in available main memory size under Linux. The
results obtained in terms of number of I/Os are pre-
sented in Figure 11. They show that the performances
of Texas rapidly degrade when the main memory size
becomes smaller than the database size (about 21 MB
on an average). This degradation is due to Texas’ ob-
ject loading policy, which provokes the reservation in
memory of numerous pages even before they are ac-

tually loaded. This process is clearly exponential and
generates a costly swap, which is as important a hin-
drance as the main memory is small. The simulation
results provided by VOODB are still conforming to
reality.

4.4 Effects of DSTC on the performances of

Texas

We underlined DSTC’s clustering capability by placing
the algorithm in favorable conditions. For this sake, we
ran very characteristic transactions (namely, depth-3
hierarchy traversals) and measured the performances
of Texas before and after clustering. We also evaluated
clustering overhead. We checked out that the behavior
of DSTC was the same in our simulation model and
in the real system, by counting the number of created
clusters and these clusters’ mean size.

This experiment has been performed on a mid-sized
database (50 classes, 20,000 instances, about 20 MB
on an average). We had also planned to perform this
experiment on a large object base, but we encoun-
tered technical problems with Texas/DSTC. To bypass
the problems, we reduced the main memory size from
64 MB to 8 MB so that the database size is actually
large compared to the main memory size. Then, we

0

500

1000

1500

2000

2500

3000

3500

4000

4500

500 1000 2000 5000 10000 20000

M
ea

n
nu

m
be

r
of

 I
/O

s

Number of instances

Benchmark
Simulation

Figure 6: Mean number of I/Os depending on number of

instances (O2 – 20 classes)

0

1000

2000

3000

4000

5000

6000

7000

500 1000 2000 5000 10000 20000

M
ea

n
nu

m
be

r
of

 I
/O

s

Number of instances

Benchmark
Simulation

Figure 7: Mean number of I/Os depending on number of

instances (O2 – 50 classes)

reused the mid-sized object base from the first series
of experiments. The other OCB parameters were set
up to their default values.

Table 6 presents the numbers of I/Os achieved on
the real system and in simulation, for the mid-sized
database. It shows that DSTC allows substantial per-
formance improvements (performance gain around a
factor 5). Clustering overhead is high, though. Fur-
thermore, the simulation results are overall consistent
with the performance measurements done on the real
system, except concerning clustering overhead, which
is far less important in simulation than in reality.

This flagrant inconsistency is not due to a bug in
the simulation model, but to a particularity in Texas.
Indeed, after reorganization of the database by DSTC,
objects are moved on different disk pages. Hence, their
OIDs change because Texas uses physical OIDs. In or-
der to maintain consistency among inter-object refer-

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

8 12 16 24 32 64

M
ea

n
nu

m
be

r
of

 I
/O

s

Cache size (MB)

Benchmark
Simulation

Figure 8: Mean number of I/Os depending on cache size

(O2)

0

500

1000

1500

2000

2500

500 1000 2000 5000 10000 20000

M
ea

n
nu

m
be

r
of

 I
/O

s

Number of instances

Benchmark
Simulation

Figure 9: Mean number of I/Os depending on number of

instances (Texas – 20 classes)

ences, the whole database must be scanned and all ref-
erences toward moved objects must be updated. This
phase, which is very costly both in terms of I/Os and
time, is pointless in our simulation models, since they
necessarily use logical OIDs.

To simulate DSTC’s behavior within Texas in a
wholly faithful way, it would have been easy to take
this conversion time into account in our simulations.
However, we preferred keeping our initial results in or-
der to underline the difficulty to implant a dynamic
clustering technique within a persistent object store
using physical OIDs. On the other hand, our simula-
tions show that such a dynamic technique is perfectly
viable in a system with logical OIDs.

The number of clusters built by the DSTC method
and these clusters’ average size are presented in Ta-
ble 7. We can observe again that there are few dif-
ferences between the real system’s behavior and its

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

500 1000 2000 5000 10000 20000

M
ea

n
nu

m
be

r
of

 I
/O

s

Number of instances

Benchmark
Simulation

Figure 10: Mean number of I/Os depending on number of

instances (Texas – 50 classes)

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

8 12 16 24 32 64

M
ea

n
nu

m
be

r
of

 I
/O

s

Available memory under Linux (MB)

Benchmark
Simulation

Figure 11: Mean number of I/Os depending on memory

size (Texas)

simulated behavior with VOODB.

Eventually, Table 8 presents the number of I/Os
achieved on the real system and by simulation, for the
”large” database. It shows that simulation results are
still consistent with performances observed on the real
system. Furthermore, the gain induced by clustering
is much higher when the database does not wholly fit
into the main memory (increase from a factor 5 to a
factor of about 30). This result was foreseeable, since
the more the memory size is reduced, the more the sys-
tem must perform page replacements. Unused pages
hence normally remain only a short time in memory.
A good object clustering is thus more useful in these
conditions. Clustering overhead is not repeated here,
since we reused the object base (in its initial and clus-
tered state) from the first series of experiments.

Bench. Sim. Ratio

Pre-clustering usage 1890.70 1878.80 1.0063

Clustering overhead 12799.60 354.50 36.1060

Post-clustering usage 330.60 350.50 0.9432

Gain 5.71 5.36 1.0652

Table 6: Effects of DSTC on the performances (mean num-

ber of I/Os) – Mid-sized base

Bench. Sim. Ratio

Mean number of clusters 82.23 84.01 0.9788

Mean number of obj./clust. 12.83 13.73 0.9344

Table 7: DSTC clustering

5 Conclusion

We present in this paper a generic discrete-event ran-
dom simulation model, VOODB, which is designed to
evaluate the performances of OODBs. VOODB is pa-
rameterized and modular, and thus can be adapted to
various purposes. It allows the simulation of various
types of OODBMSs and can capture performance im-
provements achieved by optimization methods. Such
optimization methods can be included in VOODB as
interchangeable modules. Furthermore, the workload
model adopted in VOODB (the OCB benchmark) can
also be replaced by another existing benchmark or a
specific workload. VOODB may be used as is (its C++
code is freely available) or tailored to fit some partic-
ular needs.

We have illustrated the genericity of VOODB and
hinted its validity by setting its parameters to sim-
ulate the behavior of the O2 OODB and the Texas
persistent object store. We correlated the simulated
performances of both systems with actual performance
measures of the real systems (performed with the OCB
benchmark), and observed they matched. The effects
of the DSTC clustering technique on Texas’ perfor-
mances have also been mimicked by simulation.

VOODB may be used for several purposes. The
performances of a single, or several optimization al-
gorithms, may be evaluated in many different condi-
tions. For instance, the host OODB or OS can vary,
to see how a given algorithm behaves. Such cluster-
ing strategies may also be compared to each other that
way. Furthermore, simulation has a low cost, since the
different simulated systems (hardware, OS, OODBs)
do not need to be acquired. Their specifications are
enough. Eventually, we can a priori model the behav-
ior of new systems, test their performances, analyze
the simulation results, and ameliorate them (and then
reiterate the process).

Eventually, VOODB has been obtained through the

Bench. Sim. Ratio

Pre-clustering usage 12504.60 12547.80 0.9965

Post-clustering usage 424.30 441.50 0.9610

Gain 29.47 28.42 1.0369

Table 8: Effects of DSTC on the performances (mean num-

ber of I/Os) – ”Large” base

application of a modelling methodology that led to the
design of a generic knowledge model and a generic eval-
uation model. This approach ensured that the specifi-
cations of the simulation models were precise enough
for our deeds and that the evaluation model was prop-
erly translated from the knowledge model. It is also
possible to reuse our knowledge model to produce sim-
ulation programs in other simulation languages or en-
vironment than QNAP2 or DESP-C++.

The reusability of VOODB may be important in a
context of limited publicity. Since benchmarkers can
encounter serious legal problems with OODB vendors
if they publish performance studies [Car93], it can be
helpful to have a tool to perform private performance
evaluations.

Future work concerning this study is first perform-
ing intensive simulation experiments with DSTC. We
indeed only have basic results. It would be interesting
to know the right value for DSTC’s parameters in var-
ious conditions. We also plan to evaluate the perfor-
mances of other optimization techniques, like the clus-
tering strategy proposed by [Gay97], which has also
been implemented in Texas, recently. This clustering
technique originates from collaboration between the
University of Oklahoma and Blaise Pascal University.
The ultimate goal is to compare different clustering
strategies, to determine which one performs best in a
given set of conditions.

Though simulation may be used in substitution
to benchmarking (mainly for a priori performance
evaluations), it may also be used in complement to
benchmarking. For instance, mixed benchmarking-
simulation approach may be used to measure some
performance criteria necessitating precision by exper-
imentation, and other criteria by simulation (e.g., to
determine the best architecture for a given purpose).
With such an approach, using the same workload (e.g.,
OCB) in simulation and on the real system is essential.

The VOODB simulation model could also be im-
proved, in order to include more components influenc-
ing the performances of OODBs. For instance, it cur-
rently only provides a few basic buffering strategies
(RANDOM, FIFO, LFU, LRU-K, CLOCK...) and no
prefetching strategy, which have been demonstrated
to influence the performances of OODBs a lot, too
[Bul96].

VOODB could even be extended to take into ac-
count completely different aspects of performance in

OODBs, like concurrency control or query optimiza-
tion. VOODB could also take into account random
hazards, like benign or serious system failures, in or-
der to observe how the studied OODB behaves and
recovers in critical conditions. Such features could be
included in VOODB as new modules.

Eventually, to make reusability easier and more for-
mal, VOODB could be rebuilt as part of a reusable
model library, as modular fragments that could be as-
sembled to form bigger models. For this sake, slicing
the model into fragments is not enough. The struc-
ture and interface of each module must also be stan-
dardized and an explicit documentation for every sub-
model must be provided [Bre98].

References

[And90] T.L. Anderson et al., ”The HyperModel
Benchmark”, International Conference on
Extending Database Technology (EDBT ’90),
Venice, Italy, March 1990, pp. 317-331

[And91] T. Andrews et al., ”ONTOS: A persis-
tent database for C++”, Object-Oriented
Databases with Applications to CASE, Net-
works, and VLSI CAD, Prentice Hall, 1991,
pp. 387-406

[Bal92] O. Balci and R.E. Nance, ”The simula-
tion model development environment: an
overview”, 1992 Winter Simulation Confer-
ence, pp. 726-736

[Ban96] J. Banks, ”Output Analysis Capabilities of
Simulation Software”, Simulation, Vol. 66,
No. 1, January 1996, pp. 23-30

[Bat95] C. Bates et al., ”Simulating transac-
tion processing in parallel database sys-
tems”, 7th European Simulation Symposium
(ESS ’95), Erlanger-Nuremberg, Germany,
October 1995, pp. 193-197

[Bre98] A.P.J. Breunese et al., ”Libraries of Reusable
Models: Theory and Application”, Simula-
tion, Vol. 41, No. 1, July 1998, pp. 7-22

[Bul96] F. Bullat and M. Schneider, ”Dynamic Clus-
tering in Object Database Exploiting Effec-
tive Use of Relationships Between Objects”,
ECOOP ’96, Linz, Austria, July 1996; LNCS
Vol. 1098, pp. 344-365

[Car93] M.J. Carey et al., ”The OO7 Benchmark”,
ACM SIGMOD International Conference on
Management of Data, Washington DC, May
1993, pp. 12-21

[Cat91] R.G.G. Cattell, ”An Engineering Database
Benchmark”, The Benchmark Handbook for

Database Transaction Processing Systems,
Morgan Kaufmann, 1991, pp. 247-281

[Cha89] E.E. Chang and R.H. Katz, ”Exploiting In-
heritance and Structure Semantics for Effec-
tive Clustering and Buffering in an Object-
Oriented DBMS”, ACM SIGMOD Interna-
tional Conference on Management of Data,
Portland, Oregon, June 1989, pp. 348-357

[Che91] J.R. Cheng and A.R. Hurson, ”Effective clus-
tering of complex objects in object-oriented
databases”, ACM SIGMOD International
Conference on Management of Data, Denver,
Colorado, May 1991, pp. 22-31

[Dar96] J. Darmont and L. Gruenwald, ”A Com-
parison Study of Clustering Techniques for
Object-Oriented Databases”, Information
Sciences, Vol. 94, No. 1-4, December 1996,
pp. 55-86

[Dar98] J. Darmont et al., ”OCB: A Generic
Benchmark to Evaluate the Performances
of Object-Oriented Database Systems”,
6th International Conference on Extending
Database Technology (EDBT ’98), Valen-
cia, Spain, March 1998; LNCS Vol. 1377
(Springer), pp. 326-340

[Deu91] O. Deux et al., ”The O2 System”, Communi-
cations of the ACM, Vol. 34, No. 10, October
1991, pp. 34-48

[Gay97] J.-Y. Gay and L. Gruenwald, ”A
Clustering Technique for Object Oriented
Databases”, 8th International Conference on
Database and Expert Systems Applications
(DEXA ’97), Toulouse, France, September
1997, LNCS Vol. 1308 (Springer), pp. 81-90

[Gou92] M. Gourgand and P. Kellert, ”An object-
oriented methodology for manufacturing sys-
tems modelling”, 1992 Summer Com-
puter Simulation Conference (SCSC), Reno,
Nevada, pp. 1123-1128

[He93] M. He et al., ”An Efficient Storage Protocol
for Distributed Object-Oriented Databases”,
IEEE Parallel and Distributed Processing,
1993, pp. 606-610

[Iae95] G. Iaezolla and R. Mirandola, ”Anal-
ysis of two simulation methodologies in
performance studies of distributed data
bases”, 7th European Simulation Symposium
(ESS ’95), Erlanger-Nuremberg, Germany,
October 1995, pp. 176-180

[Kel97] P. Kellert et al., ”Object-oriented method-
ology for FMS modelling and simulation”,

Int. J. Computer Integrated Manufacturing,
Vol. 10, No. 6, 1997, pp. 405-434

[Kim88] W. Kim et al., ”Integrating an object-
oriented programming system with a
database system”, OOPSLA ’88 Interna-
tional Conference, San Diego, California,
September 1988, pp. 142-152

[Lam91] C. Lamb et al., ”The ObjectStore Database
System”, Communications of the ACM,
Vol. 34, No. 10, October 1991, pp. 50-63

[Nan81] R.E. Nance, Model representation in discrete
event simulation: the conical methodology,
Technical Report CS-81003-R, Department
of Computer Science, Virginia Tech, Blacks-
burg, Va., 1981

[Pri86] A.A.B. Pritsker, Introduction to Simulation
and SLAM II, Hasted Press (John Wiley &
Sons), System Publishing Corporation, 1986

[Rat97] Rational Software Corporation et al., UML
Semantics, version 1.1 and UML Notation
Guide, version 1.1, September 1997

[Sar79] R.G. Sargent, ”Validation of simulation
models”, 1979 Winter Simulation Confer-
ence, San Diego, 1979, pp. 497-503

[Sar91] R.G. Sargent, ”Simulation model verifica-
tion and validation”, 1991 Winter Simula-
tion Conference, Phoenix, 1991, pp. 37-47

[Ser92] Servio Corporation, GemStone V. 3.2 Ref-
erence Manual, 1992

[Sim95] Simulog, QNAP2V9: Reference Manual,
1995

[Sin92] V. Singhal et al., ”Texas: An Efficient,
Portable Persistent Store”, 5th International
Workshop on Persistent Object Systems, San
Miniato, Italy, 1992

[Tsa92] M.M. Tsangaris and J.F. Naughton, ”On
the Performance of Object Clustering Tech-
niques”, ACM SIGMOD International Con-
ference on Management of Data, San Diego,
California, June 1992, pp. 144-153

