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We present in this paper a generic object-oriented benchmark (the Object Clustering Benchmark) that has been designed to evaluate the performances of clustering policies in object-oriented databases. OCB is generic because its sample database may be customized to fit the databases introduced by the main existing benchmarks (e.g., OO1). OCB's current form is clustering-oriented because of its clustering-oriented workload, but it can be easily adapted to other purposes. Lastly, OCB's code is compact and easily portable. OCB has been implemented in a real system (Texas, running on a Sun workstation), in order to test a specific clustering policy called DSTC. A few results concerning this test are presented.

Introduction

This study originates from the design of clustering algorithms to improve the performance of object-oriented databases. The principle of clustering is to store related objects close together on secondary storage, so that when an object is accessed from disk, all its related objects are also loaded into the main memory. Subsequent accesses to these related objects are thus main memory accesses, instead of much slower I/Os.

But clustering involves some overhead (to gather and maintain usage statistics, to reorganize the database...), so it is not easy to determine the real impact of a given clustering heuristic on the overall performances. Hence, clustering algorithms are validated only if performance tests demonstrate their actual value.

The validation of clustering methods can be achieved by several ways. First, mathematical analysis can be used to ascertain the complexity of a clustering algorithm [START_REF] Chabridon | Clustering Techniques for Object-Oriented Database Systems[END_REF]. Although mathematical analysis provides exact results, it is very difficult to take into account all the parameters defining a real system. Hence, simplification hypothesis are made, and results tend to differ from reality. Simulation may also be used, and offers several advantages [START_REF] Darmont | Simulation of clustering algorithms in OODBs in order to evaluate their performance[END_REF]. First, clustering algorithms that are possibly implemented on different OODBs and/or operating systems can be compared within the same environment, and thus on the same basis. A given algorithm can also be tested on different platforms to determine how its behavior might be influenced by its host system. Simulation also allows the a priori modeling of research prototypes before they are actually implemented in an OODB. Eventually, the most customary mean to measure the performances of DBMSs in general is the use of benchmarks, that directly gauge the response of an existing system, and, a fortiori, the performances of a clustering algorithm implemented in an existing system. However, the usual general purpose benchmarks are not well suited to the evaluation of clustering algorithms, that are very data dependent.

Some authors propose dedicated tools to evaluate the performances of their own clustering heuristic. We preferred to design generic tools, in order to be able to compare different algorithms on the same basis, using standard and easy to implement metrics. It is actually interesting to compare clustering policies together, instead of comparing them to a non-clustering policy. We can also use different platforms to test a given algorithm. We are actually involved in the development of both simulation models and a benchmark. We focus in this paper on the latter, a generic, clustering-oriented benchmark called the Object Clustering Benchmark (OCB).

The remainder of this paper is organized as follows. Section 2 presents the most popular benchmarks for evaluating the performances of OODBs. Our own benchmark, OCB, is then described in Section 3. Section 4 presents experiments we performed to validate our benchmark. Section 5 eventually concludes this paper and provides future research directions.

Related Work

Benchmarking the performances of an OODB consists of performing a set of tests in order to measure the system response under certain conditions. Benchmarks are used to compare the global performances of OODBs, but also to illustrate the advantages of one system or another in a given situation, or to determine an optimal hardware configuration (memory buffer size, number of disks...) for a given OODB and/or application. Several well-known standard object-oriented benchmarks are used nowadays. The presentation of three of them (OO1, Hy-perModel, and OO7) follows.

Typically, a benchmark is constituted of two main elements:

-a database (a conceptual schema, and a database generation method); -a workload (a set of operations to perform on the database, e.g., different kind of queries; and a protocol detailing the execution of these operations).

OO1

OO1 (Objects Operations 1), sometimes called the "Cattell Benchmark" [START_REF] Cattell | The Benchmark Handbook for Database Transaction Processing Systems[END_REF], is customarily used to evaluate the performances of both relational and objectoriented DBMSs.

OO1 Database: OO1's database is based on two classes: Part, and Connection. The parts are composite elements that are connected (through Connection objects) to three other parts. Each connection references two parts: the source (From), and the destination part (To).

The database is generated the following way:

1. create all the Part objects and store them into a dictionary; 2. for each part, randomly choose three other parts and create the associated connections.

The locality of reference (objects are often linked to relatively close objects) is simulated by a reference zone. I.e., Part #i is randomly linked to parts which Id are in the interval [Id-RefZone, Id+RefZone]. The probability that the links are determined this way is 0.9. Otherwise, the linked parts are chosen totally at random.

OO1 Workload: OO1 performs three types of operations. Each of them is run 10 times. Response time is measured for each run.

-Lookup: access to 1000 randomly selected parts.

-Traversal: randomly select a root part, then explore the corresponding part tree (in depth first) through the Connect and To references, up to seven hops (total of 3280 parts, with possible duplicates). Also perform a reverse traversal by swapping the To and From directions. -Insert: add 100 parts, and the corresponding connections, to the database.

Commit the changes.

Comments: OO1 is a simple benchmark, and hence is very easy to implement. It was used to test a broad range of systems, including object-oriented DBMSs, relational DBMSs, and other systems like Sun's INDEX (B-tree based) system. Its visibility and simplicity actually make of OO1 a standard for OODB benchmarking. However, its data model is too elementary to measure the elaborate traversals that are common in many types of applications, like engineering applications. Furthermore, OO1 only supports simple navigational and update tasks, and has no notion of complex objects (e.g., composite objects).

The HyperModel Benchmark

The HyperModel Benchmark (also called the Tektronix Benchmark in the literature) [START_REF] Anderson | The Hyper-Model Benchmark[END_REF][2] offers a more complex database than OO1. Furthermore, it is recognized for the richness of the tests it proposes.

HyperModel Database: The HyperModel Benchmark is based on an extended hypertext model. Hypertext is a generic graph structure consisting of nodes and links. The main characteristic of this database is the various relationships existing between classes: inheritance (the attributes of a Node object may be inherited from another Node object), aggregation (an instance of the Node class may be composed of one or several other instances), and eventually association (two Node objects may be bound by an oriented link).

HyperModel Workload: The benchmark consists of 20 operations. To measure the time to perform each operation, the following sequence is followed.

1. Setup: prepare 50 inputs to the operations (the setup is not timed); 2. Cold run: run the operation 50 times, on the 50 inputs precomputed in the setup phase; then, if the operation is an update, commit the changes once for all 50 operations; 3. Warm run: repeat the operation 50 times with the same input to test the effect of caching; again, perform a commit if the operation was an update.

The 20 possible operations belong to seven different kinds:

-Name Lookup: retrieve one randomly selected node; -Range Lookup: retrieve the nodes satisfying a range predicate based on an attribute value; -Group Lookup: follow the relationships one level from a randomly selected starting node; -Reference Lookup: reverse Group Lookup; -Sequential Scan: visit all the nodes; -Closure Traversal: Group Lookup up to a predefined depth; -Editing: update one node.

Comments: The HyperModel Benchmark possesses both a richer schema, and a wider extent of operations than OO1. This renders HyperModel potentially better than OO1 to measure the performances of engineering databases. However, this added complexity also makes HyperModel harder to implement, especially since its specifications are not as complete as OO1's. Lastly, the HyperModel Benchmark still has no notion of complex object.

OO7

OO7 [START_REF] Carey | The OO7 Benchmark[END_REF] is a more recent benchmark than OO1 and HyperModel, and hence uses the structures described in the previous paragraphs to propose a more complete benchmark, and to simulate various transactions running on a diversified database.

OO7 Database: OO7's database is based on a conceptual model that is very close to the HyperModel Benchmark's, though it contains a higher number of classes. Four kinds of links are also supported (IS-A, 1-1, 1-N, M-N). There are three sizes of the OO7 database: small, medium, and large.

OO7 Workload: The range of transactions offered by OO7 is also close to HyperModel's. Three main groups may be identified:

-Traversals browse the object graph using certain criteria. These traversals are very close to OO1's. There are ten different operations that apply depending on the database characteristics (basically, its size); -Queries retrieve objects chosen in function of various criteria. There are eight kinds of queries; -Structural Modification Operations deal with object insertion and deletion (two operations).

Comments: OO7 attempts to correct the flaws of OO1, and HyperModel. This is achieved with a rich schema and a comprehensive set of operations. However, if OO7 is a good benchmark for engineering applications (like CAD, CAM, or CASE), it might not be the case for other types of applications based on objects. Since its schema is static, it cannot be adapted to other purposes. Eventually, OO7 database structure and operations are nontrivial, hence making the benchmark difficult to understand, adapt, or even implement (yet, to be fair, OO7 implementations are available by anonymous FTP).

The Object Clustering Benchmark

OCB's first purpose is to test the performances of clustering algorithms within object-oriented systems. Hence, it is structured around a rich object base including many different classes (and thus many different object sizes, numbers of references, etc.), and numerous types of references (allowing the design of multiple interleaved hierarchies). OCB's workload is purposely clustering-oriented, but can be easily extended to be fully generic as well. OCB's flexibility is also achieved through an extensive set of parameters that allow the benchmark to be very adaptive. Many different kinds of object bases can be modeled with OCB, as well as many different kinds of applications running on these databases. Since there exists no canonical OODB application, this is an important feature. Eventually, the great majority of these parameters are very easy to settle.

OCB Justification

We initially felt the need for a clustering-oriented benchmark because the existing benchmarks are not adapted to test the performances of most kinds of clustering algorithms, including semantic clustering algorithms. General purpose benchmarks are useful when testing the performances of an OODBMS as a whole, but inherently do not model any specific application, even if most existing benchmarks were designed in a CAD/CAM/CASE context. Hence, they are not well suited to benchmark the performances of clustering algorithms. Some of their queries simply cannot benefit from any clustering, e.g., queries that scan through the whole database, or random accesses. Furthermore, clustering is very data dependent, what is not taken into account by the synthetic benchmarks, that all adopt a somewhat simple database schema. Consequently, we designed a rich and complex database (though very easy to code and generate), and a set of adapted queries.

OCB's main characteristic is indeed its double aptitude to be both generic and clustering-oriented. The clustering orientation definitely comes from the workload, but the set of transactions we use can be easily extended to achieve full genericity. On the other hand, OCB's database is wholly generic. OCB can be easily either parameterized to model a generic application, or dedicated to a given type of object base and/or application.

The last version of OCB (currently in development) also supports multiple users, in a very simple way (using processes), which is almost unique. As far as we know, only OO7 has a multi-user version also in development. OO1 was designed as multi-user, but the published results only involve one single user.

Eventually, OCB's code is very compact, and easy to implement on any platform. OCB is currently implemented to benchmark the Texas persistent storage system for C++, coupled with the DSTC clustering technique. The C++ code is less than 1,500 lines long. OCB is also being ported into a simulation model designed with the QNAP2 simulation software, that supports a non object-oriented language close to Pascal. The QNAP2 code dealing with OCB is likely to be shorter than 1,000 lines.

OCB Database

OCB's database is both rich and simple to achieve, very tunable, and thus highly generic. The database is constituted of a predefined number of classes (NC), all derived from the same metaclass (Fig. 1). A class is defined by two parameters: MAXNREF, the maximum number of references present in the class' instances; and BASESIZE, the class' basic size (increment size used to compute the In-stanceSize after the inheritance graph is processed during the database generation). Note that, on Fig. 1, the Unified Modeling Language (UML) "bind" clause indicates that classes are instanciated from the metaclass using the parameters between brackets. Since different references can point to the same class, 0-N, 1-N, and M-N links are implicitly modeled. Each reference has a type. There are NREFT different types of reference. A reference type can be, for instance, a type of inheritance, aggregation, user association, etc. After instanciation of the database schema, an object points to at most MAXNREF objects from the iterator of the class referenced by this object's class.

The database generation proceeds through three chief steps. The full database generation algorithm is provided in Fig. 2. The database parameters are summarized in Table 1.

/

OCB Workload

Since benchmarking the performances of clustering algorithms is our main goal, we focused OCB's workload on a set of transactions that explore the effects To model an appropriate workload for our needs, we used the types of transactions identified by [START_REF] Bullat | Regroupement dynamique d'objets dans les bases de données[END_REF] and [START_REF] Mc Iver | Self-Adaptive, On-Line Reclustering of Complex Object Data[END_REF] (Fig. 3). These operations are at the same time well suited to explore the possibilities offered by clustering, and they can be tailored to model different kinds of applications. They are basically divided into two types: set-oriented accesses, and navigational accesses, that have been empirically found by [START_REF] Mc Iver | Self-Adaptive, On-Line Reclustering of Complex Object Data[END_REF] to match breadth-first and depth-first traversals, respectively. Navigational accesses are further divided into simple, depth first traversals, hierarchy traversals that always follow the same type of reference, and finally stochastic traversals that select the next link to cross at random. Stochastic traversals approach Markov chains, that simulate well the access patterns caused by real queries, according to [START_REF] Tsangaris | On the Performance of Object Clustering Techniques[END_REF]. At each step, the probability to follow reference number N is p(N ) = 1/2 N . Each type of transaction proceeds from a randomly chosen root object (according to the DIST5 random distribution), and up to a predefined depth depending on the transaction type. All these transactions can be reversed to follow the links backwards ("ascending" the graphs).

The execution of the transactions by each client (the benchmark is to be multi-user) is organized according to the following protocol:

1. cold run of COLDN transactions which types are determined randomly, according to predefined probabilities. This step's purpose is to fill in the cache in order to observe the real (stationary) behavior of the clustering algorithm implemented in the benchmarked system; 2. warm run of HOTN transactions.

A latency time THINK can be introduced between each transaction run. The OCB workload parameters are summarized in Table 2.

TRANSACTION

Root object Depth

NAVIGATIONAL ACCESS

In breadth first on all the references

SET-ORIENTED ACCESS SIMPLE TRAVERSAL

In depth first on all the references Following a given type of reference The metrics measured by OCB are basically the database response time (global, and per transaction type), the number of accessed objects (still globally, and per transaction type), and the number of I/O performed. We distinguish the I/Os necessary to execute the transactions, and the clustering I/O overhead (I/Os needed to cluster the database).

STOCHASTIC TRAVERSAL

Random

Validation Experiments

The Object Clustering Benchmark has been used to measure the performances of the DSTC clustering technique, that is implemented in the Texas system, running on a Sun workstation. The efficiency of DSTC had already been evaluated with another benchmark called DSTC-CluB [START_REF] Bullat | Dynamic Clustering in Object Database Exploiting Effective Use of Relationships Between Objects[END_REF], that was derived from OO1. Hence, some comparisons are possible.

Texas and the DSTC Clustering Technique

Texas is a persistent storage for C++, designed and developed at the University of Texas, Austin [START_REF] Singhal | Texas: An Efficient, Portable Persistent Store[END_REF]. Texas is a virtual memory mapped system, and is hence very efficient. Memory data formats are those of C++. Persistent objects are stored on disk using this same format. Thus, when a disk page is loaded into memory, all the disk addresses towards referenced objects are swizzled to virtual 

Experiments and Results

These results are not the outcome of extensive tests performed on the Texas / DSTC couple. They are rather significant experiments to demonstrate OCB's feasibility, validity, and functionality.

Object Base Creation Time: The aim of this series of tests is to demonstrate the mere feasibility of OCB. Since we recommend the use of a complex object base, we had to check if our specifications were possible to achieve. Figure 4 presents the database average generation time depending on the database size, with a 1-class schema, a 20-class schema, and a 50-class schema. The time required to create the object base remains indeed reasonable, even for the biggest OCB database (about 15 Mb) used with Texas. The number of classes in the schema influences the database generation time because the inheritance graph consistency is rendered more complex by a high number of classes. [START_REF] Bullat | Dynamic Clustering in Object Database Exploiting Effective Use of Relationships Between Objects[END_REF] with those achieved by OCB. First, we tuned OCB's database so that it approximates DSTC-CluB's (the OCB database parameters values are provided by Table 3). The results, in terms of I/O cost, are sum up in Table 4. Note that DSTC-CluB measures the number of transaction I/Os before, and after the DSTC algorithm reorganizes the database. Though the actual values are a little different (due to the size of objects, that is constant in DSTC-CluB, and varies from class to class in OCB), the general behavior remains the same. We have just showed that OCB can be tuned to mimic the behavior of another benchmark, and thus illustrated its genericity.

In a second phase, we benchmarked Texas and DSTC using OCB parameters default values (Table 2). The results, presented in Table 5, show that OCB indicates a lesser performance for DSTC than DSTC-CluB. This is because DSTC-CluB has only one type of transaction (OO1's traversal) running on a semantically limited object base. Since OCB runs several types of transactions on the database (thus more closely modeling a real transaction workload), the access patterns, and the associated usage statistics, are much less stereotyped. Hence, clustering with DSTC is demonstrated not to be as good as stated in [START_REF] Bullat | Dynamic Clustering in Object Database Exploiting Effective Use of Relationships Between Objects[END_REF]. It though remains an excellent choice, since it still improves Texas' performances by a 2.5 factor. OCB has been demonstrated to be valid to benchmark the performances of clustering algorithms in OODBs. We have indeed proved that, properly customized, OCB could confirm results obtained with the previous benchmark DSTC-CluB, and even provide more insight about clustering policies performance than DSTC-CluB (and, a fortiori, OO1). OCB's main qualities are its richness, its flexibility, and its compactness. OCB indeed offers an object base which complexity has never been achieved before in object-oriented benchmarks. Furthermore, since this database, and likewise, the transactions running on it, are wholly tunable through a set of comprehensive (but easily set) parameters, OCB can be used to model any kind of objectoriented database application. Lastly, OCB's code is short, reasonably easy to implement, and easily portable, even in non object-oriented environments like QNAP2.

The perspectives opened by this study are numerous. First, we have mentioned that OCB could be easily enhanced to become a fully generic objectoriented benchmark. Since OCB's object base is already generic, this goal can be achieved by extending the transaction set so that it includes a broader range of operations (namely operations we discarded in the first place because they couldn't benefit from clustering). We think too, that existing benchmark databases might be approximated with OCB's schema, tuned by the appropriate parameters.

Another obvious future task is the actual exploitation of OCB: the benchmarking of several different clustering techniques for the sake of performance comparison, and possibly each time on different systems (OODB/OS couple). We also plan to integrate OCB into simulation models, in order to benefit from the advantages of simulation (platform independence, a priori modeling of nonimplemented research prototypes, low cost).

Eventually, when designing our benchmark, we essentially focused on performance. However, though very important, performance is not the only factor to consider. Functionality is also very significant [START_REF] Berre | The HyperModel Benchmark for Evaluating Object-Oriented Databases[END_REF]. Hence, we plan to work in this direction, and add a qualitative element into OCB, a bit the way [START_REF] Kempe | Benchmarking Object-Oriented Database Systems for CAD[END_REF] operated for the CAD-oriented OCAD benchmark. For instance, we could evaluate if a clustering heuristic's parameters are easy to apprehend and set up, if the algorithm is easy to use, or transparent to the user, etc.
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 1 OCB database parameters of clustering. Hence, we excluded at once some kinds of queries that simply cannot benefit from any clustering effort, e.g., creation and update operations, or HyperModel Range Lookup and Sequential Scan[START_REF] Darmont | Simulation of clustering algorithms in OODBs in order to evaluate their performance[END_REF].

	Name	Parameter	Default value
	NC	Number of classes in the database	20
	MAXNREF (i) Maximum number of references, per class	10
	BASESIZE (i)	Instances base size, per class	50 bytes
	NO	Total number of objects	20000
	NREFT	Number of reference types	4
	INFCLASS	Inferior bound, set of referenced classes	1
	SUPCLASS Superior bound, set of referenced classes	NC
	INFREF	Inferior bound, set of referenced objects	1
	SUPREF	Superior bound, set of referenced objects	NO
	DIST1	Reference types random distribution	Uniform
	DIST2	Class references random distribution	Uniform
	DIST3	Objects in classes random distribution	Uniform
	DIST4	Objects references random distribution	Uniform

Table 2 .

 2 OCB workload parameters memory addresses, and vice versa, when a page is trashed from the virtualThe Dynamic, Statistical, and Tunable Clustering technique has been developed at Blaise Pascal University (Clermont-Ferrand II) as a Ph.D. project[START_REF] Bullat | Regroupement dynamique d'objets dans les bases de données[END_REF]. DSTC is heavily based on the observation of database usage (basically, interobject links crossings). It utilizes run-time computed statistics to dynamically reorganize the database whenever necessary. The DSTC strategy is subdivided into five phases. Mb, plus 24 Mb of disk swap. The disk is set up with pages of 4 Kb. Texas and the additional DSTC modules are compiled using the GNU C++ (version 2.4.5) compiler.

	Name	Parameter	Default value
	SETDEPTH	Set-oriented Access depth	3
	SIMDEPTH	Simple Traversal depth	3
	HIEDEPTH	Hierarchy Traversal depth	5
	STODEPTH	Stochastic Traversal depth	50
	COLDN	Number of transactions executed during cold run	1000
	HOTN	Number of transactions executed during warm run	10000
	THINK	Average latency time between transactions	0
	PSET	Set Access occurrence probability	0.25
	PSIMPLE	Simple Traversal occurrence probability	0.25
	PHIER	Hierarchy Traversal occurrence probability	0.25
	PSTOCH	Stochastic Traversal occurrence probability	0.25
	RAND5	Transaction root object random distribution	Uniform
	CLIENTN	Number of clients	1
	1. Observation Phase: During a predefined Observation Period, data related to
	the transactions execution is collected and stored in a transient Observation
	Matrix.		
	2. Selection Phase: Data stored in the Observation Matrix are sorted. Only
	significant statistics are saved.	
	3. Consolidation Phase: The results of the Selection Phase are used to update
	the data gathered during the previous Observation Periods, that are stored
	in a persistent Consolidated Matrix.	
	4. Dynamic Cluster Reorganization : The Consolidated Matrix statistics are
	used either to build new Clustering Units, or to modify existing Clustering
	Units.		
	5. Physical Clustering Organization: Clustering Units are eventually applied to
	consider a new object placement on disk. This phase is triggered when the
	system is idle.	
	4.2 Material Conditions	
	DSTC is integrated in a Texas prototype (version 0.2.1) running on a Sun
	SPARC/ELC workstation. The operating system is SUN OS version 4.3.1. The

Table 3 .

 3 OCB database parameters in order to approximate DSTC-CluB's database

	Name	Parameter	Value
	NC	Number of classes in the database	2
	MAXNREF Maximum number of references, per class	3
	BASESIZE	Instances base size, per class	50 bytes
	NO	Total number of objects	20000
	NREFT	Number of reference types	3
	INFCLASS Inferior bound, set of referenced classes	0
	SUPCLASS Superior bound, set of referenced classes	NC
	INFREF Inferior bound, set of referenced objects PartId -RefZone
	SUPREF Superior bound, set of referenced objects PartId + RefZone
	DIST1	Reference types random distribution	Constant
	DIST2	Class references random distribution	Constant
	DIST3	Objects in classes random distribution	Constant
	DIST4	Objects references random distribution	Special
	Benchmark Number of I/Os	Number of I/Os Gain Factor
		(before reclustering) (after reclustering)	
	DSTC-CluB	66	5	13,2
	OCB	61	7	8,71

Table 4 .

 4 Texas/DSTC performance, measured with OCB, and DSTC-CluB

Table 5 .

 5 Texas/DSTC performance, measured with OCB 5 Conclusions and Future Research