
HAL Id: hal-00144225
https://hal.science/hal-00144225v1

Submitted on 3 May 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Performance Evaluation for Clustering Algorithms in
Object-Oriented Database Systems

Jérôme Darmont, Amar Attoui, Michel Gourgand

To cite this version:
Jérôme Darmont, Amar Attoui, Michel Gourgand. Performance Evaluation for Clustering Algorithms
in Object-Oriented Database Systems. 6th International Conference on Database and Expert Systems
Applications (DEXA 1995), Sep 1995, London, United Kingdom. pp.187-196. �hal-00144225�

https://hal.science/hal-00144225v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


ha
l-

00
14

42
25

, v
er

si
on

 1
 -

 3
 M

ay
 2

00
7

Performance Evaluation for Clustering

Algorithms in Object-Oriented Database

Systems

Jérôme Darmont
Ammar Attoui

Michel Gourgand

Université Blaise Pascal – Clermont-Ferrand II, Laboratoire d’Informatique,
Complexe scientifique des Cézeaux, 63177 Aubière Cedex, France

Abstract. It is widely acknowledged that good object clustering is crit-
ical to the performance of object-oriented databases. However, object
clustering always involves some kind of overhead for the system. The
aim of this paper is to propose a modelling methodology in order to
evaluate the performances of different clustering policies. This method-
ology has been used to compare the performances of three clustering
algorithms found in the literature (Cactis, CK and ORION) that we
considered representative of the current research in the field of object
clustering. The actual performance evaluation was performed using sim-
ulation. Simulation experiments we performed showed that the Cactis
algorithm is better than the ORION algorithm and that the CK algo-
rithm totally outperforms both other algorithms in terms of response
time and clustering overhead.
Keywords: Clustering, Computer systems performance evaluation me-
thodology, Object-oriented databases, Simulation.

1 Introduction

Clustering is a technique that is widely used to improve the performances of
conventional Database Management Systems (DBMSs). Clustering means stor-
ing related objects close together on secondary storage so that when one object
is accessed from disk, all its related objects are also brought into memory. Then
access to these related objects is a main memory access that is much faster than
a disk access. With the arrival of Object-Oriented Databases (OODBs), exist-
ing clustering algorithms (mainly in the field of relational databases) had to be
adapted to the additional semantics (such as inheritance, etc.) introduced by
the object-oriented data models. It appeared that a good object clustering was
critical to the performance of OODBs [16]. The aim of this paper is to propose
a methodology in order to compare the performance of the different clustering
strategies that can be implemented in OODBs. Several methods can be used to
evaluate the performances of a DBMS. Benchmarks generally propose a standard
database and a series of operations that run on this database. Thus, performance
measurement directly depends on the reactions of the tested DBMS. Several



benchmarks have been specifically designed for object-oriented databases, like
the Synthetic Benchmark [15], the HyperModel Benchmark ([1], [4]), the OO1
Benchmark [6] or the CluB-0 Benchmark [2]. However, some OODB designers or
clustering algorithm authors prefer to use simulation ([8], [10], [13]), because sim-
ulation allows to specifically measure performance improvements due to one or
another clustering policy. [17] proposes a dual performance evaluation method,
performing simulations that use the database introduced by the CluB-0 Bench-
mark. One last way to determine the advantages of a given clustering method is
mathematical analysis as it is performed by [7]. This approach is however limited
because the obtained results are qualitative rather than quantitative and sharp
performance criteria cannot be extracted. The aim of the approach we suggest
to use is to propose a modelling methodology that allows to compare OODBs’
performances, and especially clustering strategies’ performances. Modelling may
lead either to simulation or to the application of exact analytical methods when-
ever possible. We applied our methodology to three object-oriented clustering
algorithms that are representative of the current research in the field of OODBs:
Cactis [14], CK [9] and ORION ([3], [15]). The main advantage of our approach
opposed to the use of benchmarks is that it allows, by providing a common en-
vironment, to specifically compare clustering algorithms, in a way that is totally
independent of any environment associated with the DBMSs that implement
the clustering algorithms we intend to compare. For instance, physical storage
methods and buffering strategies also influence the DBMS’ global performance.
Furthermore, our approach also allows to a priori study the behaviour of algo-
rithms (like CK) that are not implemented in any DBMS. Thus we can compare
their performances to those of already implemented algorithms. This paper is
organised as follows. We start by presenting the modelling methodology we used.
Section 3 is dedicated to our study: we apply our modelling methodology to ob-
tain a knowledge model and an action model. Then we present in Section 4 the
three studied clustering algorithms. The simulation results are given in Section 5.
We end this paper with a conclusion and a brief discussion about future research
directions.

2 Modelling Methodology

OODBs are complex systems. Modelling their behaviour may as well be a com-
plex task. This is the reason why we propose an approach dedicated to the
study of such systems. This modelling approach carry out a model according to
an iterative process [12]. This process is divided into four phases:

– Phase 1: analysis and formalizing of data, this system specification leads
to the design of the knowledge model; it is a crucial step in the modelling
process;

– Phase 2: translation of the knowledge model into an action model using a
formalism allowing its exploitation to provide performance criteria;

– Phase 3: exploitation of the action model to provide performance criteria;



– Phase 4: results interpretation and decisions about actions to perform on
the system.

The analysis approach of a system in order to model it is performed through
several steps:

– decomposition of the system to identify the different levels;
– decomposition of the system into three subsystems;
– logical subsystem specification;
– physical subsystem specification;
– decision subsystem specification;
– specification of the communications between the three subsystems.

Note: The system analysis must be iterative so that the same level of detail
is achieved for all the subsystems.

3 Study

We present in this section the application of the methodology we introduced
in the previous section to the domain of object-oriented databases. Though we
focus on the efficiency of clustering strategies, we do not make any reference in
this section to any precise clustering algorithm.

3.1 Knowledge Model

We need to describe in our model the execution of transactions on an object-
oriented database. We assimilated those transactions to flows running through
a system and thus designed a knowledge model using the SADT actigrams’
formalism. The domain analysis has been described by an entity-relationship
(E/R) model.

Logical Subsystem The logical subsystem specifies what are the flows that run
through the system. In the case of DBMSs, these flows are transactions flows.
The transactions are described on two levels: first, their type and then the steps
of their execution. The HyperModel Benchmark ([1], [4]) provides 20 different
types of transactions. From those 20, we have isolated and used 15 types of
transactions.

– Name Lookup: Retrieve a randomly selected object.
– Range Lookup: Fetch all the instances of a given class such that a given

attribute value is in a given range.
– Group Lookup: Given a randomly selected starting object, fetch all its de-

scendant versions (Group lookup along versions), all its component objects
(Group lookup along configuration) or all its equivalent objects (Group
lookup along equivalencies).



– Reference Lookup: It is a ”reverse” group lookup. Given a randomly selected
starting object, fetch either all its ancestor versions (Reference lookup along
versions) or its composite object (Reference lookup along configurations).

– Sequential scan: Fetch all the instances of a given class.

– Closure Traversal: Given a randomly selected starting object, follow one of
the three structural relationships (i.e., version, configuration or equivalence)
to a certain predefined depth; fetch the resulting object; the followed relation-
ship can be either always the same (Closure traversal along versions, config-
urations or equivalencies) or randomly selected (Random closure traversal).

The different steps in the execution of the transactions include the following
operations:

– select an object to access,

– access to the page number of the disk page containing an object,

– read or write a page on disk (i.e., perform an I/O),

– access to the attributes of an object,

– update an attribute value,

– place an object in a disk page.

Physical Subsystem The physical resources that make up the physical sub-
system are divided into two categories: active resources that perform some task
and passive resources that do not directly participate into any treatment but are
used by the active resources to perform their operations (Table 1).

Table 1. Active and Passive Resources

Active resources Passive resources

AR1 User Physical passive resources

AR2 Transactions Manager PR1 Main Processor

AR3 Object Manager PR2 Main Memory

AR4 Buffering Manager PR3 I/O Processor and Disk(s)

AR5 I/O Subsystem Logical passive resources

AR6 Clustering Manager PR4 Scheduler

Decision Subsystem The decision subsystem specifies what are the function-
ing or supervision rules in the DBMS. Each decision rule listed below as examples
(Table 2) is associated to an SADT activity and is also a method of an object
identified in the domain analysis.



Table 2. Decision Rules List

Rule code Rule designation Method of object

R1 Generate transaction Transaction

R2.1 Extract object Transaction

R2.2.1 Access page number Object

R2.2.2 Access page Page

R2.3 Perform operation Attribute

R3 Perform clustering Database

3.2 Action Model

We first translated our knowledge model in a generic action model. After being
validated, the generic action model has been instanced for each tested clustering
algorithm.

To implement our action model (in this case, a simulation model), we used
the QNAP2 (Queuing Network Analysis Package 2nd generation) software, ver-
sion 9.0. We selected this simulation language for several reasons:

– QNAP2 is a validated simulation tool;
– QNAP2 allows the use of an object-oriented approach (since version 6.0);
– QNAP2’s algorithmic language (derived from PASCAL) allows a relatively

easy implementation of such complex algorithms as clustering algorithms.

Our actual QNAP2 model’s main frame is presented in Fig. 1.

USER

TRANSACTION MGR.

BUFFERING MGR. CLUSTERING MGR.

I/O SUBSYSTEM

transactions

object requests new objects

object requests

page requests page writes

 cluster messages

Fig. 1. QNAP2 Simulation Model Structure

4 Studied Clustering Algorithms Presentation

4.1 Cactis

Cactis [14] is an object-oriented, multi-user DBMS developed at the University
of Colorado. It is designed to support applications that require rich data mod-
elling capabilities and the ability to specify functionally-defined data. The Cactis



clustering algorithm is designed to place objects that are frequently referenced
together into the same block (i.e., page, i.e., I/O unit) on secondary storage. In
order to improve the locality of data references, data is clustered on the basis of
usage patterns. A count of the total number of times each object in the database
is accessed is kept, as well as the number of times each relationship between ob-
jects in the process of attribute evaluation or marking out-of-date is crossed.
Then, the database is periodically reorganised on the basis of this information.
The database is packed into blocks using a greedy algorithm.

Note: This clustering algorithm is also implemented in the Zeitgeist system
[11].

4.2 ORION

ORION ([3], [15]) is a series of next-generation database systems that have
been prototyped at MCC (Microelectronics Computer Technology Corp.) as
vehicles for research into the next-generation database architecture and into
the integration of programming languages and databases. ORION has been de-
signed for Artificial Intelligence (AI), Computer-Aided Design and Manufactur-
ing (CAD/CAM) and Office Information System (IOS) applications. ORION
supports only a simple clustering scheme. Instances of the same class are clus-
tered in the same physical segment (i.e., a number of blocks or pages). Each class
is associated with one single segment. Composite objects may also be clustered
in multi-classes segments. User assistance is required to determine which classes
should share the segment. The user can dynamically issue a Cluster message
containing a ”ListOfClassNames” argument specifying the classes that are to be
placed in the same segment.

4.3 CK

The CK [9] algorithm (from its authors’ names: Chang and Katz) is defined in the
CAD/CAM context. It is not yet implemented in any OODB. The CK algorithm
is based on a particular inheritance link called instance-to-instance and inter-
objects access frequencies (given by the user at data type creation time) for each
kind of structural relationship (i.e., versions, configurations and equivalencies).
These access frequencies and a computation of the costs of instance-to-instance
inherited attributes give the page where a new object has to be placed. [5]
The concept of instance-to-instance inheritance is an extension of the classical
inheritance relationship (the IS-A relationship). Instance-to-instance inheritance
not only transfers the existence of attributes from one object to another (like type
inheritance), but moreover the values of these attributes. For example, instance-
to-instance inheritance is important in computer-aided design databases, since
a new version tends to resemble its immediate ancestor. It is useful if a new
version can inherit its attributes values, and more importantly its constraints,
from its ancestor.



5 Simulation Results

Due to a lack of space, we present in this section only a few simulation results
concerning the effects of the database size on the performances. Database size
directly influence DBMSs’ performances, and in particular clustering algorithms’
performances. In this series of simulations, we varied the database initial size,
i.e., the database size before simulation (before new instances are created). Mean
response time for each clustering algorithm is given by Fig. 2. Fig. 2 shows in-
deed that Cactis is better than ORION (2.5 times better). The CK algorithm
performances are far greater that those of Cactis and ORION (they are 1,100
times better that those of Cactis). This big difference in scale explains why the
results concerning CK do not appear clearly on the graph.

Database inital size (number of objects)

Re
spo
nse
 tim
e (
ms
)

0
500000
1000000
1500000
2000000
2500000

100 200 400 600 800 1000

Cactis
ORION
CK

Fig. 2. Mean Response Time function of Database Initial Size

These results can be explained by looking at the mean number of I/Os (both
transactions I/Os and clustering I/O overhead) function of the database initial
size (Figs. 3 and 4). Transactions I/Os giving an idea of how well a clustering
algorithm places the objects, we can deduce from Fig. 3 that objects are better
clustered by CK and Cactis than by ORION (2.2 times better for Cactis). Cactis
even appears to be slightly better (1.3 times) than CK.

Database initial size (number of objects)

Tr
an
sac
tio
ns 
I/O
s

0
50000
100000
150000
200000

100 200 400 600 800 1000

Cactis
ORION
CK

Fig. 3. Mean Number of Transaction I/O function of Database Initial Size

The fact that Cactis seems to cluster objects better than CK but shows
worse overall performances can be explained by looking at Fig. 4. It shows that
clustering overhead is 7,000 times greater for Cactis than for CK (clustering
overhead for ORION being 1.4 times greater than for Cactis).



Database initial size (number of objects)

Cl
ust
eri
ng
 I/O
 ov
erh
ead

0
200000
400000
600000
800000

100 200 400 600 800 1000

Cactis
ORION
CK

Fig. 4. Mean Number of Clustering I/O function of Database Initial Size

Such an outstanding performance is due to the true dynamic nature of CK,
which is called only at object creation time and only accesses the object to
cluster related objects, and not to the whole database as Cactis and ORION.
Variations in clustering overhead come from variations in the number of created
objects.

In terms of disk space, we expected the more sophisticated algorithm to use
more space. Actually, the more a clustering algorithm is complex (i.e., the more
it clusters object according to precise rules), the less a large number of objects
are likely to share the same physical space (either page or segment). The mean
number of disk pages used (Fig. 5), as expected, is higher for the more complex
algorithms, i.e., CK needs 1.7 times as many pages as Cactis and Cactis needs
2.8 times as many pages as ORION, for which number of pages increases linearly.

Database initial size (number of objects)

Nu
mb
er 
of 
pa
ges

0
200
400
600
800
1000
1200

100 200 400 600 800 1000

Cactis
ORION
CK

Fig. 5. Mean Number of Pages function of Database Initial Size

6 Conclusions

It is clear from our simulation experiments that the CK algorithm outperforms
both Cactis and ORION in terms of overall performance. The results we ob-
tained showed that this is due to both a good clustering capability and to the
dynamic conception of the algorithm that allow an extremely low clustering
overhead. Such a good behaviour is achieved because the CK algorithm is ac-
tivated only at object creation time and only accesses the few objects that are



related to the newly created object. Therefore, transactions are never blocked
very long during clustering, as they are when the Cactis or the ORION algorithm
is used. (The Cactis and ORION algorithms have to access all the objects in the
database, even several times in the case of ORION, to reorganise the database;
and transactions cannot be run when a reorganisation occurs.) CK good cluster-
ing capability is based on the users’ hints that specify the inter-objects access
frequencies for each structural relationship and thus allows to cluster together
objects that are likely to be accessed together. Our simulations showed too that
Cactis had also a good clustering capability. This is due to the use of statistics
(i.e., objects access frequencies and relationships use frequencies) that allow to
cluster together objects that are actually accessed together. Though, the Cactis
algorithm is still completely outperformed by the CK algorithm. This is because,
when using Cactis, clustering overhead increases very quickly with the number
of objects, thus annihilating any gain achieved from good clustering capability.
However, we have to keep in mind that this algorithm has been designed to run
when the database is idle so that reclustering does not alter the database per-
formance. Hence, if clustering overhead was not taken into account, the Cactis
algorithm should perform about as well as CK algorithm as long as the statis-
tics used during the last reorganisation are pertinent. In terms of disk space, the
ORION algorithm seems the less greedy algorithm. Then the Cactis algorithm
follows, using almost half the number of disk pages needed by CK to cluster
the database. However, when reorganising the database, the Cactis and ORION
algorithms need to build a new set of pages before deleting the former. Thus
they require about twice as much space as our graphs show. Hence, Cactis and
CK are almost equivalent, ORION remaining the less greedy algorithm in terms
of disk space.

We have presented in this paper a methodology allowing the design of a tool
enabling the a priori study or a posteriori comparison of the performances of
clustering algorithms. This tool may be re-used since it is very easy to instance
our generic action model with other clustering policies than those we chose to
study. This tool may also be modified. It is particularly interesting in future
developments to take into account buffering management strategies because it is
mostly the use of both clustering and buffering techniques rather than clustering
techniques alone that are found in the literature when speaking of performance
improvement. Our modelling methodology itself may also be re-used to model
either another environment, or to build models designed to test the performances
of other components of an OODB, or even to a priori model the global behaviour
of a DBMS in order to determine some management strategies to use.

References

1. T.L. Anderson, A.J. Berre, M. Mallison, H.H. Porter III, B. Scheider: The Hyper-
Model Benchmark. International Conference on Extending Database Technology,
Venise, Italie, March 1990

2. F. Bancilhon, C. Delobel, P. Kanellakis: Building an Object-Oriented Database
System: The Story of O2. Morgan Kaufmann Publishers, 1992



3. J. Banerjee, H.-T. Chou, J.F. Garza, W. Kim, D. Woelk, N. Ballou, H.-J. Kim:
Data Model Issues for Object-Oriented Applications. ACM Transactions on Office
Information Systems, Vol. 5, No. 1, January 1987

4. A.J. Berre, T.L. Anderson: The HyperModel Benchmark for Evaluating Object-
Oriented Databases. In ”Object-Oriented Databases with Applications to CASE,
Networks and VLSI CAD”, edited by R. Gupta and E. Horowitz, Prentice Hall
Series in Data and Knowledge Base Systems, 1991

5. F. Bullat: Regroupement physique d’objets dans les bases de données. To appear in
ISI, Vol. 3, No. 4, September 1995

6. R.G.G. Cattell: An Engineering Database Benchmark. In ”The Benchmark Hand-
book for Database Transaction Processing Systems”, edited by Jim Gray, Morgan
Kaufmann Publishers, 1991

7. S. Chabridon, J.-C. Liao, Y. Ma, L. Gruenwald: Clustering Techniques for Object-
Oriented Database Systems. 38th IEEE Computer Society International Conference,
San Francisco, February 1993

8. E.E. Chang, R.H. Katz: Exploiting Inheritance and Structure Semantics for Effec-
tive Clustering and Buffering in an Object-Oriented DBMS. ACM SIGMOD Inter-
national Conference on Management of Data, Portland, Oregon, June 1989

9. E.E. Chang, R.H. Katz: Inheritance in computer-aided design databases: semantics
and implementation issues. CAD, Vol. 22, No. 8, October 1990

10. J.R. Cheng, A.R. Hurson: Effective clustering of complex objects in object-oriented
databases. ACM SIGMOD International Conference on Management of Data, Den-
ver, Colorado, May 1991

11. S. Ford, J. Joseph, D.E. Langworthy, D.F. Lively, G. Pathak, E.R. Perez, R.W.
Peterson, D.M. Sparacin, S.M. Thatte, D.L. Wells, S. Agarwala: ZEITGEIST:
Database Support for Object-Oriented Programming. 2nd International Workshop
on Object-Oriented Database Systems, Bad Münster am Stein-Ebernburg, FRG,
September 1988

12. M. Gourgand, P. Kellert: Conception d’un Environnement de Modélisation des
Systèmes de Production. 3rd Industrial Engineering International Congress, Tours,
France, March 1991

13. M. He, A.R. Hurson, L.L. Miller, D. Sheth: An Efficient Storage Protocol for
Distributed Object-Oriented Databases. IEEE Parallel & Distributed Processing,
1993

14. S.E. Hudson, R. King: Cactis: A Self-Adaptive Concurrent Implementation of an
Object-Oriented Database Management System. ACM Transactions on Database
Systems, Vol. 14, No. 3, September 1989

15. W. Kim, J.F. Garza, N. Ballou, D. Woelk: Architecture of the ORION Next-
Generation Database System. IEEE Transactions on Knowledge and Data Engi-
neering, Vol. 2, No. 1, March 1990

16. M.M. Tsangaris, J.F. Naughton: A Stochastic Approach for Clustering in Object
Bases. ACM SIGMOD International Conference on Management of Data, Denver,
Colorado, May 1991

17. M.M. Tsangaris, J.F. Naughton: On the Performance of Object Clustering Tech-
niques. ACM SIGMOD International Conference on Management of Data, San
Diego, California, June 1992

This article was processed using the LATEX macro package with LLNCS style


