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Performance of object-oriented database systems (OODBs) is still an issue to both designers and users nowadays. The aim of this paper is to propose a generic discrete-event random simulation model, called VOODB, in order to evaluate the performances of OODBs in general, and the performances of optimization methods like clustering in particular. Such optimization methods undoubtedly improve the performances of OODBs. Yet, they also always induce some kind of overhead for the system. Therefore, it is important to evaluate their exact impact on the overall performances. VOODB has been designed as a generic discrete-event random simulation model by putting to use a modelling approach, and has been validated by simulating the behavior of the O 2 OODB and the Texas persistent object store. Since our final objective is to compare object clustering algorithms, some experiments have also been conducted on the DSTC clustering technique, which is implemented in Texas. To validate VOODB, performance results obtained by simulation for a given experiment have been compared to the results obtained by benchmarking the real systems in the same conditions. Benchmarking and simulation performance evaluations have been observed to be consistent, so it appears

Introduction

The needs in terms of performance evaluation for Object-Oriented Database Management Systems (OODBMSs) remain strong for both designers and users. Furthermore, it appears a necessity to perform a priori evaluations (before a system is actually built or achieved) in a variety of situations. A system designer may need to a priori test the efficiency of an optimization procedure or adjust the parameters of a buffering technique. It is also very helpful to users to a priori estimate whether a given system is able to handle a given workload.

The challenge of comparing object clustering techniques motivated us to contribute to OODBMSs performance evaluation. The principle of clustering is to store related objects close together on secondary storage. Hence, when one of these objects is loaded into the main memory, all its related objects are also loaded at the same time. Subsequent accesses to these objects are thus main memory accesses that are much faster than disk I/Os. However, clustering induces an overhead for the system (e.g., to reorganize the database, to collect and maintain usage statistics...), so it is important to gauge its true impact on the overall performances. For this particular problem, a priori evaluation is very attractive since it avoids coding inefficient algorithms in existing systems.

Discrete-event random simulation constitutes a traditional approach to a priori performance evaluation. Numerous simulation languages and/or environments exist nowadays. They allow the simulation of various classes of systems (computer systems, networks, production systems...). However, the use of simulation is not as widely disseminated as it could be in the database domain. The main difficulty is to elaborate a "good" functioning model for a system. Such a good model must be representative of the performances to evaluate, with the requested precision degree. For this sake, finding out the significant characteristics of a system and translating them into entities in the chosen simulation language often remains a specialist issue. Hence, users must call on consulting or specialized firms, which stretches out study times and costs.

In the field of OODBs, discrete-event random simulation has been chiefly used to validate proposals concerning optimization techniques, especially object clustering techniques. For instance, a dedicated model in PAWS was proposed in [START_REF] Chang | Exploiting Inheritance and Structure Semantics for Effective Clustering and Buffering in an Object-Oriented DBMS[END_REF] to validate a clustering and a buffering strategy in a CAD context. The objective was to find out how different optimization algorithms influence performances when the characteristics of the application accessing data vary, and which relationship exists between object clustering and parameters such as read/write ratio. Discrete-event random simulation was also used by [START_REF] Darmont | A Comparison Study of Clustering Techniques for Object-Oriented Databases[END_REF][START_REF] Gay | A Clustering Technique for Object Oriented Databases[END_REF] in order to compare the efficiency of different clustering strategies for OODBs. The proposed models were coded in SLAM II.

Some other studies use simulation approaches that are not discrete-event random simulation approaches, but are nevertheless interesting. [START_REF] Cheng | Effective clustering of complex objects in object-oriented databases[END_REF] conducted simulation to show the effectiveness of different clustering schemes when parameters such as read/write ratio vary. The authors particularly focused on disk drive modelling. The CLAB (CLustering LAboratory) software [START_REF] Tsangaris | On the Performance of Object Clustering Techniques[END_REF] was designed to compare graph partitioning algorithms applied to object clustering. It is constituted of a set of Unix tools programmed in C++, which can be assembled in various configurations. Yet other studies from the fields of distributed or parallel databases prove helpful, e.g., the modelling methodologies from [START_REF] Iaezolla | Analysis of two simulation methodologies in performance studies of distributed data bases[END_REF] or the workload models from [START_REF] He | An Efficient Storage Protocol for Distributed Object-Oriented Databases[END_REF][START_REF] Bates | Simulating transaction processing in parallel database systems[END_REF].

These different studies bring forth the following observations.

First, most proposed simulation models are dedicated: they have been designed to evaluate the performance of a given optimization method. Furthermore, they only exploit one type of OODBMS, while various architectures influencing performances are possible (object server, page server, etc.). We advocate a more generic approach that would help modelling the behavior of various systems, implanting various object bases into these systems, and executing various transactions on these databases.

Besides, precision in specifications for these simulation models varies widely. It is thus not always easy to reproduce these models from the published material.

Hence, it appears beneficial to make use of a modelling methodology that allows, step by step, analyzing a system and specifying a formalized knowledge model that can be distributed and reused.

Finally, as far as we know, none of these models has been validated. The behavior of the studied algorithm, if it is implemented in a real system, is thus not guaranteed to be the same than in simulation, especially concerning performance results. Confronting simulated results to measurements performed in the same conditions on a real system is a good method to hint whether a simulation model actually behaves like the system it models or not.

Considering these observations, our motivation is to propose a discrete-event random simulation model that addresses the issues of genericity, reusability and reliability. This model, baptized VOODB (Virtual Object-Oriented Database), is indeed able to take into account different kinds of Client-Server architectures. It can also be parameterized to serve various purposes, e.g., to evaluate how a system reacts to different workloads or to evaluate the efficiency of optimization methods. Eventually, VOODB has been validated by confronting simulation results to performance measures achieved on real systems (namely O 2 and Texas).

The remainder of this paper is organized as follows. Section 2 introduces our modelling approach. Section 3 details the VOODB simulation model. Section 4 presents validation experiments for this model. We eventually conclude this paper and provide future research directions in Section 5.

Modelling approach

In order to clearly identify the interest of a structured approach, let us imagine that a simulation program is directly elaborated from informal knowledge concerning the studied system (Figure 1). Only experts mastering both the system to model and the target simulation language can satisfactorily use such an approach. It is thus only usable for punctual studies on relatively simple systems. The obtained simulation program is not meant to be reusable or later modified, and its documentation is minimal at best. In opposition, a structured approach first consists in translating informal knowledge into an organized knowledge model (Figure 2). This knowledge model rests on concepts close to those of the study domain. It may be more or less formalized, and must enable the systematic generation of a simulation program. This approach helps focusing on the modelled system's properties and to make abstractions of constraints related to the simulation environment. It facilitates feedback to improve simulation quality: it is possible to reconsider functioning hypothesis or detail some pieces by modifying the knowledge model and generating new code. Low-level parameters may be introduced (e.g., mean access time to a disk block). The workload model may be directly included into the knowledge model and may itself incorporate some parameters (e.g., the proportion of objects accessed within a given class). Since long, specialists in simulation worked on defining the principles of such an approach [Sar79, Nan81, Sar91, Bal92, Gou92, Kel97]. The approach we recommend (Figure 3) is a generic extension to the former approach. Its consists in broadening the study field to take into account a whole class of systems. The knowledge model must hence be tunable (e.g., high-level parameters may help selecting the system's architecture) and modular (some functionalities are included in specific modules that may be added or removed at will). The knowledge model, which is necessarily more complex, must be described in a hierarchical way up to the desired detail level. We used the concepts and diagrams of UML [START_REF]UML Semantics, version 1.1 and UML Notation Guide, version 1[END_REF] to describe it.

We also propose that the workload model be separately characterized. It is then possible to reuse workload models from existing benchmarks (like Hy-perModel [START_REF] Anderson | The HyperModel Benchmark[END_REF], OO1 [START_REF] Cattell | An Engineering Database Benchmark[END_REF] or OO7 [START_REF] Carey | The OO7 Benchmark[END_REF]) or establish a specific model. We chose to incorporate the workload model from the OCB (Object Clustering Benchmark) generic benchmark [START_REF] Darmont | OCB: A Generic Benchmark to Evaluate the Performances of Object-Oriented Database Systems[END_REF]. Thanks to numerous parameters, this workload model can be adapted to various situations (existing benchmark workload, specific application workload...).

The generic simulation program is obtained in a systematic way. Its modular architecture is the result of the two models it is based on. The final simulation program for a specific case study is obtained by instantiation of this generic program. This approach guarantees a good reusability. It is possible after a first simulation experiment to broaden the study specter by changing the parameters' values (especially those concerning the workload), by selecting other modules (for instance, by replacing a clustering module by another), or by incorporating new modules.

3 The VOODB simulation model

Knowledge model

In our context, the knowledge model describes the execution of transactions in an OODBMS (Figure 4).

Transactions are generated by the Users, who submit them to the Transaction Manager. The Transaction Manager determines which objects need to be accessed for the current transaction, and performs the necessary operations on these objects. A given object is requested by the Transaction Manager to the Object Manager that finds out which disk page contains the object. Then, it requests the page from the Buffering Manager that checks if the page is present in the memory buffer. If not, it requests the page from the I/O Subsystem that deals with physical disk accesses. After an operation on a given object is over, the Clustering Manager may update some usage statistics for the database. An analysis of these statistics can trigger a reclustering, which is then performed by the Clustering Manager. Such a database reorganization can also be demanded externally by the Users. The only treatments that differ when two distinct clustering algorithms are tested are those performed by the Clustering Manager. Other treatments in the model remain the same, whether clustering is used or not, and whatever the clustering strategy.

The knowledge model is hierarchical. Each of its activities (rounded boxes) can be further detailed, as is illustrated in Figure 5 for the "Access Disk" functioning rule.

The system's physical resources that appear as swimlanes in the knowledge model may be qualified as active resources since they actually perform some task. However, the system also includes passive resources that do not directly perform any task, but are used by the active resources to perform theirs. These passive resources do not appear on Figure 4, but must nevertheless be exhaustively listed (Table 1).

Evaluation model

Simulator selection

We first selected the QNAP2 (Queuing Network Analysis Package 2 nd generation, version 9) discrete-event random simulation software [START_REF] Simulog | [END_REF] to implement VOODB, because it proposes the following essential features:

• QNAP2 is a validated and reliable simulation tool; Processor and main memory in a centralized architecture, or server processor and main memory in a Client-Server architecture Clients processor and main memory in a Client-Server architecture Server disk controller and secondary storage Database. Its concurrent access is managed by a scheduler that applies a transaction scheduling policy that depends on the multiprogramming level.

Table 1: VOODB passive resources

• QNAP2 allows the use of an object-oriented approach (since version 6);

• QNAP2 includes a full algorithmic language, derived from Pascal, which allows a relatively easy implementation of complex algorithms (object clustering, buffer page replacement, prefetching, etc.).

However, QNAP2 is an interpreted language. The models written in QNAP2 are hence much slower at execution time than if they were written in a compiled language. Therefore, we could not achieve the intensive simulation campaign we intended to. For instance, the simplest simulation experiments (without clustering) were 8 hours long, while the most complex were more than one week long. Thus, we could not gain much insight beyond basic results.

We eventually considered the use of C++, which is both an object-oriented and compiled language. This also allowed us reusing most of the OCB benchmark's C++ code. But the existing C++ simulation packages were either not completely validated, featured much more than we actually needed, and hence were getting as complicated to use as general simulation languages, or were not free. Hence, we decided to design 

Knowledge model translation

Once the knowledge model is designed, it can be quasiautomatically translated into an evaluation model using any environment, whether it is a general simulation language or a usual programming language. Each entity in the knowledge model appears in the evalua- More precisely, the translation from the knowledge model to the evaluation model proceeds as follows:

User(s)
• each active resource (swimlanes in Figure 4) becomes a component of the simulation program (i.e., a class);

• each object (square boxes in Figure 4) becomes an interface to these components (i.e., it is used as a parameter in messages between two classes);

• each activity (round boxes in Figure 4) becomes a method within a component.

Passive resources are classes bearing mainly two methods: one to reserve the resource and another one to release it.

Table 2 recapitulates how entities from the knowledge model are translated in QNAP2 and DESP-C++, which both use a resource view (where the demeanor of each active resource is described). Table 2 also provides a translation in SLAM II [START_REF] Pritsker | Introduction to Simulation and SLAM II[END_REF], which uses a transaction view (where the specification concerns the operations undergone by the entities flowing through the system). This is simply to show that the implementation of VOODB with a simulator using the transaction view is also possible.

Genericity in VOODB

Genericity in VOODB is primarily achieved through a set of parameters that help tuning the model in a variety of configurations, and setting up the different policies influencing the eventual behavior of an instance of the generic evaluation model. VOODB also 3. Each active resource is actually associated to a set of parameters. These parameters are normally directly deduced from the studied system's specifications. However, some parameters are not always readily available and have to be worked out from benchmarks or measures (e.g., to determine network throughput or disk performances).

Our generic model allows simulating the behavior of different types of OODBMSs. It is in particular adapted to the different configurations of Client-Server architectures, which are nowadays the standard in OODBs. Our model is actually especially suitable to page server systems (like ObjectStore [START_REF] Lamb | The ObjectStore Database System[END_REF], or O 2 [START_REF] Deux | The O 2 System[END_REF]), but can also be used to model object server systems (like ORION [START_REF] Kim | Integrating an objectoriented programming system with a database system[END_REF] or ONTOS [START_REF] Andrews | ONTOS: A persistent database for C++[END_REF]), or database server systems, or even multiserver hybrid systems (like GemStone [START_REF] Corporation | GemStone V. 3.2 Reference Manual[END_REF]). The organization of the VOODB components is controlled by the "System class" parameter.

Validation experiments

Experiments scope

Though we use validated tools (QNAP2, or DESP-C++), the results provided by simulation are not guaranteed to be consistent with reality. To check out if our simulation models were indeed valid, we simulated the behavior of two systems that offer object persistence: O 2 [Deu91] and Texas [START_REF] Singhal | Texas: An Efficient, Portable Persistent Store[END_REF]. We compared these results to those provided by benchmarking these real systems with OCB. The objective here was to use the same workload model in both sets of experiments.

In a second step, we seeked to evaluate the impact of an optimization method (the DSTC clustering technique [START_REF] Bullat | Dynamic Clustering in Object Database Exploiting Effective Use of Relationships Between Objects[END_REF], which has been implemented in Texas). We again compared results obtained by simulation and direct measures performed under the same conditions on the real system.

Due to space constraints, we only present here our most significant results. Besides, our goal is not to perform sound performance evaluations of O 2 , Texas and DSTC. We just seek to show our simulation approach can provide trustworthy results.

Experimental conditions

Real systems

The O 2 server we used (version 5.0) is installed on an IBM RISC 6000 43P240 biprocessor workstation. Each processor is a Power PC 604e 166. The workstation has 1 GB ECC RAM. Its operating system is AIX version 4. The O 2 server cache size is 16 MB by default.

The version of Texas we use is a prototype (version 0.5) running on a PC Pentium-II 266 with 64 MB of SDRAM, which operating system is Linux, version 2.0.30. The swap partition size is 64 MB. DSTC is integrated in Texas as a collection of new modules, and a modification of several Texas modules. Texas and the additional DSTC modules were compiled using the GNU C++ (version 2.7.2.1) compiler.

Simulation

Our C++ simulation models were compiled with the GNU C++ (version 2.7.2.1) compiler. They run on a PC Pentium-II 266 with 64 MB of SDRAM, under Windows 95.

In order to simulate the behavior of O 2 and Texas, VOODB has been parameterized as showed in Table 4. These parameters were all fixed up from the specification and configuration of the hardware and software systems we used.

Our simulation results have been achieved with 95% confidence intervals (c = 0.95). To determine these intervals, we used the method exposed in [START_REF] Banks | Output Analysis Capabilities of Simulation Software[END_REF]. For given observations, sample mean X and sample standard deviation σ are computed. The halfinterval width h is h=t n-1,1-α/2 .σ/ √ n, where t is given by the Student t-distribution, n is the number of replications and α=1 -c. The mean value belongs to the [ X-h, X+h] confidence interval with a probability c = 0.95. Since we wish to be within 5% of the sample mean with 95% confidence, we first performed a pilot study with n = 10. Then we computed the number of necessary additional replications n * using the equation: n * =n.(h/h * ) 2 , where h is the half-width of the confidence interval for the pilot study and h * the half-width of the confidence interval for all replications (the desired half-width).

Our simulation results showed that the required precision was achieved for all our performance criteria when n+n * ≥100, with a broad security margin. We thus performed 100 replications in all our experiments. In order to preserve results clarity in the following figures, we did not include the confidence intervals. They are however computed by default by DESP-C++.

Experiments on O 2 and Texas

First, we investigated the effects of the object base size (number of classes and number of instances in the database) on the performances (mean number of I/Os necessary to perform the transactions) of the studied systems. In this series of experiments, the number of classes in the schema (NC) is 20 or 50, and the number of instances (NO) varies from 500 to 20,000. The workload configuration is showed in Table 5. The other OCB parameters were set up to their default values.

In a second step, we varied the server cache size (O 2 ) or the available main memory (Texas) in order to study the effects on performances (mean number of I/Os). The objective was also to simulate the system's reaction when the (memory size / database size) ratio decreases. In the case of O 2 , the server cache size is specified by environment variables. Our Texas version is implanted under Linux, which allows setting up memory size at boot time. Cache or main memory size varied from 8 MB to 64 MB in these experiments. Database size was fixed (NC=50, NO=20,000), we reused the workload from Table 5, and the other OCB parameters were set up to their default values.

Results concerning O 2

Database size variation

Figures 6 and7 show how the performances of O 2 vary in terms of number of I/Os when the number of classes and the number of instances in the database vary. We can see that simulation results are in absolute value lightly different from the results measured on the real system, but that they clearly show the same tendency. The behavior of VOODB is indeed conforming to reality.

Cache size variation

The results obtained in this experiment in terms of number of I/Os are presented in Figure 8. They show that the performances of O 2 rapidly degrade when the database size (about 28 MB on an average) becomes greater than the cache size. This decrease in performance is linear. Figure 8 

Results concerning Texas

Database size variation

Figures 9 and 10 show how the performances of Texas vary in terms of number of I/Os when the number of classes and the number of instances in the database vary. As is the case with O 2 , we can see that simulation results and results measured on the real system lightly differ in absolute value, but that they bear the same tendency.

Memory size variation

Since Texas uses the virtual memory mechanisms from the operating system, we studied the effects of a decrease in available main memory size under Linux. The results obtained in terms of number of I/Os are presented in Figure 11. They show that the performances of Texas rapidly degrade when the main memory size becomes smaller than the database size (about 21 MB on an average). This degradation is due to Texas' object loading policy, which provokes the reservation in memory of numerous pages even before they are ac-tually loaded. This process is clearly exponential and generates a costly swap, which is as important a hindrance as the main memory is small. The simulation results provided by VOODB are still conforming to reality.

Effects of DSTC on the performances of Texas

We underlined DSTC's clustering capability by placing the algorithm in favorable conditions. For this sake, we ran very characteristic transactions (namely, depth-3 hierarchy traversals) and measured the performances of Texas before and after clustering. We also evaluated clustering overhead. We checked out that the behavior of DSTC was the same in our simulation model and in the real system, by counting the number of created clusters and these clusters' mean size. This experiment has been performed on a mid-sized database (50 classes, 20,000 instances, about 20 MB on an average). We had also planned to perform this experiment on a large object base, but we encountered technical problems with Texas/DSTC. To bypass the problems, we reduced the main memory size from 64 MB to 8 MB so that the database size is actually large compared to the main memory size. Then, we reused the mid-sized object base from the first series of experiments. The other OCB parameters were set up to their default values. Table 6 presents the numbers of I/Os achieved on the real system and in simulation, for the mid-sized database. It shows that DSTC allows substantial performance improvements (performance gain around a factor 5). Clustering overhead is high, though. Furthermore, the simulation results are overall consistent with the performance measurements done on the real system, except concerning clustering overhead, which is far less important in simulation than in reality. This flagrant inconsistency is not due to a bug in the simulation model, but to a particularity in Texas. Indeed, after reorganization of the database by DSTC, objects are moved on different disk pages. Hence, their OIDs change because Texas uses physical OIDs. In order to maintain consistency among inter-object refer- ences, the whole database must be scanned and all references toward moved objects must be updated. This phase, which is very costly both in terms of I/Os and time, is pointless in our simulation models, since they necessarily use logical OIDs.

To simulate DSTC's behavior within Texas in a wholly faithful way, it would have been easy to take this conversion time into account in our simulations. However, we preferred keeping our initial results in order to underline the difficulty to implant a dynamic clustering technique within a persistent object store using physical OIDs. On the other hand, our simulations show that such a dynamic technique is perfectly viable in a system with logical OIDs.

The number of clusters built by the DSTC method and these clusters' average size are presented in Table 7. We can observe again that there are few differences between the real system's behavior and its Eventually, Table 8 presents the number of I/Os achieved on the real system and by simulation, for the "large" database. It shows that simulation results are still consistent with performances observed on the real system. Furthermore, the gain induced by clustering is much higher when the database does not wholly fit into the main memory (increase from a factor 5 to a factor of about 30). This result was foreseeable, since the more the memory size is reduced, the more the system must perform page replacements. Unused pages hence normally remain only a short time in memory. A good object clustering is thus more useful in these conditions. Clustering overhead is not repeated here, since we reused the object base (in its initial and clustered state) from the first series of experiments. 

Conclusion

We present in this paper a generic discrete-event random simulation model, VOODB, which is designed to evaluate the performances of OODBs. VOODB is parameterized and modular, and thus can be adapted to various purposes. It allows the simulation of various types of OODBMSs and can capture performance improvements achieved by optimization methods. Such optimization methods can be included in VOODB as interchangeable modules. Furthermore, the workload model adopted in VOODB (the OCB benchmark) can also be replaced by another existing benchmark or a specific workload. VOODB may be used as is (its C++ code is freely available) or tailored to fit some particular needs.

We have illustrated the genericity of VOODB and hinted its validity by setting its parameters to simulate the behavior of the O 2 OODB and the Texas persistent object store. We correlated the simulated performances of both systems with actual performance measures of the real systems (performed with the OCB benchmark), and observed they matched. The effects of the DSTC clustering technique on Texas' performances have also been mimicked by simulation.

VOODB may be used for several purposes. The performances of a single, or several optimization algorithms, may be evaluated in many different conditions. For instance, the host OODB or OS can vary, to see how a given algorithm behaves. Such clustering strategies may also be compared to each other that way. Furthermore, simulation has a low cost, since the different simulated systems (hardware, OS, OODBs) do not need to be acquired. Their specifications are enough. Eventually, we can a priori model the behavior of new systems, test their performances, analyze the simulation results, and ameliorate them (and then reiterate the process).

Eventually, VOODB has been obtained through the application of a modelling methodology that led to the design of a generic knowledge model and a generic evaluation model. This approach ensured that the specifications of the simulation models were precise enough for our deeds and that the evaluation model was properly translated from the knowledge model. It is also possible to reuse our knowledge model to produce simulation programs in other simulation languages or environment than QNAP2 or DESP-C++. The reusability of VOODB may be important in a context of limited publicity. Since benchmarkers can encounter serious legal problems with OODB vendors if they publish performance studies [START_REF] Carey | The OO7 Benchmark[END_REF], it can be helpful to have a tool to perform private performance evaluations.

Future work concerning this study is first performing intensive simulation experiments with DSTC. We indeed only have basic results. It would be interesting to know the right value for DSTC's parameters in various conditions. We also plan to evaluate the performances of other optimization techniques, like the clustering strategy proposed by [START_REF] Gay | A Clustering Technique for Object Oriented Databases[END_REF], which has also been implemented in Texas, recently. This clustering technique originates from collaboration between the University of Oklahoma and Blaise Pascal University. The ultimate goal is to compare different clustering strategies, to determine which one performs best in a given set of conditions.

Though simulation may be used in substitution to benchmarking (mainly for a priori performance evaluations), it may also be used in complement to benchmarking. For instance, mixed benchmarkingsimulation approach may be used to measure some performance criteria necessitating precision by experimentation, and other criteria by simulation (e.g., to determine the best architecture for a given purpose). With such an approach, using the same workload (e.g., OCB) in simulation and on the real system is essential.

The VOODB simulation model could also be improved, in order to include more components influencing the performances of OODBs. For instance, it currently only provides a few basic buffering strategies (RANDOM, FIFO, LFU, LRU-K, CLOCK...) and no prefetching strategy, which have been demonstrated to influence the performances of OODBs a lot, too [START_REF] Bullat | Dynamic Clustering in Object Database Exploiting Effective Use of Relationships Between Objects[END_REF].

VOODB could even be extended to take into account completely different aspects of performance in OODBs, like concurrency control or query optimization. VOODB could also take into account random hazards, like benign or serious system failures, in order to observe how the studied OODB behaves and recovers in critical conditions. Such features could be included in VOODB as new modules.

Eventually, to make reusability easier and more formal, VOODB could be rebuilt as part of a reusable model library, as modular fragments that could be assembled to form bigger models. For this sake, slicing the model into fragments is not enough. The structure and interface of each module must also be standardized and an explicit documentation for every submodel must be provided [START_REF] Breunese | Libraries of Reusable Models: Theory and Application[END_REF].
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Table 2 :

 2 Translation of the knowledge model entities benefits from the genericity of the OCB benchmark[START_REF] Darmont | OCB: A Generic Benchmark to Evaluate the Performances of Object-Oriented Database Systems[END_REF] at the workload level, since OCB is itself tunable through a thorough set of 26 parameters. The parameters defining an instance of the VOODB evaluation model are presented in Table

	Subsystem Entity	QNAP2 translation	DESP-C++ translat. SLAM II translation
	Workload	(Sub)Transaction CUSTOMER object	Instance of class Client	SLAM Entity
	Physical	Passive resource	RESOURCE STATION	Instance of class Re-	RESOURCE block
			object	source	
		Active resource	Standard STATION ob-	Instance of an active re-	Set of SLAM nodes
			ject	source class inheriting	(ACTIVITY, EVENT,
				from class Resource	FREE, GOON...)
	Control	Functioning rule	PROCEDURE called in	Method of an active re-	FORTRAN subroutine
			the SERVICE clause of	source class	called in an EVENT
			an active resource		node

Table 3 :

 3 VOODB parameters

	Active resource	Parameter	Code	Range	Default
	System	System class	SYSCLASS	{Centralized | Object Server	Page Server
				| Page Server | DB Server |	
				Other}	
		Network throughput	NETTHRU	-	1 MB/s
	Buffering Manager	Disk page size	PGSIZE	{512 | 1024 | 2048 | 4096 }	4096 bytes
				bytes	
		Buffer size	BUFFSIZE	-	500 pages
		Buffer page replacement	PGREP	{RANDOM | FIFO |	LRU-1
		strategy		LFU | LRU-K | CLOCK |	
				GCLOCK | Other}	
		Prefetching policy	PREFETCH {None | Other}	None
	Clustering Manager	Object clustering policy	CLUSTP	{None | Other}	None
		Objects initial placement	INITPL	{Sequential | Optimized se-	Optimized Se-
				quential | Other}	quential
	I/O Subsystem	Disk search time	DISKSEA	-	7.4 ms
		Disk latency time	DISKLAT	-	4.3 ms
		Disk transfer time	DISKTRA	-	0.5 ms
	Transaction Manager Multiprogramming level	MULTILVL	-	10
		Locks acquisition time	GETLOCK	-	0.5 ms
		Locks release time	RELLOCK	-	0.5 ms
	Users	Number of users	NUSERS	-	1

Table 4 :

 4 also shows that the perfor-Parameters defining the O2 and the Texas systems within VOODB Stochastic traversal occurrence probability 0.25 STODEPTH: Stochastic traversal access depth 50

	Parameter	Code		Value for O2	Value for Texas
	System class	SYSCLASS	Page server	Centralized
	Network throughput	NETTHRU	+∞	N/A
	Disk page size	PGSIZE		4096 bytes	4096 bytes
	Buffer size	BUFFSIZE	3840 pages	3275 pages
	Buffer page replacement strategy PGREP		LRU	LRU
	Prefetching policy	PREFETCH	None	None
	Object clustering policy	CLUSTP		None	DSTC
	Objects initial placement	INITPL		Optimized Sequential Optimized Sequential
	Disk search time	DISKSEA		6.3 ms	7.4 ms
	Disk latency time	DISKLAT		2.99 ms	4.3 ms
	Disk transfer time	DISKTRA		0.7 ms	0.5 ms
	Multiprogramming level	MULTILVL	10	1
	Locks acquisition time	GETLOCK	0.5 ms	0
	Locks release time	RELLOCK	0.5 ms	0
	Number of users	NUSERS		1	1
	Parameter	Val. Parameter	Val.
	COLDN: Number of transactions (cold run)		0	HOTN: Number of transactions (warm run)	1000
	PSET: Set-oriented access occurrence probability	0.25 SETDEPTH: Set-oriented access depth	3
	PSIMPLE: Simple traversal occurrence probability	0.25 SIMDEPTH: Simple traversal access depth	3
	PHIER: Hierarchy traversal occurrence probability	0.25 HIEDEPTH: Hierarchy traversal access depth	5
	PSTOCH:			

Table 5 :

 5 OCB workload definition mances of O 2 can be reproduced again with our simulation model.

Table 6 :

 6 Effects of DSTC on the performances (mean num-

	ber of I/Os) -Mid-sized base		
		Bench. Sim. Ratio
	Mean number of clusters	82.23	84.01 0.9788
	Mean number of obj./clust.	12.83	13.73 0.9344

Table 7 :

 7 DSTC clustering

Table 8 :

 8 Effects of DSTC on the performances (mean number of I/Os) -"Large" base