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Abstract

In this article we give a proof of Serre’s conjecture for the case

of odd level and arbitrary weight. Our proof will not depend on any
yet unproved generalization of Kisin’s modularity lifting results to
characteristic 2 (moreover, we will not consider at all characteristic 2
representations in any step of our proof).
The key tool in the proof is Kisin’s recent modularity lifting result,
which is combined with the methods and results of previous articles
on Serre’s conjecture by Khare, Wintenberger, and the author, and
modularity results of Schoof for semistable abelian varieties of small
conductor. Assuming GRH, infinitely many cases of even level will
also be proved.

1 Introduction

Let p > 2 be a prime, and let p be an odd, irreducible, two-dimensional Ga-
lois representation with Serre’s weight k£ and level N, with values in a finite
field IF of characteristic p. The “level”, or “conductor”, is defined as in [Se87]
to be the prime-to-p part of the Artin conductor, see [Se87] for the definition
of the weight.

We will be mainly interested in the case of representations of odd level, al-
though some cases of even level will also be considered, but only cases where



ramification at 2 is semistable (in the sense of [Ri97]).

For such p, and in particular for all representations of odd level, we will prove
Serre’s modularity conjecture (assuming GRH in the cases of even level), i.e.,
we will prove that p is modular (cf. [Se87]). As it is well-known, for a prime
p given (by suitable twisting) it is enough to consider the case of k < p + 1.
In all steps of the proof, whenever a residual irreducible representation is
considered, it will be tacitly assumed that such a twist is performed so that
the weight satisfies this inequality.

In this article, as in previous articles proving special cases on Serre’s conjec-
ture, modularity is proved by “propagation”, i.e., by applying the principle
of “switching the residual characteristic” (originally applied in [Di04b] and
[KWO04] to prove the first cases of Serre’s conjecture) to reduce the problem
to some other case of the conjecture already solved. This “switching princi-
ple” follows from a combination of three main results:

- Existence of minimal lifts or lifts with prescribed properties ([Di04b], [KW04],
[K05], [KWO06])

- Existence of (strictly and strongly) compatible families ([Di04al), and

- Modularity lifting results a la Wiles (Taylor-Wiles, Skinner-Wiles, Dia-
mond, Savitt, Kisin).

At this point, the main “obstacle for propagation” is due to the techni-
cal conditions needed for the application of these modularity lifting results.
However, in several cases, like the crystalline of small weight case (k < p,
assuming that p # 2k — 3, or the representation is semistable), or weight 2
semistable case, it is known that by combining different modularity lifting
results the lifting is modular without imposing any condition on the residual
representation, just modularity or reducibility (cf. [Di03] for the weight 2
case and [DMO03], [K05] for higher weights).

By a suitable combination of “switchings”, using modularity lifting results
of Kisin, we will show how the proof of the general odd level case can be
reduced to the proof of the level 3 case, a case that we will reduce in turn
to some modularity results of Schoof for semistable abelian varieties of small
conductor. Also, some cases of even level will be solved assuming GRH.
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2 Preliminary results

o Weight 2 lifts:

Let p be a residual representation of weight k, odd level N, and odd charac-
teristic p. Assume that £ > 2, k < p, and the image of p is non-solvable.

At several steps of the proof we will need to consider for such a p a p-adic
“weight 2 minimal lift” p defined as in [KWO06], theorem 5.1(2), and to in-
troduce p in a strongly compatible family (in the sense of [Ki06a]) {p}.

Every representation in the family {p,} with ¢ odd is unramified outside
N and p (and, of course, ¢), it is Barsotti-Tate if ¢ { p/N and potentially
semistable of weight 2 or potentially Barsotti-Tate for any odd ¢, and it has
inertial Weil-Deligne parameter at p equal to (w]’j_Q @ 1,0) where w, is the
Teichmuller lift of the mod p cyclotomic character. In particular p, is poten-
tially Barsotti-Tate (and Barsotti-Tate over a subextension of the cyclotomic

field).

Since the proof of Theorem 5.1 is not given in [KWO06], let us explain how
the existence of weight 2 minimal lifts is deduced. The existence of p-adic
lifts of this type follows by the same strategy used in [Di04b] and [KW04] for
the construction of minimal lifts. A key point is to use the potential modu-
larity results of Taylor (cf. [Ta02] and [Ta01]) and base change to obtain a
bound from above for the corresponding universal deformation ring given by
a modular deformation ring (a ring that is known to be finite). For the case
of minimal lifts of a semistable representation, this key result was obtained
by the author and, independently, by Khare-Wintenberger. It follows from
results of Boeckle (cf. [Bo03]) that this suffices for a proof after checking
that the local conditions are such that the corresponding restricted local de-
formation rings have the right dimension, i.e., the local “defects” A, are 0 for



every prime ¢ (cf. [Bo03]) so that dim R > 0 holds for the global universal
deformation ring. The existence of a strictly compatible family satisfying
good local properties containing such lift follows as in [Di04a] (and due to
results of T. Saito, the same argument also gives strong compatibility). In
[Ki06a] the strategy of [Di04b] and [KWO04] is explained in detail in a gen-
erality which is enough for the case we are considering. In fact, corollary
(3.3.1) of [Ki06a] asserts the existence of a minimal potentially Barsotti-Tate
deformation (of fixed determinant) of a suitable type 7 (propositions (3.2.4)
and (3.2.6) of loc. cit. are generalizations of Boeckle’s result to this con-
text). In our case the type we impose is (wh™? @ 1,0) and it follows from
results of Savitt and Kisin on a conjecture of Conrad, Diamond and Taylor
and on the Breuil-Mezard conjecture (cf. [Sa05], theorem 6.21 and [Ki06a],
lemma (3.2.1), which is proved in [KiO6b]) that for this type corollary (3.3.1)
of [Ki0O6a] applies. Thus, the result of Boeckle and the upper bound deduced
from potential modularity are enough to conclude, for an odd characteristic
p > k, the existence of the weight 2 minimal lift (and the strongly compatible
family containing it) as stated in [KWO06], theorem 5.1(2).

e Raising the level and good-dihedral primes:

Because of the technical conditions needed to apply Kisin’s modularity lifting
results, in the general case we need to assume that the residual representa-
tions that we encounter through the proof have non-solvable image.

This is handled by a trick in [KW06] of adding some extra prime ¢ to the level
in order that all the representations that we encounter are “good dihedral at
¢” and thus have non-solvable image (cf. loc. cit., section 8.4 and section 6).

Remark: The possibility to introduce “extra ramification” follows from the
existence of non-minimal p-adic lifts of certain type (non-minimal at g¢).
Again, as in the case of minimal lifts (cf. [Di04b] and [KWO04]) or weight
2 minimal lifts, the existence of such a lift (which mimics a result that is
well-known for modular forms, namely, a case of “raising the level”) follows
by combining potential modularity (to obtain an upper bound for the corre-
sponding universal deformation ring) with the results of Boeckle (to obtain
a lower bound).

This way, after having “raised the level”, we can assume that at each step
we will encounter residual representations having a large prime ¢ in the level
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such that ¢* | N with:

Ppli, = diag(e), 97) (1)
where the character ¢ has order t*, t | ¢ + 1 an odd prime, with ¢ and ¢
sufficiently large.
This ramification at ¢ will be preserved in all the steps of the proof if the
primes ¢ and ¢ are chosen as in the definition of good dihedral prime (ibid,
Def. 2.1).
As a matter of fact, we have to modify slightly the definition of good dihedral
prime, because we want to work also in characteristics up to a certain bound
B, a bound possibly larger than the weight and the primes in the level. Thus,
to ensure that also in these characteristics the ramification at ¢ is preserved
we modify this definition as follows:
i) assume t is greater than all prime factors of N (except q), greater than k,
and greater than B.
ii) assume that ¢ = 1 (mod 8), and ¢ = 1 (mod r) for every prime r up to
the maximum of: the prime divisors of N different from ¢, k, and B.

Remark: this “modified” definition does not affect at all the proof of exis-
tence of such a ¢ and ¢.

As in section 8.4 of [KWO06], at a large characteristic ¢ we add the extra
ramification at ¢ in order to reduce the proof to representations being good
dihedral at ¢. In all steps of the proof we will work in characteristics which
are sufficiently small with respect to ¢ and ¢, namely smaller than a certain
bound B previously given. Thus, we know that all residual representations
that we encounter maintain the good dihedral prime ¢ in their levels and
thus have non-solvable image.

Conclusion: we can assume that we start with a representation which is good
dihedral at a (very large) prime gq.
3 Kisin’s newest modularity lifting result

We will rely heavily on the modularity lifting result of Kisin in [Ki06¢c]. One
of the technical conditions in this result (condition 4, a condition on the



image of the restriction to the decomposition group at p of the residual rep-
resentation) is only included because the available version of the preprint is
just a preliminary version, but as the author explains it is not intrinsic and
should be removed in a later version. So, we will use the “strong version”
of Kisin’s result, namely the main theorem (page 2 of Kisin’s preprint) but
without condition 4, since this new version of the proof should become soon
available (see also the remark in the last section concerning the strong ver-
sion of Kisin’s result). This result will be used to ensure that modularity is
preserved in the “moves”, as long as the residual image is not solvable and
the lifting is (locally at p) semistable over an abelian extension of Q,,.

For the sake of completeness, in the last section (see section 7, Remarks 1, 3
and Final Remark) we will also present a variation of the proof that does not
require this “strong version”, thus we give a proof that uses the modularity
lifting results in [KiO6c| just as they appeared in the available version of this
preprint.

Now let us describe the moves that give the proof of Serre’s conjecture for
odd level.

4 Iterated killing ramification

The first step can roughly be described as follows: Killing ramification at
primes in the level, one after the other (using minimal lifts to go from one to
the other) we reduce to cases of “small level”.

Since we need to ensure that modularity propagates well in all “moves” (i.e.,
every time that we switch the residual characteristic), we have to ensure that
the conditions of “non-solvable residual image” and “liftings are semistable
over abelian extension of Q,” needed to apply the strong version of Kisin’s
result are satisfied.

By adding extra ramification at a very large prime ¢ in a suitable way (given
by some character of very large order t), a trick of Khare and Wintenberger,
as explained in a previous section as long as we work in characteristics smaller
than a certain bound B all representations will be good-dihedral at ¢ and
will have non-solvable residual image.



Then, we have a residual representation such that the primes in the level (all
odd) are:

P1,DP2y - -n-- Pr,q

(q the larger one, and larger than the weight k) in some characteristic p (also
smaller than ¢). Choose r auxiliary primes by, ....b, larger than all the p; and
than & (but smaller than the bound B) and let us transfer all ramification
to these primes. The moves that we need here are the following:

-starting in characteristic p, take a minimal lift and move to characteristic
b1, and reduce mod b;. Take a minimal weight 2 lift and move to charac-
teristic p;, and reduce mod p; (this is killing ramification at p;). Then take
a minimal lift an move to characteristic by, reduce mod by, take a minimal
weight 2 lift, move to py, and so on.

Recall that modularity is preserved in all these moves due to results of
Kisin (cf. [Ki0O4]) in the potentially Barsotti-Tate or weight 2 semistable
case (where here potentially means over ANY extension), and for crystalline
representations of small weight by results of Diamond-Flach-Guo and Kisin
(cf. [DFGO04] and [Ki05]).

We have transfered the ramification at the p; to ramification at the b; intro-
duced in the weight 2 lifts, so now we only have to consider representation
such that the primes in the level are:

and since ramification at each b; was introduced while taking the weight 2
lift, due to strong compatibility all compatible families that will appear in
the rest of the proof will correspond to cases that are (the b;-adic member,
locally at b;) semistable over an abelian extension.

Therefore, since we have reduced the problem to a case where the two techni-
cal conditions needed to apply (the strong version of) Kisin’s result in [Ki06¢]
are satisfied, we now proceed with “iterated killing ramification”, i.e., take
a minimal lift and move to characteristic b;, reduce mod b, take a minimal
liftt and move to characteristic by, reduce again, and so on. Modularity is
preserved because of the results of Kisin, and we have reduced the proof of
all cases of odd level to the case: characteristic p, weight k, level ¢2, good
dihedral at ¢, where k£ and the characteristic p are smaller that the bound B.



5 Reduction to the level 3 case

We need to prove modularity in the weight &, level ¢* case, good-dihedral at
q (g a very large prime).

If we take a minimal lift and include it in a strongly compatible family, since 3
is not in the level the 3-adic representation in this family is crystalline. Since
it is also good-dihedral at ¢, we can consider the residual mod 3 represen-
tation and it is enough to prove modularity for this residual representation
(thanks to the strong version of Kisin’s result). After twisting, we can as-
sume that the weight of this mod 3 representation is either 2 or 4 (being an
odd representation, whose determinant ramifies only at 3, the case of k = 3
is impossible). By considering a minimal lift (if & = 2) or a minimal weight
2 lift (if & = 4) we have reduced the proof to the case of weight 2 and level
q? or 3¢?, semistable at 3.

Remark: For the case £k = p + 1 the minimal weight 2 lift corresponds to a
representation which is weight 2 semistable at p (cf. [K05]).

Now we are ready to say good-bye to our good-dihedral prime ¢: with this
weight 2 family of conductor ¢* or 3¢* we move to characteristic ¢ (the order
of the character describing ramification at ¢) and we consider the residual
mod ¢ representation.

This is a very important point, so a few remarks before going on:

-Remark 1: At this point we are loosing the good-dihedral prime ¢. This
means that this mod ¢ representation and all residual representations in the
next steps, may not have non-solvable image. So from now on we can not
apply any longer the modularity lifting result of Kisin. We will have to use
(see, for example, Khare’s proof of the level 1 case for a similar situation)
other modularity lifting results. As already explained in the introduction
(and articles [Di03], [DMO03], [K05]) in several cases this is known to work
well (even if we have no information on the residual image, it can even be
reducible):

- semistable weight 2 lift

- potentially Barsotti-Tate lift which is Barsotti-Tate over the cyclotomic ex-
tension

- crystalline lift of weight & with k < p or k = p+1 (for k = p+ 1 either the
lift is ordinary and results of Skinner-Wiles apply or if not results of Kisin
apply), assuming that the residual representation is semistable at all primes



different from p (or that p # 2k — 3)

-Remark 2: When reducing mod t given the information on the ramification
at ¢ of the family, there are two possibilities (this is also noticed in [KWO06]):
the residual representation is either unramified or semistable (i.e., unipotent
ramification) at q.

From now on, at each step the following remark applies: if the residual repre-
sentation has solvable image (or reducible) then it is modular (or reducible)
and also its lift is modular (because of the above remark 1). So the only case
relevant is the case where the residual image is not solvable, which is the case
we will consider.

So, if the mod ¢ representation is unramified at ¢, it will have k = 2 (the t-adic
lift was Barsotti-Tate) and N = 3 (semistable), a case of Serre’s conjecture
already solved. Thus, the case that remains is the case: kK = 2, N = 3¢,
semistable at both primes (the case k = 2, N = ¢ has already been solved
by Khare).

Take a minimal lift (which corresponds to an abelian variety with semistable
reduction at 3 and ¢) and move to characteristic ¢ and reduce mod ¢. It
remains to solve the case k = ¢+ 1, N = 3, semistable at 3, i.e., the “level 3
case”.

6 Proof of the level 3 case

To conclude the proof, let us solve the level 3 case (semistable at 3). We
apply Khare’s weight reduction (as in [K05]) and the proof is reduced to the
cases: k =2,4,6, N = 3 (semistable at 3): the cases of higher weight follow
from these by a sophisticated induction created by Khare. For case k = 2
this case is known, so we only have to consider the other two cases.

e Case k =6, N = 3: Take a minimal lift and move to characteristic 5, and
reduce mod 5. Since the case (k, N) = (2,3) is known, we assume we are
in the case (k, N) = (6,3). Take a minimal weight 2 lift, it corresponds (as
follows from the results of Taylor) to a semistable abelian variety with good
reduction outside 3 and 5. By recent results of Schoof (“Modular curves and
semistable abelian varieties over Q”, unpublished, results presented at an
AMS meeting at San Francisco, see [Sc05] for a similar result in the case of



one single small prime of bad semistable reduction) such an abelian variety
is known to be modular. This concludes the proof in this case.

Case k = 4, N = 3: At this last step, we use a couple of Sophie-Germain
primes: 3 and 7. Move to characteristic 7, take a minimal weight 2 lift and
move to characteristic 3. Ramification at 7 may not be eliminated when re-
ducing mod 3, but clearly the character w2, a character of order 3, trivializes
over a finite field of characteristic 3. Therefore, the only possible ramification
at 7 of this mod 3 representation is semistable (i.e., unipotent) ramification.
Thus, we can have the following cases: (k,N) = (2,1),(2,7),(4,1),(4,7)
(semistable at 7). The only case unknown is the last one, so assume that
you do have ramification at 7 and weight 4. Take a minimal weight 2 lift:
it corresponds to a semistable abelian variety with good reduction outside 3
and 7. Again, Schoof has proved that any such variety is modular, and we
are done.

Let us write the theorem we have proved, together with some well-known con-
sequences (cf. [Se87] for the statement of Serre’s conjecture and for the proof
of the second consequence, and [Ri92] for the proof of the first consequence):

Theorem 6.1 Serre’s conjecture is true for any odd, two-dimensional, irre-
ducible Galois representation whose Serre’s level is odd.

Every abelian variety defined over Q of GLy type having good reduction at 2
1s modular.

Every rigid Calabi- Yau threefold defined over Q having good reduction at 2
18 modular.

7 Concluding Remarks

Remark 1: On the Strong Version of Kisin’s result:

The following remark of Kisin should be taken into consideration when ap-
plying the “strong version” of his modularity lifting result in [Ki0O6¢] (the
result without condition 4): Concerning this strong version, which is not
written down yet, he just points out a problematic case:

“A case where one should be particularly careful is when p = 3 and the rep-
resentation is an extension of 1 by w or a twist of such a representation. It’s
possible that this case *might* have to be omitted, although it really should
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work in this case also” (M. Kisin, personal communication, here w denotes
the mod p cyclotomic character).

Since precisely this case is needed at one step of the proof, taking into ac-
count the above remark of Kisin we propose an alternative method to avoid
p = 3. Observe however that at the end of this section (see Remark 3 and
Final Remark) we present a proof that does not require at all the “strong
version” of Kisin’s result (in any characteristic), so the cautious reader may
omit the proof that we present here and move directly to Remark 3:

In the proof p = 3 is used to reduce to k < 4, but there is a way to cir-
cumvent the use of p = 3: We start with a residual representation of some
weight k and level ¢* (q a very large prime, the representation good-dihedral
at ¢). Instead of switching to p = 3, we switch to p = 5 and we reduce mod
5. Then the weight (up to suitable twist) is & = 2,4, or 6, and due to the
“strong version” of Kisin’s theorem it is enough to prove modularity of this
residual representation. The cases k = 2,4 are handled as before (switching
to p = 3), the only new case is k = 6.

So, what to do with the case “k = 6, level ¢*”? We will reduce the proof of
modularity here to weight £k = 2 or 4. Observe that Khare’s weight reduction
can not be applied to reduce the weight k if £ = 6, so this is a new type of
weight reduction.

The moves that we have to do are the following: we start in p = 5, we will
move to p = 7, then to p = 3 and back to p = 7 (this works because (3,7)
is a Sophie Germain pair), and then to 5 again. More precisely: we start by
taking a crystalline lift of weight 6 and move to p = 7, then reduce mod 7.
Here we take a weight 2 lift, and move to 3 and reduce mod 3. In the worst
case, the mod 3 representation will have semistable ramification at 7, so it
gives a weight 2 level 7¢? representation. Take a minimal lift and move to
p = 7, the mod 7 representation (in the worst case) will be of weight 8 and
level ¢°. Then take a minimal crystalline weight 8 lift and move to p = 5,
and reduce mod 5. Applying Kisin’s theorem (strong version) it is enough
to check modularity of this mod 5 representation. For a 5-adic representa-
tion which is crystalline of Hodge-Tate weights (0,7), the Serre’s weight of
the corresponding mod 5 representation can be computed using results of
Berger-Li-Zhu and Berger- Breuil (results for the case “crystalline of inter-
mediate weights”, cf. Theorem 3.2.1(3) and Comment 3.2.2 in [Be05]): there
are several cases, but up to twist we always get k£ = 2 or 4, never k£ = 6. This
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concludes the proof.

Remark 2: On even levels:

a) Assuming some extra base case, like (k, N) = (2,30), one can also prove
Serre’s conjecture in the case of level semistable at 2.

b) There is one case of even level that can be proved: the case of level 6
(semistable) and weight 2. The method is the following: move to character-
istic 3, then the residual mod 3 representation has conductor 2 and weight 2
or 4. For these two cases, Serre’s conjecture has been proved by Moon and
Taguchi (cf. [MTO03], they proved reducibility, of course) in characteristic 3,
thus by “switching the residual characteristic” we know they hold in any odd
characteristic. Then, applying modularity lifting results (modularity of the
semistable weight 2 deformation) the proof is complete.

c) Assuming GRH, also the case of level 10 (semistable) and weight 2 is
known: the minimal lift corresponds to a semistable abelian variety, which
is modular by results of Calegari (assuming GRH, cf. [Ca04]). Therefore,
assuming GRH, we can also prove the following cases of Serre’s conjecture:
level 2p (semistable), p any odd prime, weight 2. The method is the follow-
ing: move to characteristic p, then the proof is reduced to prove the case:
level 2, weight & > 4. Applying Khare’s weight reduction, this can be solved
for arbitrary weight assuming that some base cases are known: k = 2,46,
N = 2. For k = 2, 4 this is known, thanks to the result of Moon and Taguchi.
For k = 6, N = 2, we move to characteristic 5 and the residual mod 5 rep-
resentation has a weight 2 lift corresponding to a semistable abelian variety
of conductor (dividing) 10. Since assuming GRH such a variety is modular,
we conclude the proof. As a corollary, it follows that any semistable abelian
variety of GLy type with bad reduction only at 2 and an odd prime p is
modular, assuming GRH.

Theorem 7.1 Assume the Generalized Riemann Hypothesis. Then Serre’s
conjecture is true for any odd, two-dimensional, irreducible Galois represen-
tation of Serre’s weight 2 and semistable level 2p for any odd prime p (and
the case p = 3 holds unconditionally, i.e., independently of GRH) .

Every semistable abelian variety defined over Q of GLy type having bad re-
duction only at 2 and another prime p is modular.

Remark 3: The Sophie Germain trick:
In the step of “iterated killing ramification” we have given a proof which
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relies on the “strong version” of Kisin’s modularity lifting result. There is an
alternative approach which avoids this in this step, namely, one can perform
two sets of “moves” (the first one using pseudo Sophie Germain primes) to
reduce to a situation where condition (4) in Kisin’s result is satisfied.

Let us describe this two sets of moves in more detail:

First we transfer the ramification to r primes which are “pseudo Sophie Ger-
main”, namely, primes b; such that (b; —1)/2 is an odd prime or the product
of two odd primes. It is known that there are infinitely many such primes,
and also that the odd prime factors of b; — 1 can be taken (both) arbitrarily
large. We proceed to transfer ramification to these r primes, the ramification
being introduced while taking weight 2 lifts (as in section 4), but immedi-
ately after introducing this ramification, we move to the odd characteristics
(one or two) dividing b;, always via weight 2 families, so that in these char-
acteristics we kill part of the ramification at b;: just to ease the notation
assume that (b; —1)/2 = a; is prime, then in characteristic a; the nebentypus
wff2 which is a character of order a; or 2a; (depending on the parity of k;)
becomes a character of order at most 2. We conclude that (up to twist) the
residual mod a; representation has ramification at b; of one of the following
two types: semistable or given by a quadratic character. Using strong com-
patibility we conclude that after transferring ramification to the b; we have
reduced to a case where each compatible family that we will consider is (the
bi~adic member, locally at b;) either semistable or quadratic-crystalline, i.e.,
it becomes crystalline when restricted to a quadratic extension. The primes
b; have been chosen sufficiently distant from each other.

The second set of moves is performed to transfer all semistable ramification
to potentially crystalline ramification. For each b; such that ramification at
it is semistable, we choose a larger prime ¢; such that ¢; — 1 is divisible by
b; — 1. Then we start with a weight 2 family, we switch to characteristic
b; and reduce mod b; (if this residual representation has weight 2 we have
eliminated ramification at b;, if not we continue) and take a minimal crys-
talline lift, which has weight b; +1. We move to characteristic ¢;, reduce mod
q;, and take a weight 2 lift, thus ramification at ¢; is given by the character
wé’j_l. Namely, we have transfered semistable ramification at b; into poten-
tially crystalline ramification at ¢;, but most importantly, since the exponent
b; — 1 divides the order ¢; — 1 of the character, ramification at g; is crystalline
over a PROPER subfield of the cyclotomic field, a subfield F; such that the
degree of the cyclotomic field over it grows with b; (*).

At the end, both at those b; where ramification was quadratic-crystalline
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and at the ¢; just considered, we conclude that we have reduced to a case
where ramification is always potentially crystalline, over a PROPER subfield
of the cyclotomic field, as in (*). Just to ease the notation, let us rename the
primes b; where ramification was quadratic crystalline also as g;.

Not only the primes b; in the first set of moves but also the primes ¢; in the
second will be assumed to be “sufficiently distant” from each other.

At this point, we are ready to perform iterated killing ramification to elim-
inate, one after the other, ramification at each of the primes in the level
except, as in section 4, for the very large good-dihedral prime ¢. Just one
warning: this must be done in increasing order. So we begin with a weight
2 family and we move to ¢, the smaller prime in the level, take the resid-
ual representation (and, as usual, twist to obtain minimal weight), then a
minimal crystalline lift, move to g2, and so on. Whenever we switch to a
prime in the level with a family of weight higher than 2, we have to check
that condition (4) in Kisin’s result is satisfied. Since ramification at each g;
is potentially crystalline over a PROPER subfield of the cyclotomic field of
index at least as large as b; (as in (*)), and we switch to characteristic ¢;
with a family of weight at most ¢;_;, we see that condition (4) is satisfied
provided that ¢;_; << b;. This is why we insisted in taking the b; and the
¢; sufficiently distant from each other, in particular this means that we take
them such that the above inequality is satisfied (if you want, choose first by,
then ¢; > by, then by >> ¢y, then gy, and so on). The good-dihedral prime
q is the only prime that remains at the end in the level, then the bound B
and the prime ¢ should be chosen at the beginning sufficiently large so that
all primes b; and ¢; in the above construction can be taken smaller than B,
thus ensuring non-solvable residual image through the whole process.

This concludes the proof that iterated killing ramification can be done inde-
pendently of the strong version of Kisin’s result.

Final Remark:

Recall that “iterated killing ramification” (before starting we have added a
good-dihedral very large prime ¢ in the level) reduces the proof of all odd
conductor cases of Serre’s conjecture to the “level ¢2, weight k case, good di-
hedral at ¢”. If we apply here Khare’s weight reduction to reduce to weight
k < 6 and then Remark 1 above to reduce to k = 2 or 4 we see thanks to
Remark 3 that the only step (in the whole proof) where we need the “strong
version” of Kisin’s result is a step contained in Remark 1: to conclude that
residual modularity implies modularity for a 5-adic representation which is
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crystalline of Hodge-Tate weights (0,7) and has residually non-solvable im-
age (here the problem is that the lift might not satisfy the condition (4) in
Kisin’s result). So it is the step of reducing the proof of the weight 6 (and
level ¢?) case to cases of weight 2 or 4 the ONLY step where we still have
assumed the strong version of Kisin’s result.

Since this “strong version” of Kisin’s result is not yet available in print, let
us explain for the sake of completeness that there is another way of doing
this weight reduction using available modularity lifting results (the results
in [Ki04], [DFGO04] and [Ki05], and those of Skinner-Wiles). The trick that
we will apply is the same used with the pair of primes 3 and 2 in [KWO06] to
reduce the weight 4 case to the weight 2 case (but here we do not need 2-adic
modularity lifting theorems since we do not work with p = 2): We start with
a residual representation of weight 6, level ¢?, which is good-dihedral at a
large prime q. We switch to characteristic 5, reduce mod 5 and consider a
weight 2 lift, corresponding to an abelian variety with semistable reduction
at 5 and conductor 5 - ¢2. Then we switch to characteristic 3, reduce mod
3 and here we observe that this mod 3 representation, since it is either un-
ramified or has unipotent ramification at 5 (and in both cases we know that
there is a lift with semistable ramification at 5, so in the unramified case
the well-known necessary condition for raising the level at 5 is satisfied), and
3| (5+1), admits a weight 2 lift where the ramification at 5 is no longer
semistable but instead is given by a character of order 3. We obtain a lift
of conductor 25 - ¢?: what we have just constructed is a non-minimal lift (it
is not minimal at 5) having the same kind of ramification at 5 and at the
good-dihedral prime q.

We consider the strictly compatible family containing this 3-adic represen-
tation and we switch to characteristic 5. Using strict compatibility and the
description of ramification at 5 (a character of order 3 | (5 + 1)) we see
that the residual mod 5 representation will have (after suitable twist) Serre’s
weight equal to 2 or 4, but never 6, because locally at 5 it is irreducible,
corresponding to the case of fundamental characters of order 2.

Thus we conclude that there is a way of doing this last weight reduction
which does not require the “strong version” of Kisin’s result (moreover, it
does not require the results of [Ki06¢] at all). This completes the proof of
Serre’s conjecture in the case of odd conductor and arbitrary level.
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