
HAL Id: hal-00144226
https://hal.science/hal-00144226

Preprint submitted on 2 May 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Complexity of Games on Higher Order Pushdown
Automata

Thierry Cachat, Igor Walukiewicz

To cite this version:
Thierry Cachat, Igor Walukiewicz. The Complexity of Games on Higher Order Pushdown Automata.
2007. �hal-00144226�

https://hal.science/hal-00144226
https://hal.archives-ouvertes.fr

ha
l-

00
14

42
26

, v
er

si
on

 1
 -

 2
 M

ay
 2

00
7

The Complexity of Games on Higher Order

Pushdown Automata ⋆

Thierry Cachat1 and Igor Walukiewicz2

1 LIAFA/CNRS UMR 7089 & Université Paris 7, France
Firstname.Lastname@liafa.jussieu.fr

2 LaBRI, Université Bordeaux-1, France igw@labri.fr

Abstract We prove an n-exptime lower bound for the problem of de-
ciding the winner in a reachability game on Higher Order Pushdown
Automata (HPDA) of level n. This bound matches the known upper
bound for parity games on HPDA. As a consequence the µ-calculus model
checking over graphs given by n-HPDA is n-exptime complete.

1 Introduction

Higher Order Pushdown Automaton (HPDA) is a classical model of computation
[6,7] that has recently regained attention. In [9] it has been proved that the MSO
theory of the computation trees of HPDA is decidable. Then in [5] a new family
of infinite graphs, also with a decidable MSO theory, has been introduced, which
is closely related to HPDA (see [2,4]). See also other approaches in [1,3]. Up to
now the Caucal hierarchy of [5] is essentially the largest class of graphs with
a decidable MSO theory. But these decidability results have non-elementary
complexity, even for a fixed level of the hierarchy. Considering µ-calculus model-
checking and parity games allows to have better complexity bounds.

We consider the question of deciding a winner in a reachability game given by
a HPDA. It was shown by the first author [2] that parity games on n-HPDA’s can
be solved in n-exptime. This also gives n-exptime algorithm for the µ-calculus
model checking over such graphs. Here we complement the picture by showing
that even reachability games are n-exptime hard on n-HPDA’s, thereby showing
n-exptime completeness for game solving and µ-calculus model checking over
n-HPDA’s.

It was already shown by the second author in [10] that pushdown games
(on 1-HPDA) are exptime-complete. We extend the technique with codding
big counters, following the notation from [11], where the computation of space
bounded Turing machines are written with the help of 1-counters of n-bits, 2-
counters of 2n bits and so on. The expressive power of HPDA is used to “copy”
parts of the store and check equality of big counters.

⋆ This research has been partially supported by the European Community Research
Training Network “Games and Automata for Synthesis and Validation” (GAMES),
(contract HPRN-CT-2002-00283), see www.games.rwth-aachen.de.

In the next section we present the definitions of game and HPDA. In Sec-
tion 3 we prove the lower bound using a reduction from the word problem for
alternating HPDA and a result by Engelfriet. The rest of the paper is devoted
to an alternative, self contained and hopefully simple, proof of the lower bound.
Using HPDA we show in Section 4 how to handle counters of level 1 and 2, and
then of higher levels. In Section 5 we use counters to encode configurations of
Turing Machines and prove the lower bound.

We assume that the reader is familiar with the basic notions of games (see
[8] for an overview).

2 Definitions: Game, HPDS

2.1 Game

An arena or game graph is a tuple (V0, V1, E), where V = V0⊎V1 is a set of vertices
partitioned into vertices of Player 0 and vertices of Player 1, and E ⊆ V × V is
a set of edges (directed, unlabeled). Starting in a given initial vertex π0 ∈ V , a
play in (V0, V1, E) proceeds as follows: if π0 ∈ V0, Player 0 makes the first move
to π1 with π0Eπ1, else Player 1 does, and so on from the new vertex π1. A play
is a (possibly infinite) maximal sequence π0π1 · · · of successive vertices. For the
winning condition we consider reachability: a subset F ⊆ V is fixed, and

Player 0 wins π iff ∃i : πi ∈ F .

As soon as F is reached, the play stops. The play can also stop when a position is
reached with no outgoing edges. In this case the player who is supposed to move
loses. A strategy for Player 0 is a function associating to each prefix π0π1 · · ·πn

of a play such that πn ∈ V0 a “next move” πn+1 with πnEπn+1. We say that
Player 0 wins the game from the initial vertex π0 if he has a winning strategy
for this game: a strategy such that he wins every play.

2.2 Higher Order Pushdown System

We recall the definition from [9] (which is equivalent to the one from [6]), where
we slightly change the terminology. A level 1 store (or 1-store) over an alphabet
Γ is an arbitrary sequence γ1 · · · γℓ of elements of Γ , with ℓ > 0. A level k store
(or k-store), for k > 2, is a sequence [s1] · · · [sℓ] of (k − 1)-stores, where ℓ > 0.
The following operations can be performed on 1-store:

push
γ
1(γ1 · · ·γℓ−1γℓ) := γ1 · · ·γℓ−1γℓγ for all γ ∈ Γ ,

pop1(γ1 · · ·γℓ−1γℓ) := γ1 · · ·γℓ−1 ,

top(γ1 · · ·γℓ−1γℓ) := γℓ .

2

If [s1] · · · [sℓ] is a store of level k > 1, the following operations are possible:

pushk([s1] · · · [sℓ−1][sℓ]) := [s1] · · · [sℓ−1][sℓ][sℓ] ,

pushj([s1] · · · [sℓ−1][sℓ]) := [s1] · · · [sℓ−1][pushj(sℓ)] if 2 6 j < k ,

push
γ
1([s1] · · · [sℓ−1][sℓ]) := [s1] · · · [sℓ−1][push

γ
1(sℓ)] for all γ ∈ Γ ,

popk([s1] · · · [sℓ−1][sℓ]) := [s1] · · · [sℓ−1] ,

popj([s1] · · · [sℓ−1][sℓ]) := [s1] · · · [sℓ−1][popj(sℓ)] if 1 6 j < k ,

top([s1] · · · [sℓ−1][sℓ]) := top(sℓ) .

The operation popj is undefined on a store, whose top store of level j is empty.
Similarly top is undefined on a store, whose top 1-store is empty. We will consider
“bottom store symbols” ⊥j ∈ Γ at each level 1 6 j 6 k. When a j-store is
empty, implicitly its top symbol is ⊥j. These symbols can neither be erased
nor “pushed”. Given Γ and k, the set Opk of operations (on a store) of level k

consists of:

pushj for all 2 6 j 6 k, push
γ
1 for all γ ∈ Γ, popj for all 1 6 j 6 k, and skip .

The operations pushj, allowing to “copy” a part of the store, are responsible for
the fact that the hierarchy of HPDS is strict. A higher order pushdown system of
level k (or k-HPDS) is a tuple H = (P, Γ, ∆) where P is the finite set of control
locations, Γ the finite store alphabet, and ∆ ⊆ P × Γ × P × Opk the finite set
of (unlabeled) transition rules. We do not consider HPDS as accepting devices,
hence there is no input alphabet. The name HPDS is derived from Pushdown
System (PDS), it is a HPDA with unlabeled transitions. A configuration of an
k-HPDS H is a pair (p, s) where p ∈ P and s is an k-store. The set of k-stores
is denoted Sk. A HPDS H = (P, Γ, ∆) defines a transition graph (V, E), where
V = {(p, s) : p ∈ P, s ∈ Sk} is the set of all configurations, and

(p, s)E(p′, s′) ⇐⇒ ∃(p, γ, p′, θ) ∈ ∆ : top(s) = γ and s′ = θ(s) .

For our constructions it would be simpler to assume that k-HPDS can work
also on stores of lower levels, in particular on 1-stores. Of course we can always
simulate a j-store, for j < k with an k-store but in the notation it requires some
additional parenthesis that make it less readable.

To define a game on the graph of a HPDS, we assign a player to each control
state, and we consider an initial configuration: a game structure on a HPDS H

is a tuple G = (H, P0, P1, s0), where P = P0 ⊎ P1 is a partition of the control
states of H , and s0 ∈ Sk. This extends naturally to a partition of the set of
configurations: with the notations of Section 2.1, V0 = P0 × Sk, V1 = P1 × Sk,
and E is defined above.

3 Reduction from the Word Problem

Higher Order Pushdown Automata were originally designed to recognize lan-
guages. In the usual way transitions can be labeled by letters from an input

3

alphabet A. A non-deterministic HPDA is defined like a HPDS above except
that ∆ ⊆ P × Γ × (A ∪ {ε})× P ×Opn. A transition can “read” a symbol from
the input word or stay on the same place. The edges of the transition graph
are labeled accordingly, and a word is accepted iff there exist a path from an
initial configuration to a final configuration. Here the initial configuration can be
chosen arbitrarily and the final configurations are defined by the control state.

In an alternating (one-way) HPDA each control state is either existential
(in P0) or universal (in P1). A computation is a tree, from which the root is
(p0, s0, 0) where p0 is the initial control state, s0 is the initial store content,
and 0 represents the leftmost position of the input word. If the input word is
w = w1 . . . w|w|, then every non-leaf node (p, s, i) in the tree must satisfy the
following.

– If p ∈ P0 then there is a transition (p, γ, a, p′, θ) ∈ ∆ such that top(s) = γ

and
• either a = wi+1 and the node (p, s, i) has one child (p′, θ(s), i + 1),
• or a = ε and the node (p, s, i) has one child (p′, θ(s), i).

– If p ∈ P1 then
• for each transition (p, γ, a, p′, θ) ∈ ∆ such that top(s) = γ and a = wi+1,

the node (p, s, i) has a child (p′, θ(s), i + 1),
• and for each transition (p, γ, ε, p′, θ) ∈ ∆ such that top(s) = γ, the node

(p, s, i) has a child (p′, θ(s), i).

A word w is accepted if there exists a computation tree such that every leaf is
(labeled by) an accepting state.

It is well known that there is strong connections between alternation and
games (see e.g. [8]) but these connections depends very much on the context
(finite/infinite words, epsilon-transitions allowed or not, . . .).

Let Tower stand for the “tower of exponentials” function, i.e., Tower(0, n) =
n and Tower(k+1, n) = 2Tower(k,n). One of the results of [7] is that given k > 0,
the class of languages of alternating level k HPDA is the class

⋃

d>0

DTIME(Tower(k, dn)) (1)

where n is the length of the input word.
Given a k-HPDA H = (P, Γ, ∆) and a word w, our aim is to define a k-HPDS

G and a game structure on G such that Player 0 wins if and only if w is accepted
by H . Because in the game there is no input word, the idea is to encode w in the
control states and in the transitions of G. Let Q = P×[0, |w|] and G = (Q, Γ, ∆′)
where

∆′ = {((p, i), γ, (p′, i + 1), θ) : (p, γ, a, p′, θ) ∈ ∆ and wi+1 = a} ∪

{((p, i), γ, (p′, i), θ) : (p, γ, ε, p′, θ) ∈ ∆}

The set Q0 of control states where Player 0 moves is P0×[0, |w|], corresponding to
existential states. The set Q1 where Player 1 moves is P1× [0, |w|], corresponding
to universal states. The goal set F is given by the final state(s) of H .

4

Proposition 1 Given an alternating (one-way) HPDA H and an input word w

one can construct in polynomial time a game structure on a HPDS of the same
level and whose size is linear in |H |.|w|.

Note that this proposition can be easily extended to alternating two-way HPDA.
From the results of [7] (see (1) above) it follows that for every k > 0 and d > 0
there is a HPDA H of level k such that the word problem for H cannot be
decided in less than DTIME(Tower(k, dn)). It follows from this fact and the
previous proposition that a game on a HPDS G of level k and size |G| cannot
be solved in less than DTIME(Tower(k, |G|)).

Theorem 2 Reachability games on k-HPDS are k-exptime hard.

Note that given an alternating HPDA H , one can simply remove the transition
labels and the input alphabet, keeping the same set of control states. The game
structure G obtained is such that: if some word is accepted by H then the game
is won by Player 0, but the converse is not true. So there is no clear link between
the emptiness problem and the game problem. The situation is different if one
considers infinite words (a Büchi acceptance condition), a unary alphabet and
no epsilon-transitions.

4 Counters

In the rest of the paper we give an alternative proof of Theorem 2. Our final
aim will be to encode computation of k-expspace bounded alternating Turing
machines using k-HPDS. As a preparatory step we will show that using k-HPDS
we can manipulate numbers of up to Tower(k, n).

4.1 Alphabets

For each index i ≥ 1 we consider the alphabet Σi = {ai, bi}, where ai and bi

are associated to a and b when regarded as letters of the Turing machine, and
to 0 and 1 when regarded as bits (respectively). This conventions will be used
through-out the rest of the paper.

4.2 2-counters

As an introductory step we will show that we can count up to 22n

using 2-store.

Definition 3 Given n > 0, a 1-counter of length n is a word

σn−1 · · ·σ1σ0 ∈ (Σ1)
n ,

it represents the number
∑n−1

i=0 σi2
i (recall that the letter a1 represents 0 and the

letter b1 represents 1.)

So we use counters of n bits, and the parameter n is now fixed for the rest of
this section without further mentioning.

5

Definition 4 A 2-counter is a word

σkℓk · · ·σ1ℓ1σ0ℓ0 ,

where k = 2n − 1, for all i ∈ [0, 2n − 1] we have σi ∈ Σ2 and ℓi ∈ (Σ1)
n is

a 1-counter representing the number i. This 2-counter represents the number
∑2n−1

i=0 σi2
i.

We will see how to force Player 0 to write down a proper counter on the store.
More precisely we will define states that we call tests. From these states it will be
possible to play only a finite game which will be designed to test some properties
of the stack. For example, Player 0 will win from (counter i, u) iff a suffix of u is
an i-counter.

From a configuration (counter1, u) we want Player 0 to win iff on the top of
the stack there is a 1-counter; more precisely when u has a suffix σ2vσ′

2 for
v ∈ (Σ1)

n and σ2, σ
′
2 ∈ Σ2. To obtain this we let Player 1 pop n + 2 letters

and win if inconsistency is discovered; if no inconsistency is found then Player 0
wins. Similarly we can define first1 and last1 from which Player 0 wins iff on the
top of the stack there is a 1-counter representing 0 and 2n − 1 respectively.

In a configuration (equal1, u) we want Player 0 to win iff the two topmost 1-
counters have the same value; more precisely when a suffix of the stack u is of
the form σ2vσ′

2vσ′′
2 with v ∈ (Σ1)

n, σ2, σ
′
2, σ

′′
2 ∈ Σ2. In the state equal1 Player 1

has the opportunity either to check that there are no two 1-counters on the top
of the stack (which is done with counter1), or to select a position where he thinks
that the counters differ. To do this he removes from the stack up to n letters in
order to reach a desired position. The bit value of this position is stored in the
control state and then exactly n + 1 letters are taken from the stack. Player 1
wins iff the letter on the top of the stack is different from the stored bit value;
otherwise Player 0 is the winner.

Similarly, in a configuration (succ1, u) Player 0 wins iff the two topmost 1-
counters represent successive numbers; more precisely when u has a suffix of
the form σ2vσ′

2v
′σ′′

2 with v, v′ ∈ (Σ1)
n representing consecutive numbers, and

σ2, σ
′
2, σ

′′
2 ∈ Σ2. As before Player 1 has an opportunity to check if the stack

does not end with two 1-counters. The other possibility is that Player 1 can
select a position where he thinks that the value is not right. First he can “pop”
any number of letters. During this process, the control state remembers whether
the letter b1 (which represents 1) has already been seen: because lowest bits are
popped first, as long as a1 are popped, we know the corresponding letter in the
other counter should be a b1. After the first b1, the letters should be the same
in the other counter. Then exactly n + 1 letters or popped (including σ′

2) and
Player 1 wins if the letter is not right; otherwise Player 0 wins.

Starting from a configuration (counter2, u) we want Player 0 to win iff on the
top of the stack there is a 2-counter; more precisely when u has a suffix σ3vσ′

3

6

with σ3, σ
′
3 ∈ Σ3 and v a 2-counter. A 2-counter is a sequence of 1-counters,

and the task of Player 1 is to show that u has no suffix of the right form. One
way to do this is to show that u does not end with a 1-counter or that this last
counter does not have value 2n − 1. This Player 1 can do with last1 test. Other-
wise Player 1 can decide to show that there is some part inside the hypothetical
2-counter that is not right. To do this he is allowed to take letters from the stack
up to some Σ2 letter at which point he can check that the two topmost counters
have wrong values (using test succ1). This test can be performed only if Player 0
does not claim that the counter on the top represents 0. If Player 0 claims this
then Player 1 can verify by using test first1. It should be clear that if u does
not end with a 2-counter then Player 1 can make the right choice of a test and
win. On the other hand if u indeed ends with a 2-counter then Player 0 wins
no matter what Player 1 chooses. Similarly we can define first2 and last2 from
which Player 0 wins iff the top of the store is a 2-counter representing values 0
and 22n

− 1 respectively.

Next we want to describe equal2 test for which we will need the power of 2-stores.
We want Player 0 to win from a configuration (equal2, u) iff there is a suffix of u

consisting of two 2-counters with the same value; more precisely a suffix of the
form σ3vσ′

3vσ′′
3 with v a 2-counter. If u does not end with two 2-counters then

Player 1 can check this with counter2 test and win. If u indeed ends with two
2-counters then Player 1 needs to show that the values of these counters differ.
For this he selects, by removing letters from the store, a position in the topmost
counter where he thinks that the difference occurs. So the store now finishes
with σvσ′, where σ, σ′ ∈ Σ2 and v is a 1-counter. Next Player 1 performs push2

operation which makes a “copy” of 1-store. The result is:

[u′σvσ′][u′σvσ′] .

It is then the turn of Player 0 to pop letters from the copy of the store in order
to find in the second counter the position with number v. We can be sure that
Player 0 stops at some position of the second counter by demanding that in the
process he pops precisely one letter from Σ3. After this the store has the form:

[u′σvσ′][u′′ρwρ′] .

From this configuration Player 0 wins iff v = w and σ′ = ρ′. This test can be
done in the same way as equal1 test.

Using similar techniques, it is also possible to define a test succ2 checking that
the two topmost 2-counters represent successive numbers (from [0, 22n

− 1]).

4.3 Counters of Higher Levels

As expected k-counters are defined by induction.

Definition 5 For all k > 1 a k-counter is a sequence of (k − 1)-counters of the
form:

σjℓj · · ·σ1ℓ1σ0ℓ0 ,

7

where j = Tower(k−1, n)−1, for all i ∈ [0, j] : σi ∈ Σk and ℓi is a (k−1)-counter

representing the number i. This k-counter represents the number
∑j

i=0 σi2
i.

To cope with k-counters, k-HPDS are needed. We want to define for all k > 2 a
k-HPDS with the control states with the following properties:

– from (counterk, u) Player 0 wins iff u ends with a k-counter;
– from (firstk, u), (lastk, u) Player 0 wins iff u ends with a k-counter repre-

senting 0 and the maximal value respectively;
– from (equalk, u) Player 0 wins iff the two last k-counters in u have the same

value;
– from (succk, u) Player 0 wins iff the two topmost k-counters represent suc-

cessive numbers.

This is done by induction on k, using hypotheses for lower levels as subpro-
cedures. For k = 1 and k = 2, we have shown the constructions in the previous
subsection. In the following we consider some k > 2 and explain now the con-
struction by induction.

Starting from a configuration (counterk, u) we want Player 0 to win iff on the
top of the stack there is a k-counter; more precisely that u has a suffix σk+1vσ′

k+1

with σk+1, σ
′
k+1 ∈ Σk+1 and v a k-counter. A k-counter is a sequence of (k− 1)-

counters, and the task of Player 1 is to show that u has no suffix of the right
form. One way to do this is to show that u does not end with a (k − 1)-counter
or that this last counter does not have value Tower(k − 1, n)− 1. This Player 1
can do with lastk−1 test. Otherwise Player 1 can decide to show that there is
some part inside the hypothetical k-counter that is not right. To do this he is
allowed to take letters from the stack up to some Σk letter at which point he
can check that the two consecutive topmost (k − 1)-counters have wrong values
(using test succk−1). This test can be performed only if Player 0 does not claim
that the counter on the top represents 0. If Player 0 claims this then Player 1
can verify by using test firstk−1. Similarly we can define firstk and lastk test.

Next we want to describe equalk test for which we will need the power of
k-stores. We want Player 0 to win from a configuration (equalk, u) iff there is
a suffix of u consisting of two k-counters with the same value; more precisely a
suffix of the form ξzξ′zξ′′ with z a k-counter and ξ, ξ, ξ′′ ∈ Σk+1. If u does not
end with two k-counters then Player 1 can check this with counterk test and win.
If u indeed ends with two k-counters then Player 1 needs to show that the values
of these counters differ. For this he selects, by removing letters from the store,
a position in the topmost counter where he thinks that the difference occurs. So
the store now finishes with σvσ′, where σ, σ′ ∈ Σk and v is a (k − 1)-counter.
Next Player 1 performs push2 operation which makes a “copy” of 1-store. The
result is of the form:

[u′ξzξ′z′σvσ′][u′ξzξ′z′σvσ′] .

This is a 2-store with two elements where z is a k-counter and z′ is a prefix of
a k-counter.

It is then the turn of Player 0 to pop letters from the copy of the store in
order to find in the second counter the position with number v. We can be sure

8

that Player 0 stops at some position of the second counter by demanding that
in the process he pops precisely one letter from Σk+1. After this the store has
the form:

[u′ξzξ′z′σvσ′][u′ξz′′ρwρ′] .

From this configuration Player 1 wins iff v 6= w or σ′ 6= ρ′. Checking σ′ 6= ρ′

is easy. The test whether v = w can be done in a similar way as equalk−1 test.
The difference is that now we have 2-store and equalk−1 works on 1-stores. We
elaborate the construction as this is the place where the power of k-stores really
comes into play.

We will construct states samei
k, for i < k, with the property that Player 0

wins in a configuration with a (k − i + 1)-store of the form

s[u〈rσvσ′〉][u′〈r′ρwρ′〉] .

iff σ′ = ρ′ and v = w is a i-counter. Here σ, σ′, ρ, ρ′ ∈ Σi+1, r, r′ are sequences of
letters, u, u′ are (k− i)-stores and s is a (k− i+1)-store. The notation 〈σvσ′〉 is
to denote the first 1-store in the given store, hence 〈 〉 stand for some number of
nested [] parentheses. The verification we need in the last paragraph is precisely
samek−1

k as there we have a 2-store and compare (k − 1)-counters.
It is quite straightforward to construct same1

k. Player 1 has the right to
declare that either σ′ 6= ρ′ or that the counters are not equal. Checking the
first case is straightforward. To show that the counters are different, Player 1
chooses j ≤ n and pops j letters from w using pop1. Then j and the top letter
are remembered in the control state. Afterward popk−1 is performed and once
more j letters are popped. Player 1 wins if the top letter is different from the
one stored in the finite control.

To construct samei
k for i > 1 we proceed as follows. Player 1 has the possi-

bility to check if σ′ = ρ′ as before. The other possibility is that he can pop1 some
number of letters finishing on a letter from Σi and without popping a letter from
Σi+1 in the process. The resulting configuration is of the form:

s[u〈rσvσ′〉][u′〈r′ρw′τxτ ′〉] .

The intuition is that Player 1 declares that at position x in v the value is different
than τ ′. Now pushk−i+2 is performed giving the configuration

[

s[u〈rσvσ′〉][u′〈r′ρw′τxτ ′〉]
] [

s[u〈rσvσ′〉][u′〈r′ρw′τxτ ′〉]
]

.

As we had (k − i + 1)-store before, now we have (k − i + 2)-store consisting of
two elements.

Next we let Player 0 to do popk−i and some number of pop1 operations to
get to the situation

[

s[u〈rσvσ′〉][u′〈r′ρw′τxτ ′〉]
] [

s[u〈rσv′γyγ′〉]
]

.

where he claims that x = y and τ ′ = γ′. This can be checked from samei−1
k

state.

9

The procedure succk is implemented similarly to equalk. Here it is not the
case that at each position in the counters bits should be the same. Nevertheless
the rule for deducing which bit it should be is easy and the difficult part of
comparing the positions is done using samek−1

k .

5 Encoding Turing Machines

In this section we will show how to encode computations of an expspace-
bounded Turing machine using 2-store. Then we will claim that the construction
generalizes to alternating k-expspace and (k + 1)-stores.

Fix M , an expspace-bounded alternating Turing machine (TM), as well as
an input word of length n. The set of control states of the TM is denoted Q. A
configuration of M is a word over ∆2 = {a2, b2} ∪ Q ∪ {⊢,⊣} of the form

⊢ u1 · · ·uiqui+1 · · ·uj ⊣

where q ∈ Q, ∀k : uk ∈ {a2, b2}. Here the TM is in state q, reading letter ui+1.
We will encode configurations of M almost in the form of 2-counters to write

them in the store of a HPDS. Let k = 2n. A configuration σ0σ1 · · ·σk−1 ∈ (∆2)
k

is represented by a word

ξσk−1ℓk−1 · · ·σ1ℓ1σ0ℓ0ξ ,

where for all i ∈ [0, 2n − 1]: σi ∈ ∆2, ℓi ∈ (Σ1)
n is a 1-counter representing the

number i, and ξ ∈ Σ3 is a separator.
A computation is represented as a string obtained by concatenation of config-

urations. The game will proceed as follows: departing from the initial configura-
tion of the Turing machine (the input word), Player 0 is in charge of building an
accepting run and Player 1 is in charge of checking that no error occurs. Player 0
simply writes letter by letter a configuration. If the state of the configuration
is existential then after writing down the configuration Player 0 writes also a
transition he wants to perform. Otherwise it is Player 1 who writes the transi-
tion. Then Player 0 continues with writing a next configuration that he claims
is the configuration obtained by the transition that was just written down. This
process continues until a configuration with a final state is reached. At the end
of writing each configuration Player 1 has the opportunity to check if the last
two configurations on the stack indeed follow from each other by the transition
that is written between them.

Let us describe some details of this construction. Applying a transition rule
of the Turing Machine consists in rewriting only three letters: ui, q and ui+1

in the notation of the example above. To check that the transition is legal, we
will proceed in several steps. After writing a configuration, ended by a separator
ξ ∈ Σ3, Player 0 has to write again the three letters uiqui+1. Then, depending
whether state q is existential or universal in the TM, Player 0 or Player 1 writes
three other letters of ∆2, say q′ac, such that (uiqui+1, q

′ac) is a transition rule
of the TM. The other player can test that this transition rule is indeed in the
TM.

10

After that Player 0 has to write down the configuration obtained by the cho-
sen transition, and Player 1 has the opportunity to test whether this is correct.
To do this he has several possibilities. First he can check that the newly written
configuration is of a correct form, using a test similar to counter2, replacing Σ2

by ∆2.
Otherwise he can check that this two last configurations are identical, except

for the part involved in the transition rule. The store at this point is:

s ξc1ξ uiqui+1q
′ac ξc2ξ ,

where s is a prefix of computation, c1 and c2 are the last two configurations
separated by the chosen transition. We describe a game from a state trans2

such that Player 0 wins from trans2 and the store as above iff the two topmost
configurations obey the transition rule written between them. The test trans2

has the same structure as the test equal2. Player 1 has first to pop letters to
select a position in the configuration, that is a 1-counter. Each time he wants
to pop next 1-counter he asks Player 0 if this position is the rightmost position
involved in the transition or not. If yes then Player 1 has to pop three counters at
the time, if not he pops one counter. Finally, Player 1 stops at a position where
he thinks that an error occurs. He asks Player 0 if this position is the rightmost
position of the transition. If Player 0 says that it is not then it is tested that at
the same position in the preceding configuration there is the same letter; this is
done in the same way as equal2 test.

If Player 0 claims that the chosen position is the rightmost position of the
ones involved in the transition then the test is slightly more complex. A push2

is performed and the store becomes

[s ξc1ξ uiqui+1q
′ac ξc′2 ρvρ′v′ρ′′v′′][s ξc1ξ uiqui+1q

′ac ξc′2 ρvρ′v′ρ′′v′′] ,

where c′2 is a prefix of c2, ρ, ρ′, ρ′′ ∈ ∆2 and v, v′, v′′ are 1-counters. Player 1 has
the opportunity to check that q′ac = ρρ′ρ′′, which is easy to implement. Player 1
has also the opportunity to let Player 0 find the position in c1 corresponding
to v′′ and then test that the corresponding letters from ∆2 are exactly uiqui+1;
this is implemented in a similar way as in equal2 test.

The game is won by Player 0 iff he can write an accepting configuration of
the TM without Player 1 ever challenging him, or if Player 1 fails in some test.
In other words the game is won by Player 1 iff he can prove that Player 0 was
cheating somewhere or if Player 0 never reaches an accepting configuration of the
TM. Examining the construction one can see that we need O(n2 + |M |) states
in 2-HPDS to carry out the described constructions. So we have a poly-time
reduction of the acceptance problem of alternating expspace Turing Machines
to the problem of determining the winner in a reachability game over a 2-HPDS.

Theorem 6 Reachability games on 2-HPDS are 2-exptime hard.

Together with the double exponential time solution of the more general parity
games from [2], we have:

11

Corollary 7 Reachability/parity games on 2-HPDS are complete for 2-exptime.

Using the constructions of Section 4.3, it is easy to extend the encoding above
and show that alternating k-expspace Turing Machines can be simulated by
(k + 1)-HPDS. Together with the results from [2] we get:

Theorem 8 Reachability/parity games on k-HPDS are complete for k-exptime.

This result gives also a new proof that the hierarchy of HPDA is strict, and
together with [2], that the Caucal hierarchy is also strict.

6 Conclusion

The k-exptime lower bound that we have proved in this paper shows that games
are difficult on HPDA, even the simplest ones : reachability games. Surprisingly
the complexity for solving parity games is the same as for reachability games. It
is open to find algorithms or lower bounds for the model checking of other logics
like CTL or LTL, that are weaker than the µ-calculus.

Acknowledgment

Many thanks to Luke Ong and Olivier Serre for interesting discussions.

References

1. A. Bouajjani and A. Meyer, Symbolic Reachability Analysis of Higher-Order

Context-Free Processes, FSTTCS’04, LNCS 3328, pp. 135–147, 2004.
2. T. Cachat, Higher order pushdown automata, the Caucal hierarchy of graphs and

parity games, ICALP’03, LNCS 2719, pp. 556–569, 2003.
3. A. Carayol, Regular Sets of Higher-Order Pushdown Stacks, MFCS’05, LNCS

3618, pp. 168–179, 2005.
4. A. Carayol and S. Wöhrle, The Caucal hierarchy of infinite graphs in terms of

logic and higher-order pushdown automata, FSTTCS’03, LNCS 2914, pp. 112–123,
2003

5. D. Caucal, On infinite terms having a decidable monadic theory, MFCS’02, LNCS
2420, pp. 165–176, 2002.

6. J. Engelfriet, Iterated push-down automata, 15th STOC, pp. 365–373, 1983.
7. J. Engelfriet, Iterated stack automata and complexity classes , Information and

Computation, 95(1), pp. 21–75, 1991.
8. E. Grädel, W. Thomas and T. Wilke eds., Automata, Logics, and Infinite

Games, A Guide to Current Research, LNCS 2500, 2002.
9. T. Knapik, D. Niwinski and P. Urzyczyn, Higher-order pushdown trees are

easy, FoSSaCS’02, LNCS 2303, pp. 205–222, 2002.
10. I. Walukiewicz, Pushdown processes: games and model checking, CAV’96, LNCS

1102, pp. 62–74, 1996. Full version in Information and Computation 164, pp. 234–
263, 2001.

11. I. Walukiewicz, Difficult configurations — On the complexity of LTrL,
ICALP’98, LNCS 1443, pp. 140–151, 1998.

12

