
HAL Id: hal-00144178
https://hal.science/hal-00144178v1

Submitted on 2 May 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Intruders with Caps
Siva Anantharaman, Paliath Narendran, Michaël Rusinowitch

To cite this version:
Siva Anantharaman, Paliath Narendran, Michaël Rusinowitch. Intruders with Caps. 2007. �hal-
00144178�

https://hal.science/hal-00144178v1
https://hal.archives-ouvertes.fr

Intruders with Caps

S. ANANTHARAMAN, LIFO, Orléans (Fr.)
P. NARENDRAN, SUNY at Albany-NY (USA)

M. RUSINOWITCH, LORIA, Nancy (Fr.)

Rapport No 2007-02

Intruders with Caps

Siva Anantharaman1 and Paliath Narendran2 and Michael Rusinowitch3

1 LIFO - Universit d’Orleans (France), e-mail: siva@univ-orleans.fr
2 University at Albany–SUNY (USA), e-mail: dran@cs.albany.edu

3 Loria-INRIA Lorraine, Nancy (France), e-mail: rusi@loria.fr

Abstract

In the analysis of cryptographic protocols, a treacherous set of terms is one from
which an intruder can get access to what was intended to be secret, by adding on to
the top of a sequence of elements of this set, a cap formed of symbols legally part of
his/her knowledge. In this paper, we give sufficient conditions on the rewrite system
modeling the intruder’s abilities, such as using encryption and decryption functions, to
ensure that it is decidable if such caps exist. The following classes of intruder systems
are studied: linear, dwindling, Δ-strong, and optimally reducing; and depending on
the class considered, the cap problem (“find a cap for a given set of terms”) is shown
respectively to be in P, NP-complete, decidable, and undecidable.

1 Introduction

Cryptography has been applied to render communications secure over an insecure network
for many years. However, the underlying difficulties in properly designing cryptographic
protocols are reflected by repeated discovery of logical bugs in these protocols. As an
attempt to solve the problem, there has been a sustained and successful effort to devise
formal methods for specifying and verifying the security goals of cryptoprotocols. Various
symbolic approaches have been proposed to represent protocols and reason about them,
and to attempt to verify security properties such as confidentiality and authenticity, or
to discover bugs. Such approaches include process algebra, model-checking, modal logics,
equational reasoning, and resolution theorem-proving (e.g. [23, 2, 9, 4]).

In particular, string rewrite systems have provided one of the first formal treatments
of security protocol analysis [15], by modeling encryption and decryption as abstract
operators. In such a setting, the secrecy property – i.e., whether a message can be deduced
by the intruder from observed communications – can be reduced to the so-called extended
word problems. The approach has been generalized to more realistic protocols by employing
term rewrite rules [16, 12, 21], in particular modeling the capabilities of the intruder in
terms of a convergent term rewrite system (TRS, for short); more elaborate primitives can
be obtained that way. In the analysis of cryptographic protocols using such an approach,
the general cap problem (that we shall define shortly), formally models the possibility that
a passive intruder gets hold of a secret m, by using – and possibly re-using – some of
the non-public terms that (s)he captures, e.g., by eavesdropping, during a given protocol
session. The issue addressed in this paper is how general the (convergent) TRS modeling

2

the intruder’s capabilities can be, so as to get tractable decision procedures for solving
this problem.

This paper is structured as follows: In Section 2, after some preliminaries. we formally
define the general cap problem, as well as a simpler variant called just the cap problem.
Section 3 shows in some detail how these cap problems can be applied to the formal
security analysis of protocols. In Section 4, the cap problem is shown to be decidable
for optimally reducing string rewrite systems. Section 5 studies the cap problem for
(convergent) dwindling TRS R; it is shown to be decidable in polynomial time; if the
TRS R is assumed left-linear in addition, then we show that the set of all irreducible
treacherous terms is a regular tree language. Section 6 establishes the undecidability
of the cap problem for (convergent) linear, optimally reducing TRS, by reduction from
the halting problem for 2-counter machines. In Section 7, we turn our attention to the
general cap problem and show that it is NP-complete for special or dwindling TRS. The
general cap problem is then studied with respect to a class of rewrite systems R called
Δ-strong, that extends the class of dwindling systems, and the decidability of the general
cap problem wrt such systems R is shown (Section 8); possible applications are that
of modeling homomorphic encryption and the blind signature protocol; a slightly more
general notion, called ωΔ-strong, is developed in a subsection. The concluding section
compares our work with related works, and presents a few possible directions for future
work. Appendix-I shows that the cap problem may be decidable for intruder systems R
for which semantic unification is undecidable; and Appendix-II shows that the complexity
of the general cap problem is non-primitive recursive, for Δ-strong intruder theories.

2 Notation and Preliminaries

We assume that the reader is familiar with the well-known notions of terms, rewrite rules
and rewrite systems over a given (ranked) signature Σ, and a (possibly infinite) set of
variables X . For any term t, the set of all its positions will be denoted as Pos(t); if
q ∈ Pos(t) then t|q will denote the subterm of t at position q; and following Huet [18],
the term obtained from t by replacing the subterm t|q by a term t′ will be denoted as
t[q ← t′]. A similar notation will also be used for the substitution of variables in t by
terms. The notions of reduction and of normalization of a term by a rewrite system are
assumed familiar too, as well as those of termination and of confluence of the reduction
relation defined by such a system on terms. A rewrite system is said to be convergent iff
the reduction relation it defines on the set of terms is terminating and confluent.

The Cap Problems: Let R be any convergent TRS over some ranked signature Σ and
a variable set X . We assume a ground constant m ∈ Σ, referred to as the secret, and a
subset G of Σ�{m} referred to as the intruder repertoire or public symbols. It is assumed
that G contains all the root symbols of the left hand sides of all the rules in R and at least
one constant, and also that m appears nowhere in the rules of R. (“R is free from m”).
Symbols which are not in the intruder repertoire are often referred to as private symbols.
A term that contains only public symbols (and variables) will be said to be a public term;
it is said to be private, or non-public, otherwise.

We then extend the signature by adding a set {�, �′, �′′, · · · }, of special variables referred
to as hole variables, or just holes; the symbols �, �1, �2, · · · (with or without primes) will

3

be used to designate any of the hole variables. A cap, or a cap-term, is then defined as a
public term such that the only variables in it are hole variables. Caps are often represented
as t(�1, . . . , �n), where the �i, 1 ≤ i ≤ n, are the distinct hole variables of t, each of which
may occur more than once. A cap with exactly one hole variable occurrence, at a position
q, is often more conveniently denoted as t[]q. The problem referred to in this paper as the
general cap problem, is the following:

Instance: A convergent TRS R with the properties mentioned above, an intruder reper-
toire G, and a finite set S of non-public ground terms over Σ, at least one of which
contains the secret m.

Question: Is there a cap t(�1, . . . , �n) over the intruder repertoire G, such that a term
t[�1 ← s1, · · · , �n ← sn], with the si ∈ S (not necessarily all distinct), can be
R-reduced to m?

If this question admits a positive answer, the multiset {s1, · · · , sn}, as well as the set S
itself, will be said to be treacherous, wrt R. The following simpler version of the problem,
where the cap has just one hole variable occurrence, is referred to as the cap problem in
the sequel:

Instance’: A convergent TRS R with the properties mentioned above, an intruder reper-
toire G. and a ground term s containing the secret m.

Question’: Is there a cap t[]q over the intruder repertoire G, such that the term t[q ← s]
reduces to m?

This simpler version models the possibility that the intruder gets hold of m without
re-using any of the intermediary terms captured during a protocol session. The general
cap problem will be studied only in the later sections of this paper. We shall first study the
(simpler version of the) cap problem, for the following classes of rewrite systems R: string
rewrite systems that are either special or optimally reducing, and term rewrite systems
that are either dwindling or optimally reducing. These notions are formally defined as
follows:

i) R is special (or pure) iff the rhs of every rule in R is a variable.

ii) R is dwindling iff, for every rule l → r ∈ R, r is a proper subterm of l.

iii) R is optimally reducing iff, for every l → r ∈ R, and for any substitution θ on
X for which θ(r) is reducible, there is a proper subterm s of l such that θ(s) is
reducible1.

The reason for considering these classes is that, in the formal models of several pro-
tocols, term rewrite systems that model the intruder capabilities often belong to these
classes. Note that the above three notions are decreasingly restrictive. It is decidable
whether a given TRS R is optimally reducing: a non-deterministic polynomial time deci-
sion procedure is given in [20]; it is also shown there that unification modulo a convergent
optimally reducing TRS R is decidable, by innermost narrowing.

Recall that a string rewrite system over an alphabet Σ can be seen as the particular
case of TRS where the symbols in Σ are all of rank 1. For redactional reasons, we shall

1This notion was first introduced in [20], and has been extended recently in [11].

4

agree to view, in the sequel, any string u over Σ as a term over one variable derived from
the reversed string of u; i.e., if g, h ∈ Σ the string gh will be seen as the term h(g(x)).

That agreed upon, the above three notions on TRS can be reformulated for string
rewrite systems, as follows: a string rewrite system T is special iff the rhs of each rule in
T is the empty string; T is dwindling iff, for every rule l → r in T , the rhs r is a proper
prefix of its lhs l; and T is optimally reducing, iff the following holds:

For every rule ub → v in T , with u, v ∈ Σ∗, and b ∈ Σ, and for all strings z,
if zv is reducible then so is zu.

3 Security Analysis and the Cap Problem

In this section, we show briefly how the cap problem appears naturally in the formal
analysis of protocol (or system) security. In many approaches, the protocol (or the system’s
capacity) is modeled either in terms of suitable Horn clauses (e.g. [23, 4]), or as a multiset
rewrite system (e.g. [16]); and the intruder capabilities are modeled as a rewrite system
which is in general special (e.g. [21]).

3.1 String Case

We shall consider first the approach initiated by Dolev and Yao [15] in 1983, for the
security analysis of some two-party public key protocols. In this model honest parties are
stateless: the messages transmitted by a party at every step of the protocol are a function
of the message they just received and there is no control on the received messages. More
precisely, the protocols are represented as sequences of strings on an alphabet of unary
operators. The i-th string is added as a cap (i.e., applied as a function) to the i-th received
message, in order to determine the next message that is transmitted in the network.

On the other hand, the adversary is assumed to have total control of the network.
In particular (s)he can interfere with the concurrent execution of an arbitrary number
of protocol executions. The goal of the adversary is to recover some message M. Un-
der this execution model the adversary has access to some encryption/decryption (also
append/delete namestamp) functions – that (s)he can apply to the circulating messages
of his/her choice. These functions are modeled as a convergent system of special string
rewrite rules R. Since the intruder can impersonate honest parties (s)he can also apply
protocol strings to messages (s)he has in his/her possession. It can be shown that the set
of messages the intruder can generate in such a manner is a regular language.

The 2-party protocols considered in [15] were defined formally as insecure if and only
if a certain initial message exchanged between the parties can be normalized to the empty
string by the intruder rewrite system R, by successively adding on caps to the initial
message, where each cap is built by using the intruder capabilities. It was observed by
Book and Otto (e.g., [7]), that the main technical result behind the Dolev-Yao result can
be formulated as follows:

Let R be a convergent special string rewrite system. Then for any regular language
L, the set of all descendants of strings from L, i.e., {x | ∃y ∈ L : y →∗ x}, is a regular
language. A non-deterministic finite automaton (NFA) accepting this language can
be constructed in time polynomial in the total size of R and the size of the NFA.

5

3.2 Term Case

When considering cryptographic protocols defined with operators of arity greater than 1,
the extension of cap problems from strings to terms is still relevant for security analysis.
Our approach is basically motivated by the logical approach to security where protocol
rules, from the intruder’s point of view, are modeled using Horn clauses (e.g. [23]) or
deduction rules (e.g. [22]).

Consider the following elementary ping-pong protocol introduced in [15]:

A → B: A,B, {M}kb

B → A: B,A, {M}ka

An intruder impersonating B can mount the following easy attack:

A → I(B): A,B, {M}kb

I → B: I,B, {M}kb

B → I: I,B, {M}ki

This can be expressed using encryption and decryption functions e and d respectively
and with kb and ki as the keys of B and I respectively. The intruder’s initial knowledge
includes b, i, kb, ki. At the end of the protocol I gets e(d(e(m,kb)), kb), ki). Modulo the
convergent term rewrite system I, consisting of the following rules:

d(e(y, u), u) → y

e(d(y, u), u) → y

this is equivalent to e(m,ki). However, this still has not shown that the intruder can get
hold of m. For that we have to find a suitable cap for e(m,ki) so that the capped term
will normalize to m.

For the case where messages are terms, we shall assume that the intruder has been able
to capture some messages from the protocol (we do not study further how the intruder has
interacted with the protocol to get these messages). We will rather focus on the problem
of finding caps, and on its complexity, for given intruder knowledge, and given secret. The
cap problem is equivalent to what is considered in the literature as a security problem
in presence of a passive intruder. (It is sometimes referred to as the deduction problem,
e.g., [1]).

4 The Cap Problem in the String case

As we mentioned earlier (Section 3.1), in the string case the functioning of the protocol is
modeled as a regular word grammar, over some given alphabet Σ; the intruder is assumed
active: (s)he is allowed to use the protocol rules for capturing the secret; and the system
R modeling the intruder capabilities is assumed convergent. We have then the following
extension of the cap problem, which is known to be equivalent to protocol insecurity in
this case (of an active Dolev-Yao intruder):

Proposition 1 The following problem is decidable:

6

Instance: An optimally reducing convergent string rewrite system R over an alphabet Σ,
an R-irreducible string α, and a regular language L ⊆ Σ∗.

Question: Is there a string β ∈ L such that αβ →∗
R λ (the empty string) ?

Proof : Define L′ = α.L; then there exists a β ∈ L such that α.β →∗
R λ, iff λ ∈ R!(L′) =

the set of all R-irreducible descendants of L′. The above proposition can thus be derived
by showing that, for any regular language L over Σ, the set R!(L) of all R-irreducible
descendants of L is a regular language too. This is done in the following 3 lemmas.

Lemma 1 Let R be an optimally reducing convergent string rewrite system over the al-
phabet Σ. Then every congruence class modulo R is a deterministic context-free language.

Proof : A deterministic push-down automaton (DPDA) can be constructed for each
congruence class. We describe the DPDA in terms of the following transition system on
tuples from Σ∗ × Σ. The first component of the tuple has the contents of the stack from
bottom to top, and the second component has the current tape symbol. The main loop
invariant is that the stack contains an irreducible string – in particular the normal form
of the string read so far:

(w, a) 	→ (wa, ε) if no suffix of wa is a redex.
(xl′, a) 	→ (xr, ε) if l′a → r is a rule

Checking the condition – whether attaching the tape symbol to the stack contents will
create a redex – can be incorporated into the finite control of the DPDA; e.g., by building
a trie of all the left-hand sides.

Lemma 2 Let R be an optimally reducing convergent string rewrite system over the al-
phabet Σ and let # be a symbol not in Σ. Then the language

{x#y | x, y ∈ Σ∗, yrev is R-irreducible, x →!
R yrev}

is context-free. (yrev is the reverse string of y.)

Proof : The main idea is the same as in the proof of the previous lemma. We construct
a DPDA that will scan an input string of the form x#y from left to right, and will have
the normal form of x in the stack when it reaches the tape cell that contains the # symbol.
From then on, the machine pops the stack when the symbol at its top and the tape symbol
agree.

Lemma 3 Let R be an optimally reducing convergent string rewrite system over the al-
phabet Σ, and let L ⊆ Σ∗ be a regular language. Then the language R!(L) = {u | ∃v ∈ L :
v →! u} is a regular language.

Proof : This follows from the preceding lemma, and the proof is essentially the same
as that of Theorem 2.5 in [6].

7

5 Deciding the Cap Problem for dwindling TRS

We give here a recursive algorithm for solving the cap problem, under the assumption that
the given TRS R is dwindling. With the notation of Section 2, we can assume without
loss of generality that both the given term s (containing the secret m) and the cap to be
found are R-irreducible. Suppose t[]q is a minimal cap, that allows one to deduce m, and
let t′ = t[q ← s]. Let p be the innermost position where t′ is reducible by a rule, say l → r.
Clearly we have p ≺ q (for the prefix-ordering ‘�’ on positions). Thus t′|p = σ(l) for some
substitution σ. Let p′ be a position in l such that l|p′ = r; then σ(l)|p′ = σ(r), and t′|p·p′
= σ(r). Now two cases have to be considered.

Case (i) p · p′ � q: In this case t′|p reduces to t′|p·p′. Hence t[p ← t|p·p′]q will be a
smaller cap (with a hole at some position above q), so this case need not be considered.
The sub-case where p · p′ = q for every possible redex is one where there is no cap, and
one exits with failure.

q

p
p.p’

t

s

Case (ii) q ≺ p · p′: Let q = p · q′ and p′ = q′ · q′′. We have here: q′ ≺ p′, σ(l|q′) = s.
And σ(l) reduces to s|q′′ which is a proper subterm of s. Thus s allows us to deduce m if
and only if s|q′′ does so too.

s

p

q

p . p’

t

Note that the case where p · p′ and q are incomparable need not be considered since
the cap is assumed irreducible (and cannot contain any occurrence of m). We thus derive
a procedure for checking whether a term is treacherous:

1. If s = m RETURN true;
else non-deterministically choose a rule l → r and a proper subterm
l′ of l that is a proper superterm of r; let l′ = l|q.

2. Let θ = mgu(s =? l′).

3. If θ(l[q ← �]) has symbols which are not in the intruder repertoire,
or if θ(r) does not contain m, then fail;

else set s := θ(r) and GOTO 1.

8

This can also be done in a bottom-up (dynamic programming-like) way. Clearly m
itself is treacherous. Now suppose all proper subterms of s have been tested for treachery
and the results recorded. This is tantamount to annotating each subterm by T or F
depending on whether it is treacherous or not. Testing whether s itself is treacherous can
then be done by modifying Step 3 above to:

3bis. If θ(l[q ← �]) has symbols which are not in the intruder repertoire, fail;
else check whether s := θ(r) is treacherous: if yes RETURN true else fail.

Making this deterministic requires that each such l′ be tried in Step 1. This could take
O(|R||s|) time in the worst case, where |R| is the total size of the term rewrite system.
Thus the total complexity is O(|R||s|2).

5.1 Case of Left-linear dwindling TRS: a Regularity Result

When the TRS is also left-linear, we can derive a more precise result about the set of all
irreducible treacherous terms. Observe first that the linearity of the lhs of the rules in R
allows us to reformulate the above algorithm, as follows:

1’. Non-deterministically choose a rule l → r and a proper subterm l′ = l|q of l, that
is a proper superterm of r, with the additional property that (l[q ← �]) has all its
symbols inside the intruder repertoire.

2’. Let θ = mgu(s =? l′).

3’. Set s := θ(r), and GOTO 1’.

Proposition 2 Let R be a left-linear, dwindling and convergent TRS. Then the set of all
irreducible treacherous terms, wrt R, is a regular tree language.

Before proving this proposition, let us observe that the hypothesis of left-linearity is
essential, as the following example shows: consider the special TRS formed of the unique
rule f(g(x, x, y)) → y where f is public; then, clearly g(t1, t2,m) is treacherous if and only
if t1 = t2. Note also that the hypothesis of irreducibility is also needed, as is seen with the
example of the string rewrite system with a single rule f g → λ; the set of all treacherous
terms here is non-regular, since its intersection with f∗g∗ is the language {fn gm | n ≥ m};
but the set of all irreducible treacherous terms is {fn | n ≥ 0} = f∗.

The above proposition is proved via the following lines of reasoning:

(i) we construct a regular tree grammar G that generates a subset of the set of all
treacherous terms wrt R, which includes all irreducible treacherous terms;

(ii) since R is assumed left-linear, the set IRR(R) of all ground terms in R-normal form
is known to be a regular tree language (cf. e.g., [17]);

(iii) The set of all irreducible treacherous terms is then obtained as the intersection of
the language of G with IRR(R).

9

Proof of Proposition 2: We construct a regular tree grammar that generates a subset
of all terms that are treacherous wrt R. The underlying idea comes from the simplified
version of the algorithm, given above, for finding minimal caps.

Let {li → ri | 1 ≤ i ≤ N} be the set of all rules of the given dwindling TRS R. Let
k be the maximum depth of left-hand sides of R, and let Π be the set of all positional

sequences of length k or less; i.e., Π =
k
∪

i=0
{1, . . . , α}i where α is the maximum arity of the

function symbols in R.

Let T be the set of non-variable proper subterms of the left-hand-sides of R; i.e., T =
{ li|u | li ∈ lhs(R), u �= ε, u is not a variable position of li }. And let

T1 = { li|u | li|u ∈ T, (li[u ← �]) ∈ T (G ∪ {�},X) and
T2 = { li|u | li|u ∈ T1, ri is a proper subterm of li|u}.

In other words, T2 consists of the subterms li|u at non-root positions of the left-hand
sides of R such that

– li|u is also a proper superterm of ri,

– all the symbols of the term (li[u ← �]) are in the intruder repertoire.

We now define the production rules of the regular tree grammar G. The non-terminals
of G are defined as the elements of the set {0, 1} × {1, . . . , N} ×Π×Π× {0, 1} × 2T . The
first component stands for whether m occurs in the term. The second component stands
for the number of the “current rule” in R. The third and fourth are positions in the lhs of
the current rule. The fifth denotes whether the current term is a treacherous term. The
sixth is a set of terms with the property that the current term generated is an instance of
every one of them.

The axioms of the grammar are defined as the non-terminals of the set:

{ (1, j, v, p, 1, {lj |v}) | lj|v ∈ T2, rj = lj|v·p }

The production rules of the tree grammar are grouped into four different types, as indicated
below; the symbol ‘ ? ’ and ‘×’ respectively stand for “don’t-know” and “don’t-care”; and
‘×’ is allowed to take any value, other than ‘ ? ’, that is appropriate to the context:

Type (i) – the current term is a treacherous term:

(1, j, v, p, 1,Γ) → f((b1, j1, v1, p1, a1,Γ1), . . . , (bn, jn, vn, pn, an,Γn))

for non-empty Γ, provided

1. f ∈ Σ(n), and every term in Γ has f as the root symbol;

2. if Γ contains a term f(t1, . . . , tn), then, for all i, ti ∈ Γi, or ti is a variable;

3. lj|v ∈ Γ ∩ T2 and rj = lj|v·p;

4. exactly one of the bi’s is a 1;

10

5. if bk = 1 and |p| > 1, then jk = j, ak = ? , vk = v · k and p = k · pk;

6. if bk = 1 and |p| = 1, then ak = 1.

Type (ii) – the current term is not a treacherous term:

(1, j, v, p, 0,Γ) → f((b1, j1, v1, p1, a1,Γ1), . . . , (bn, jn, vn, pn, an,Γn))

for non-empty Γ, provided

1. f ∈ Σ(n), and every term in Γ has f as the root symbol;

2. if Γ contains a term f(t1, . . . , tn), then, for all i, ti ∈ Γi, or ti is a variable;

3. lj|v ∈ Γ ∩ T and rj = lj |v·p;

4. exactly one of the bi’s is a 1;

5. if bk = 1 and |p| > 1, then jk = j, ak = ? , vk = v · k and p = k · pk;

6. if bk = 1 and |p| = 1, then ak = 1.

Type (iii) – the current term does not contain m:

(0,×,×,×,×,Γ) → f((0,×,×,×,×,Γ1), . . . , (0,×,×,×,×,Γn))

for non-empty Γ, provided

1. f ∈ Σ(n), and every term in Γ has f as the root symbol;

2. if Γ contains a term f(t1, . . . , tn), then, for all i, ti ∈ Γi or ti is a variable.

(Note that the only difference between (i) and (ii) is in Condition 3; note also that,
in (iii), only the ‘instance requirement’ – that the current term be an instance of all the
terms in Γ – needs to be met.)

Type (iv) – Generation of the ground constants:

(1,×,×,×, 1, ∅) → m,

(0,×,×,×, 1, {d}) → d, for any public constant d,

(0,×,×,×,×, ∅) → c, for any constant c �= m.

Thanks to our earlier considerations, one can check that the tree grammar G generates
only R-treacherous terms, and that every irreducible R-treacherous term is generated by
G.

Figure 1 illustrates the reasonings above. Consider the following linear TRS:
(1) f(g(g(g(x)))) → g(x) , (2) f(g(h(x))) → x,

with f as the only public symbol. The irreducible treacherous term g(g(g(h(m)))) can be
generated in the (top-down) sequence shown in the figure. The axioms of the grammar are
(1, 1, 1 · 1, 1, {g(g(g(X)))}) and (1, 2, 1, 1 · 1, 1, {g(h(Y))}). Note: the ‘new’ term g(h(Y))
can be introduced at the third step because Condition 2 in rules of Types (i), (ii) and (iii)
is an “if-then”, and not an “iff”.

11

(1, 2, 1.1.1,

h

g

g

(1, 2, 1, 1.1, 1, {g(x), g(h(y))})

(1, 1, 1.1, 1, ?, {g(g(x))})

(1, 1, 1, 1.1, 1, {g(g(g(x)))})

m

(1, 2, 1.1

ε , 1, {})

, 1, ?, {h(y)})

g

Figure 1: Generating a treacherous term.

6 Undecidability results

Unfortunately the cap problem is undecidable even for optimally reducing, linear, and
convergent TRS: we prove that there is a fixed optimally reducing, linear, and convergent
TRS for which the cap problem is undecidable. The proof is by reduction from the halting
problem for 2-counter Minsky machines, that we first present briefly (e.g., as in [3]). A
Minsky machine with two counters C1, C2 storing non-negative integer values, executes
programs which are finite lists of instructions labeled with the natural numbers from 1 to
L, each having one of the following forms, where 0 ≤ l ≤ (L − 1), 0 ≤ k ≤ L, k �= l, and
i is 1 or 2 :

(i) 0: BEGIN

(ii) l: ADD 1 to Ci and GOTO l + 1 ;

(iii) l: If Ci �= 0
then SUBTRACT 1 from Ci and GOTO l + 1;

else GOTO k �= 0;

(iv) L: STOP.

Any such given program P is assumed to have exactly one instruction ‘BEGIN’, and
one instruction ‘STOP’. To every instruction l we associate a state denoted ql; q0 (resp. qL)
is defined as the initial (resp. final) state. A configuration of such a 2-counter machine,
at any given stage of a computation, will be seen as a triple (C1, ql, C2) where l is the
(label of the) next instruction to execute, and Ci, i = 1, 2, are the current values of the
two counters. The following classical result, on the halting problem for such machines,
will serve our purposes.

Result: (Minsky [19]) Let C1, C2, C
′
1, C

′
2 be any given non-negative integers. Then it

is undecidable whether an arbitrarily chosen program P, starting with (C1, q0, C2) as its
initial configuration, will halt with (C ′

1, qL, C ′
2) as its final configuration.

We shall encode the halting problem for any program P of the above type as a cap
problem over a rewrite system which is optimally reducing, linear, and convergent. For
doing that, any state symbol ql will be seen as a unary function symbol. In addition we
introduce further function symbols f, s of rank 1 and c of rank 3, and constants m, 0. The
constant m stands for some secret message, 0 encodes the natural integer zero, s encodes

12

the successor function on integers, and c encodes configuration triples. The following rules
(where l, l′ stand for suitable instruction labels) do this encoding:

Initial and final configurations (resp. with given k, p, and k′, p′):

c(sk(0), q0(m), sp(0)), c(sk′
(0), qL(m), sp′(0))

Incrementation of counter 1 or 2:

f(c(x, ql(z), y)) → c(s(x), ql+1(z), y), f(c(x, ql(z), y)) → c(x, ql+1(z), s(y))

Conditional decrementation of counter 1 or 2:

f(c(s(x), ql(z), y)) → c(x, ql+1(z), y), f(0, ql(z), y)) → c(0, ql′(z), y).

f(c(x, ql(z), s(y))) → c(x, ql+1(z), y), f(x, ql(z), 0)) → c(x, ql′(z), 0).

At STOP, release the secret m: f(c(sk′
(0), qL(z), sp′(0))) → z.

The role played by f is to ensure that this rewrite system is terminating. The cap
problem over this rewrite system –which is obviously linear and optimally reducing– with
{0, f, q1, . . . , qN} as the intruder repertoire, obviously encodes the halting problem for the
2-counter machine programs. We deduce that the cap problem is undecidable even for
linear and optimally reducing systems.

7 The General Cap Problem

The definition of the notion of cap with one hole, as given in Section 2, does not allow the
intruder to re-use terms. For instance, consider the rewrite system R with a single rule:

g(f(x, a), f(y, a)) → x,

where g is in the intruder repertoire, but f and a are not. For the definition of cap
with one hole, f(m,a) is not treacherous. But if f(m,a) can be re-used then m can be
recovered since g(f(m,a), f(m,a)) reduces to m. In other words, there is a (non-linear)
cap t(�) = g(�, �) such that t[� ← f(m,a)] →!

R m. Also, there could be more than one
term containing m that the intruder may be able to use; this explains that the general
cap problem allows more general contexts, with more than one hole.

We show now that the general cap problem is NP-complete for dwindling (and conver-
gent) TRSs.

Proposition 3 The general cap problem is NP-hard, even for special TRS.

Proof : The proof is by reduction from the 3-colorability problem. Let (V,E) be any
arbitrarily given undirected graph. Introduce a function symbol g of rank |E|+1, a symbol
f of rank 2, and a symbol h of rank 1. Associate a variable xj to each node vj in V , and
represent every edge ei = (vj , vk) in E (joining the two nodes vj, vk in the graph) by the
term ti = f(xj, xk); finally let B, G and R be constants that correspond to the 3 colors.
We then consider the pure TRS formed of the following single rule:

g(t1, . . . , t|E|, h(u)) → u

13

where u is a new variable, not appearing in any of the terms ti. Assume that g is the
only symbol in the intruder repertoire, i.e., all symbols other than g are private. Let
f(B,R), f(R,B), f(G,R), f(R,G), f(G,B), f(B,G) and h(m) be the terms known to
the intruder. Then it is not hard to see that m can be obtained by the intruder (by
plugging in a suitable treacherous set of terms in the cap-term g(�1, · · · , �(|E|+1)), if and
only if the graph can be colored with the 3 colors B,R,G.

We shall show below that the general cap problem is in NP for dwindling TRS. A few
preliminaries are needed for proving that. (They will also be needed farther down, to show
that the general cap problem is decidable for the more general Δ-strong and ωΔ-strong
intruder theories, although not in NP.)

7.1 The I-closure of a Set of Terms

Given a finite set S of private ground terms, we define the set of I-constructible terms –
referred to as the I-closure I(S) of S – as follows (the I refers to the intruder theory):

– S ⊆ I(S)

– If f (p) is a public function symbol and s1, . . . sp are I-constructible terms, then
f(s1, . . . sp) ∈ I(S)

– Nothing else is in I(S).

In other words, a private ground term t is in I(S) if and only if either t itself is
in S, or the root symbol of t is public and all its top-level subterms are in I(S). It is
not hard to see that I(S) is a regular tree language for any given finite set S (see the
proof of Proposition 7). Define a set of terms Γ = {t1, . . . , tn} to be I-independent if
and only if for all ti, we have ti �∈ I(Γ \ {ti}); it is easy to see then, that from every
finite set S of terms we can extract an I-independent subset with the same I-closure. A
ground substitution θ is I-independent if and only if Ran(θ) is an I-independent set and
∀vi, vj ∈ Dom(θ) : θ(vi) = θ(vj) ⇔ vi = vj .

As a direct consequence of the definitions, we get the following: If S is an I–independent
set of terms, then a term s is in I(S) if and only if there is a cap t(�1, . . . , �n) and an
I-independent substitution θ = [�1 ← s1, . . . , �n ← sn], with si ∈ S for all i, such that
s = θ(t). Proposition 4 and Corollary 1 are easily established too:

Proposition 4 Let S be a treacherous set of terms and let t(�1, . . . , �n) be a cap for S such
that a term t[�1 ← s1, · · · , �n ← sn], with the si ∈ S, can be R-reduced to m. If S′ is a I-
independent subset of S with the same I-closure, then there is a cap t′(�′1, . . . , �′k) and an I-
independent substitution θ with Range(θ) ⊆ S′ such that θ(t′) = t[�1 ← s1, · · · , �n ← sn].

Corollary 1 Let S be a treacherous set of terms and let S′ be an I-independent subset
of S. Then S′ is treacherous too. (In other words, every set of treacherous terms has an
I-independent treacherous subset.)

For I-independent substitutions we can show the following:

14

Proposition 5 Let θ = [x1 ← s1, . . . , xn ← sn] be an I-independent substitution assign-
ing non-public terms si to variables xi, 1 ≤ i ≤ n. Then θ unifies two public terms t1 and
t2 if and only if t1 = t2.

Proof : Assume t1 �= t2 and let η be an idempotent mgu of t1 and t2. We can assume
without loss of generality that Var(t1) ∪ Var(t2) ⊆ {x1, . . . , xn}. Then there must be
a variable xi and a public term t such that η(xi) = t and t does not contain xi. But
this means that si ∈ I(s1, . . . , si−1, si+1, . . . , sn) contradicting the assumption that θ is
I-independent.

Proposition 6 Let l → r be a rewrite rule, s be a term such that Pos(l) ⊆ Pos(s) and θ
be a ground substitution such that θ(s) is an instance of l. Then either s is an instance of
l or there are distinct subterms s1 and s2 of s such that θ(s1) = θ(s2).

Proof : Suppose that s is not an instance of l and θ(s) is an instance of l. Since Pos(l) ⊆
Pos(s), all the variable positions of l must also belong to Pos(s). Since s is not an instance
of l, it must be that some variable v ∈ Var(l) has two distinct occurrences at positions p1

and p2 of l such that s|p1
�= s|p2

.

Corollary 2 Let l → r be a rewrite rule, s be a public term such that Pos(l) ⊆ Pos(s)
and θ be an I-independent ground substitution such that θ(s) is an instance of l. Then s
is an instance of l.

Proof : By Proposition 6 there must be distinct subterms s1 and s2 of s such that θ
is a unifier of s1 and s2. But by Proposition 5 s1 and s2 must be identical which is a
contradiction.

Proposition 7 Let S be an I-independent set of ground terms and t any given term.
Then the problem of checking whether t has an instance in I(S) is in NTIME(|t| + |S|)
where |S| = sum of the sizes of terms in S.

Proof : We represent the given set S of ground terms as a (not necessarily rooted) dag
G = (V,E); let V = {n1, . . . , nl}. We define the following mapping with each node in V :

ν(ni) = (ni, 1) if the term at ni is in S,
= (ni, 0) otherwise.

Each such pair (ni, b) will be seen as a state of a tree automaton A; we also add a
distinguished state qacc, which will be the only accepting state of A. For all nodes nj, if
f (l) is the symbol at the node and nj1, . . . njl

are the nodes corresponding to the ordered
arguments of f (not necessarily distinct), then we form a transition rule of A:

f(ν(nj1), . . . , ν(njl
)) → ν(nj).

If ν(nj) = (nj, 1), then we also form the rule:

f(ν(nj1), . . . , ν(njl
)) → qacc.

Finally, for all public symbols g, we add the transition rule:

g(qacc, . . . , qacc) → qacc.

15

The size of the automaton A is obviously linear in |S|. The automaton is non-
deterministic, but it is easily checked that every term in I(S) has a unique accepting
run.

Now consider the problem of checking whether a given term t has an instance in I(S).
If p1, . . . , pn are the variable positions of t, then we guess the states at each position, say
q1, . . . , qn respectively;

1. we have then to verify that this state assignment can be completed into an accepting
run for t; and

2. for each variable x ∈ Var(t), if px1
, . . . , pxj

are the positions where it occurs and
qx1

, . . . , qxj
the corresponding states, then check whether there is a common term t′

that all these states “inhabit” — i.e., each state appears at the root of a run of A
on the term t′.

Checking this latter requirement (although EXPTIME-hard, in general) is very easy
in our case: the only way that qx1

, . . . , qxj
can appear at the roots of runs for the same

term, is if one of the following holds:
(a) they are all the same, or
(b) {qx1

, . . . , qxj
} = {qacc, (n, 1)} for some n ∈ V .

Another way of stating the above conditions (a) and (b), is as follows: for each variable
x ∈ Var(t), if px1

, . . . , pxj
are the positions where it occurs and qx1

, . . . , qxj
the correspond-

ing states, then {qx1
, . . . , qxj

} is:
(a’) either {qacc};
(b’) or {ν(ni)} for some ni ∈ V ;
(c’) or {qacc, (n, 1)} for some n ∈ V .

This enables us to formulate the following NP-algorithm: for each variable that occurs
more than once, guess which of the conditions (a’), (b’) or (c’) will hold. If (a’) then replace
x with a public constant c; if (b’) or (c’) then replace x with the term corresponding to
the node. Finally, a linear term s has an instance in I(S) if and only if s matches with a
term in S, or s = f(s1, . . . , sm), where f public, and each si, 1 ≤ i ≤ m, has an instance
in I(S).

The deterministic version of this algorithm (i.e., exhaustive search instead of guessing)
has time complexity O(3k (|t| + |S|)) where k is the number of variables that occur more
than once. Thus we have a polynomial time algorithm for the case where this number k
is fixed in advance.

Proposition 8 Let S be an I-independent set of ground terms and t any given term.
Then checking whether t has an instance in I(S) can be done in time O(3k (|t| + |S|))
where k is is the number of variables occurring more than once in the term t.

7.2 A Procedure for the General Cap Problem

We propose an inference rule and a saturation procedure in order to derive the secret m
from a given set S of non-public terms. The procedure can be shown to terminate for

16

all convergent term rewrite systems. It is not complete in general; however, completeness
can be shown for dwindling TRSs and p-strong TRSs. And in the dwindling case, the
algorithm will be shown to run in NP time.

Let FPos(t) be the set of non-variable positions in any term t: FPos(t) = { p | p ∈
Pos(t), t|p is not a variable }. In the proof details below, we shall be denoting by ‘�’
the subterm ordering on terms, as well as the prefix ordering on the positions on a term,
interchangeably.

The inference rule is as follows:

S � {s} (l, p)
S ∪ {s, σ(r)}

where (l → r) ∈ R, σ = mgu(s =? l|p), p ∈ FPos(l), σ(r) ≺ s,
and σ(l) has an instance in I(S).

The set S is said to be saturated iff it doesn’t grow under any application of this
inference rule.

Lemma 4 Any set of private terms S can be saturated in finitely many steps.

Proof : The easiest way to see this is to view the inference step as a form of ordered
rewriting using the rewrite rules R′ = { (l|p → r) | (l → r) ∈ R, p ∈ FPos(l) }. Since
each term has only finitely many descendants modulo R′, the saturation process cannot
lead to an infinite set of terms.

Clearly S is treacherous if the saturated set contains m.

The incompleteness of the saturation procedure given above, for general TRS and
arbitrarily chosen simplification orderings �, can be seen from the following example.
Consider the following convergent TRS:

f(g(x)) → h(x), f(h(x)) → x,

where all functions are public, and � is the simplification ordering over the symbol prece-
dence f � h � g. Now {g(m)} is treacherous since f(f(g(m))) →! m. But the set {g(m)}
is already saturated: no inference step can be applied because h(m) � g(m).

7.3 An NP-Decision Procedure for dwindling TRS

Proposition 9 The general cap problem is in NP for any dwindling (convergent) term
rewrite system R.

Proof : The proof uses the following two lemmas (notation of Section 2):

Lemma 5 Let R be a (convergent) dwindling TRS and let S be a saturated set of private
terms. Then S is treacherous if and only if m ∈ S.

Proof : Assume the contrary. Let S be a saturated set of private terms that is treacherous
but does not contain m. Let t′ be a �-minimal term in I(S) whose irreducible normal
form is m. By Proposition 4 there must be a cap t(�1, . . . , �k) and an I-independent

17

substitution θ = [�1 ← s1, . . . , �k ← sk], whose range is a subset of S, such that t′ = θ(t).
Suppose t′ is reducible by a rule l → r, and t′|p = σ(l) for some substitution σ. Let
p1, . . . , pn be the variable positions of l, and let πi = p · pi for i = 1, . . . , n.

Now l → r is a dwindling rule, i.e., r = l|p′ for some position p′; there are two cases to
be considered.

(i) p · p′ is a position in t. Then t[p ← t|p·p′] is in I(S), which contradicts the minimality
of t′.

(ii) There is a variable �i at some position qi in t such that qi ≺ p · p′; hence si unifies
with a subterm of l.

i

i

p

t

p . p’

σ(l)

q

s

Now, since S is assumed to be saturated, σ(r)
has to be already in S. Thus t′[p ← σ(r)] is in
I(S) too, which is a contradiction.

In the light of the above proof, we can modify the inference rule for the dwindling case
to:

S � {s} (l, p)
S ∪ {s, σ(r)}

where (l → r) ∈ R, σ = mgu(s =? l|p), p ∈
FPos(l), r is a proper subterm of l|p, and σ(l)
has an instance in the I-closure I(S).

Let ||R|| =
∑

(li→ri)∈R

|li|. We then have:

Lemma 6 The saturation of any given set of private terms S can be done in non-deter-
ministic time φ(|S|, ||R||), where φ is a polynomial with two arguments.

Proof : Every term added under an inference is a proper subterm of some term in S;
by Proposition 7 each inference step can be performed in NP time.

For the special case where the number of variables that occur more than once in the
left-hand sides of R is fixed, we can get a polynomial-time algorithm by Proposition 8.

Proposition 10 Let k be a fixed natural integer, and R a dwindling TRS such that, for
each l → r ∈ R the number of variables in V ar(l) � V ar(r) that occur more than once in
l is less than k. Then, the general cap problem over R, and a given set of private terms
S, is decidable in polynomial time over ||R|| and |S|.

18

8 Δ-Strong Intruder Theories

Let R0 be any given convergent intruder TRS. An n-ary public symbol f is said to be
transparent for R0, or R0-transparent , if and only if, for all x1, . . . , xn, there exist cap-terms
t1(�), . . . , tn(�) such that ti[� ← f(x1, . . . , xn)] →∗

R0
xi, for every 1 ≤ i ≤ n. For instance,

the public function p (“pair”) is transparent for the TRS: π1(p(x, y)) → x, π2(p(x, y)) → y,
where π1 and π2 are public.

It is clear that if the general cap problem is decidable for R0, then so is checking R0-
transparency. We shall consider public constants to be transparent for any intruder system
R0. A public function symbol is R0-resistant (or simply resistant if R0 is clear from the
context) iff it is not R0-transparent. Private functions will be considered to be resistant,
for any intruder system R0. A term is said to be R0-resistant (resp. R0-transparent) iff
its top-symbol is so.

Let R be any convergent intruder TRS, and � a simplification ordering containing
R. (Note: the notation ‘�’ for the term ordering should not cause any confusion with
the prefix-ordering for the positions on terms, since ‘�’ is a simplification ordering.) We
assume that � is a precedence based (lpo or rpo like) ordering that satisfies the block-
ordering property: every private symbol is higher than every public symbol under �. We
shall denote by Δ a subsystem consisting of (some of the) dwindling rules in R. A rewrite
rule l → r is said to be Δ-strong, wrt the simplification ordering �, if and only if every Δ-
resistant subterm of l is greater than r wrt �. The intruder TRS R is said to be Δ-strong
wrt � if and only if every rule in R � Δ is Δ-strong wrt �.

Lemma 7 Let R be a convergent intruder TRS, Δ a convergent dwindling subsystem of
R, and suppose R is Δ-strong wrt a simplification ordering � satisfying the block-ordering
property, total on ground terms, and containing R. Then, any set S of private terms that
is saturated (for the inference rule of Section 7.2), is R-treacherous if and only if m ∈ S.

Proof : We extend our proof of Lemma 5. Let S be a saturated set of private terms that
is treacherous, but does not contain m. Let t′ be a �-minimal term in I(S) whose normal
form is m. By Proposition 4, there must be a cap t(�1, . . . , �k) and an I-independent
substitution θ = [�1 ← s1, . . . , �k ← sk], whose range is an I-independent subset of S
(by definition), such that t′ = θ(t). We can also assume that none of the si’s has a
Δ-transparent root symbol. Suppose t′ is reducible by a rule l → r, and t′|p = σ(l) for
some substitution σ. Let p1, . . . , pn be the variable positions of l, and let πi = p · pi for
i = 1, . . . , n. Now two cases have to be considered:

(i) l → r is a dwindling rule, i.e., r = l|p′ for some position p′: here we conclude exactly
as in the proof of Lemma 5.

(ii) l → r is a Δ-strong rule: If all the positions πj are positions in t, we are in the case
where t itself is reducible by l → r by Corollary 2, contradicting the minimality of
t′. So we may assume ∃j′ such that πj′ is not a position in t. Hence there must be
a variable �i at some position qi in t such that qi ≺ πj′ = p · pj′ . Let qi = p · q′i.
Thus si = t′|qi

= σ(l|q′i) and q′i ≺ pj′ . But then l|q′i is a non-ground, non-variable
term, and its root must be Δ-resistant, since it unifies with si. Since R is Δ-strong,
r ≺ l|q′i and thus σ(r) ≺ σ(l|q′i) = si. But S is assumed saturated, so σ(r) has to be
already in S. Thus t′[p ← σ(r)] is in I(S) too, which is a contradiction.

19

Remark 1. It is important to observe that the block-ordering property is essential in
step ii) of the proof above; consider the intruder TRS {h(f(x)) → g(x), h(g(g(x))) → x}
where the functions h and f are public and g is private, with the ordering f � g � h. The
set {g(m)} is saturated, but h(h(f(�))) is a cap that works, since h(h(f(g(m)))) →! m.
Note that this cap is reducible, and h(g(�)) is its normal form, but this latter term cannot
be a ‘legal cap’ since it contains the non-public symbol g. Such anomalies will not arise,
of course, if the ordering is assumed to satisfy the block-ordering property.

We thus get

Proposition 11 The following problem is decidable:

Instance: A convergent TRS R over the intruder repertoire, Δ a dwindling, convergent
subsystem of R, a simplification block-ordering � wrt which R is Δ-strong, a free
constant m, and a finite set S of irreducible non-public ground terms, at least one
of which contains m.

Question: Is there a cap-term t(�1, · · · , �k) such that t[�1 ← s1, · · · , �k ← sk], with the
si ∈ S (not necessarily all distinct), can be R-reduced to m?

Applications. (i) One can handle the cap problem for homomorphic encryption (i.e.,
‘encryption’ e distributes over ‘pair’), by the Δ-strong approach, with the following con-
vergent TRS R; the rules to the left form Δ; d, e are Δ-resistant:

π1(pair(x, y)) → x
π2(pair(x, y)) → y

d(e(x, y), y) → x
e(d(x, y), y) → x

e(pair(x, y), z) → pair(e(x, z), e(y, z))
d(pair(x, y), z) → pair(d(x, z), d(y, z))

Related results were obtained in [12], with a more complex proof (but with a polynomial
time algorithm).

Homomorphic encryption and signature have several applications, such as e-voting,
auction, and private information retrieval.

(ii) The blind signature protocol can be modeled by rewrite rules of the form

U(SA(BA(x, y)), y) → SA(x),

where BA is the blinding function (of B wrt to signer A), SA is the signing function of A,
and U is the unblinding function. Such systems are covered by the Δ-strong approach,
by setting BA � SA, for every signer A. One can also handle Block-Cipher related theo-
ries, such as the one obtained by adding the rule split(e(pair(x, y), z)) → e(x, z) to the
dwindling system Δ of the previous example (i).

Remark 2. (i) The preceding lemma and proposition seem to remain valid, if Δ is replaced
by any convergent subsystem R0 ⊂ R for which the general cap problem is decidable.

(ii) No polynomial upper bound can be given for the number of terms added to S,
under saturation, in the Δ-strong case (unlike in Lemma 6 for the dwindling case). We
show in Appendix-II that the complexity is non-primitive recursive.

20

8.1 ωΔ-strong Intruder Theories

As before, R denotes a given convergent intruder TRS, � a simplification ordering con-
taining R, and Δ some given, dwindling and convergent subsystem of R. For any rule
l → r ∈ R, let μ(l) stand for the set of �-minimal subterms of l that are Δ-resistant,
in the sense defined earlier. We define then a notion on R that is weaker than that of
Δ-strong considered earlier; this notion, referred to and denoted as ωΔ-strong, is defined
as follows (‘ω’ stands for ‘weak’):

Definition 1 A rule l → r ∈ R is said to be ωΔ-strong wrt �, if and only if there exists
a position p on l such that l|p ∈ μ(l) and l|p > r. The system R is ωΔ-strong wrt �, if
and only if every rule in R is ωΔ-strong wrt �.

We propose to show that the result of Lemma 7 continues to hold under the weaker
assumption that R is ωΔ-strong wrt �, again under the assumption that the ordering �
satisfies the block-ordering property defined above. In what follows, Sub(S) will stand for
the set of all subterms of the set of terms S.

Lemma 8 Let S be an I-independent set of non-public ground terms such that every term
in S has a Δ-resistant symbol at its root. Let l → r be a rule in R, σ a ground substitution,
and p ∈ FPos(l) such that l|p ∈ μ(l) and l|p � r. If σ(l|p) ∈ I(S) and σ(r) �∈ I(S), then
σ(l|p) ∈ Sub(S).

Proof : Suppose σ(l|p) ∈ I(S), and σ(r) �∈ I(S). We must then have:

(i) either r contains a private symbol,

(ii) or Ran(σ|Var(r)) �⊆ I(S),
or both. If r contains a private symbol then so should l|p. Since l|p is a �-minimal Δ-
resistant subterm of l, this private symbol must be at the root of l|p. Now, by definition,
the root symbol of a term in I(S) that is not already in S cannot be private; hence σ(l|p)
cannot be in I(S), unless already in S.

If r does not contain a private symbol, then there must be a variable v in Var(r) and
hence in Var(l|p) such that σ(v) �∈ I(S); thus σ(v) itself is not in I(S), but a superterm of
it, namely σ(l|p), is in I(S). Therefore σ(v) must be a proper subterm of some term in S.
Let s ∈ S be a term that σ(v) is a proper subterm of. Now, l|p is a minimal Δ-resistant
subterm of l, so all function symbols of l|p, except at its root, must be Δ-transparent; but
the root of s is Δ-resistant by our assumption above, so it must be that σ(l|p) is a subterm
of s; thus σ(l|p) ∈ Sub(S).

Lemma 9 Let R be a convergent intruder TRS, � a simplification ordering total on
ground terms that satisfies the block-ordering property and contains R, and Δ a con-
vergent dwindling subsystem of R. Suppose R is ωΔ-strong wrt �. Then, any saturated
set S of private terms is R-treacherous if and only if m ∈ S.

Proof : Let S be as assumed in the hypothesis, and suppose S does not contain m. Let
t′ be a �-minimal term in I(S) whose normal form is m. Then there must be a cap
t(�1, . . . , �k) and an I-independent substitution θ = [�1 ← s1, . . . , �k ← sk], whose range

21

is an I-independent subset of S, such that t′ = θ(t). Let Ŝ = {s1, . . . , sk}. We can
assume, without loss of generality, that the terms in Ŝ are R-irreducible and also that
none of the si’s has a Δ-transparent root symbol. Suppose t′ is reducible by a rule l → r,
and t′|p = σ(l) for some substitution σ. We can assume that σ(r) �∈ I(S), for otherwise
t′[p ← σ(r)] ∈ I(S) contradicting the minimality of t′. We have two cases to consider:

(i) l → r is a dwindling rule: we conclude as earlier.

(ii) l → r is an ωΔ-strong rule: Let q ∈ FPos(l) such that l|q ∈ μ(l) and l|q � r. Since
σ(r) �∈ I(S), it must be that σ(l|q) is a subterm of some term in Ŝ, by the preceding
lemma. Now, the elements of Ŝ are R-irreducible, so the root position of σ(l) is in
the “cap” part of t′; thus, there must be a position ε ≺ q′ � q in FPos(l) such that
σ(l|q′) = s, for some s ∈ Ŝ; since l|q � r, we get s = σ(l|q′) � σ(r). But S is assumed
to be saturated, so σ(r) must be in S too; contradiction.

9 Related Works, Conclusion

In [14], the authors have studied intruder theories given by convergent public-collapsing
systems. They give an NP-decision procedure for protocol insecurity in the case of an
active intruder. In [1], the authors present an algorithm for the general cap problem for
an intruder given by a convergent dwindling rewrite system. They in fact considered the
more general static equivalence problem, and their algorithm was proved to be polynomial
when the size of the rewrite system is fixed. This work has been extended by [5] to the
insecurity problem for active intruders; but the author does not give any complexity result.
We have shown that the extension of even the (single hole) cap problem to the slightly more
general class of optimally reducing, (convergent) and linear TRS leads to undecidability;
but our decidability result for such systems in the string rewriting case, improves upon
the results of Book and Otto [7]. The NP-complexity bound established for the general
cap problem wrt dwindling TRS, can be seen as adding precision to some results of [1];
actually, our complexity result of Proposition 10, for the general cap problem over such
systems, is stronger than the corresponding result of [1]. We have also given an algorithm
for the general cap problem for a class of intruder theories not considered in [14, 1, 5],
namely the Δ-strong one, thereby deriving a new security result for passive intruders.
In [12], a deduction problem analogous to the general cap problem is investigated, by
using specific deduction rules for encryption and pairs (unlike ours), and it is unclear how
the results can be compared.

The decidability results derived in this paper cover several theories of interest for
security protocols. It would be of interest to extend them to AC-rewrite systems, in order
to capture important theories comprising AC-operators (e.g., abelian groups). It would be
important too, to try to lift our results to cover the case of active intruders, by integrating
constraint solving and semantic unification algorithms. In this regard, it must be noted
that the cap problem wrt an intruder theory R, and the problem of unification modulo R,
behave in an unrelated manner, in general: indeed, for any given ground term t, the set
of its capped versions, wrt any given rewrite system R, is a regular tree language; thus,
by Theorem 5.1 of [13], it follows that the cap problem wrt R is decidable if the intruder
theory R is linear and (semi-)monadic; unfortunately though, the unification problem is
undecidable for linear and monadic TRS, as is shown in Appendix-I. This is in marked

22

contrast to optimally reducing systems R, where R-unification is decidable and finitary,
but the cap problem is undecidable, as we saw in Section 6.

References

[1] M. Abadi, V. Cortier. Deciding knowledge in security protocols under equational
theories. In Theor. Comput. Sci., 367(1-2):2–32, 2006.

[2] R. Amadio, D. Lugiez, and V. Vanackère. On the symbolic reduction of processes with
cryptographic functions. Theor. Comput. Sci., 290(1):695–740, 2003.

[3] S. Anantharaman, P. Narendran, M. Rusinowitch. Unification modulo ACUI plus
Distributivity Axioms. In Journal of Automated Reasoning 33: 1–28, 2004.

[4] A. Armando, L. Compagna. SATMC: a SAT-based Model Checker for Security Pro-
tocols, Proc. of JELIA 2004 , LNCS 3229, pp. 730–733, Springer-Verlag, 2004.

[5] M. Baudet. Deciding security of protocols against off-line guessing attacks. In Proc.
of ACM Conference on Computer and Communications Security, 2005, pp. 16-25.

[6] R.V. Book, M. Jantzen, C. Wrathall. Monadic thue systems. In Theor. Comput.
Sci. 19:231–251, 1982.

[7] R.V. Book, F. Otto. The verifiability of two-party protocols. In EUROCRYPT, pages
254–260, 1985.

[8] R.V. Book, F. Otto. String-Rewriting Systems. Springer-Verlag, 1993.

[9] Y. Chevalier and L. Vigneron. A Tool for Lazy Verification of Security Protocols. In
Proceedings of the Automated Software Engineering Conference (ASE’01). IEEE Com-
puter Society Press, 2001.

[10] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Ti-
son, M. Tommasi. Tree Automata Techniques and Applications. Available at:
http://www.grappa.univ-lille3.fr/tata/

[11] H. Comon-Lundh, S. Delaune. The finite variant property: how to get rid of some
algebraic properties. In Proc. of RTA’05 (Jürgen Giesl, ed.), LNCS 3467, pages 294–307.
Springer-Verlag, 2005.

[12] H. Comon-Lundh, R. Treinen. Easy Intruder Deductions. Verification: Theory and
Practice In Lecture Notes in Computer Science 2772, pages 225–242, Springer-Verlag,
2003.

[13] J-L. Coquidé, M. Dauchet, R. Gilleron, S. Vágvölgyi. Bottom-up tree pushdown
automata: Classification and connection with rewrite systems. In Theor. Comput.
Sci. 127(1):69–98, 1994.

[14] S. Delaune, F. Jacquemard. A decision procedure for the verification of security
protocols with explicit destructors. In Proc. of ACM Conference on Computer and
Communications Security, 2004, pp. 278–287.

23

[15] D. Dolev, A.C. Yao. On the security of public key protocols. In IEEE Transactions
on Information Theory 29(2):198–207, 1983.

[16] N.A. Durgin, P.D. Lincoln, J.G. Mitchell, A. Scedrov. Multiset rewriting and the
complexity of bounded security protocols. In Journal of Computer Security 12(1):677–
722, 2004.

[17] R. Gilleron, S. Tison. Regular tree languages and rewrite systems, In Fundamenta
Informaticae 24, 157–176, 1995.

[18] G.P. Huet. Confluent reductions: Abstract properties and applications to term rewrit-
ing systems. In Journal of the ACM 27(4):797–821, 1980.

[19] M. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall International,
London, 1972.

[20] P. Narendran, F. Pfenning, R. Statman. On the unification problem for Cartesian
Closed Categories. In Journal of Symbolic Logic 62 (2), June 97, 636–647.

[21] M. Nesi, G. Rucci. Formalizing and analyzing the Needham-Schroeder symmetric-key
protocol by rewriting. In Electr. Notes Theor. Comput. Sci. 135(1):95–114, 2005.

[22] M. Rusinowitch, M. Turuani. Protocol insecurity with a finite number of sessions,
composed keys is NP-complete. In Theor. Comput. Sci. 1-3(299):451–475, 2003.

[23] C. Weidenbach. Towards an automatic analysis of security protocols. In Proc. of
16th International Conference on Automated Deduction, CADE-16 , LNAI 1632 (H.
Ganzinger, ed.), Springer-Verlag, pages 378–382, 1999.

24

Appendix-I

We show here that there is a linear, monadic, convergent TRS for which the unification
problem is undecidable. (Note: A TRS R is said to be monadic, iff for every rule l → r ∈ R,
we have depth(l) ≥ 1 and depth(r) ≤ 1.) The reduction is from a restricted version of the
modified Post Correspondence Problem (MPCP).

Let Σ = {a, b}, and let P = {(xi, yi) | i = 1, . . . , n} ⊆ Σ+ × Σ+ be a finite sequence of
non-empty strings over Σ such that the following restricted version of the Modified Post
Correspondence Problem (MPCP) is undecidable:

Instance: A non-empty string α ∈ Σ+.
Question: Do there exist indices i1, . . . , ik ∈ {1, . . . , n} such that

αxi1xi2 . . . xik = yi1yi2 . . . yik?

For a string w over Σ, let w̃(x) denote the term formed by treating a and b as unary
function symbols and the concatenation operator as function composition; more precisely,
we set:

λ̃(x) = x, ãu(x) = a(ũ(x)), b̃u(x) = b(ũ(x)).

Let f be a ternary function and g1, . . . , gn be unary functions. We construct a linear,
monadic TRS, consisting of the following rules:

f(x̃i(u), gi(v), ỹi(w)) → f(u, v, w)

for every pair (xi, yi) of the MPCP. (The role played here by the gi is one of ensuring that
the rewrite system has no critical pairs.)

It is not hard then to see that the unification problem

{f(X, α̃(X), Y) =? f(c, c, c)}

has a solution if and only if the instance of the restricted MPCP above has a solution.

Appendix-II

We show here that the complexity of the general cap problem is non-primitive recursive,
for (general) Δ-strong intruder theories. The proof is based on the following lines of
reasoning. The starting point is the following observation of Petr Jančar, where A(n) is a
non-primitive recursive function on natural integers:

“The problem to decide, given a 2-counter machine C and a natural number n,
whether C halts on zero input in A(n) steps is non-primitive recursive”.

in “Nonprimitive recursive complexity and undecidability for Petri net equivalences” (Theor.
Comp. Science, 256(1-2):23-30, 2001; Proposition 9, Section 4).

Let then C be an arbitrarily given 2-counter machine, with L + 1 instructions; to each
instruction of label i, 0 ≤ i ≤ L, is associated a state denoted as qi, which will be seen as
a unary function on N (as in Section 6). And consider the following convergent TRS R0,

25

where 0 stands for the natural number 0, s for the successor function on N, and p stands
for the predecessor function defined as usual:

f(0, x) → s(x)
f(s(x), 0) → f(x, s(0))

f(s(x), s(y)) → f(x, f(s(x), y))
p(s(x)) → x

h(g(x, u, v, w)) → r(f(x, x), u, v, w)
d(qi(x)) → x, 0 ≤ i ≤ L.

The function f obviously encodes the usual Ackermann function (on two arguments
over N). The symbol h plays no specific role, other than ensuring that a term with top
symbol g is R0-irreducible. The last set of rules, plus the fourth, constitute a dwindling
convergent sub-TRS Δ, wrt which the qi’s and s are Δ-transparent; the other symbols
are all Δ-resistant. We then encode the instructions of the given 2-counter machine C by
the following set of rewrite rules, where the second and the fourth arguments, under the
symbol r in the terms to the left, stand for the values of the two counters of C, respectively
(and the l, l′ are suitable instruction labels):

Incrementation of counter 1 or 2:

h(r(s(u), x, ql(z), y)) → r(u, s(x), ql+1(z), y),

h(r(s(u), x, ql(z), y)) → r(u, x, ql+1(z), s(y))

Conditional decrementation of counter 1 or 2:

h(r(s(u), s(x), ql(z), y)) → r(u, x, ql+1(z), y),

h(r(s(u), 0, ql(z), y)) → r(u, 0, ql′(z), y).

h(r(s(u), x, ql(z), s(y))) → r(u, x, ql+1(z), y),

h(r(s(u), x, ql(z), 0)) → r(u, x, ql′(z), 0).

At STOP, release the secret m: h(r(u, v, qL(z), w)) → z.

Let R denote the intruder theory, formed of all these encoding rules and the rules of
the TRS R0 given above; R is obviously Δ-strong under the lpo based on the precedence
0 < qi < s < p < f < g < r < h (where 0 ≤ i ≤ L), and it is also convergent under this
simplification ordering.

Finally consider the singleton set S = {g(sn(0), 0, q0(m), 0)}, where n is some given
(fixed) positive integer, and m a given ground constant �= 0. Now, it is not hard to check
that this set S is treacherous for R and the ‘secret’ m, if and only if the machine C, with
initial counter values both 0, halts under instruction L in exactly f(n, n) steps.

26

