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Multi-layer perceptron with functional inputs: an

inverse regression approach

Louis Ferré Nathalie Villa

Équipe GRIMM, Université Toulouse Le Mirail, France

Abstract

Functional data analysis is a growing research field since more and
more pratical applications involve functional data. In this paper, we focus
on the problem of regression and classification with functional predictors:
the model suggested combines an efficient dimension reduction procedure
(functional SIR, first introduced by Ferré & Yao (2003)), for which we
give a regularized version, with the accuracy of a neural network. Some
consistency results are given and the method is successfully confronted to
real life data.
Keywords: classification, dimension reduction, functional data analysis,
multi-layer perceptron, prediction.

1 Introduction

Functional regression is now a very important part of statistics as functional
variables occur frequently in practical applications. We present two examples
that take place in functional data analysis (FDA). First, a regression problem
where the regressor are curves is introduced (see Figure 1): the Tecator data
problem (available at http://lib.stat.cmu.edu/datasets/tecator) consists
in predicting the fat content of pieces of meat from a near infrared absorbance
spectrum. This data set first appears in Borggaard & Thodberg (1992) and
has also already been studied, among others, in Thodberg (1996), Ferré & Yao
(2003) (with an inverse regression approach) and Ferraty & Vieu (2003).

[Figure 1 about here.]

Secondly, in the phoneme data set, the data are log-periodograms of
a 32 ms duration corresponding to recorded speakers and we expect to
determine which one of the five phonemes, [sh] as in “she”, [dcl] as in
“dark”, [iy] as in “she”, [aa] as in “dark” and [ao] as in “water”, corre-
sponds to this recording (extracted from the TIMIT database and available at
http://www-stat.stanford.edu/~tibs/ElemStatLearn/data.html). It has
already been described by Hastie et al. (1995) and by Ferraty & Vieu (2003).
Clearly, here, functional data is also involved but we face now a classification



2 L. Ferré and N. Villa Scand J Statist

problem. However, we will see that both - regression and classification - can be
tackled via a common modelling.

An extensive review of the numerous studies developped for functional data
analysis can be found in Ramsay & Silverman (1997) including regression and
classification but also many factorial methods. A particularity of functional
regression is that it often leads to ill-posed problems because of the infinite
dimension of the feature space. Then original solutions have been introduced to
overcome this problem: for example, Cardot et al. (1999) studied the functional
linear regression. At the same time, Dauxois et al. (2001) and then Ferré &
Yao (2003), Ferré & Yao (2005) have proposed a semi-parametric model for
Hilbertian variables which corresponds to the functional version of Li’s Sliced
Inverse Regression, Li (1991).

On a classification point of view, many solutions have been proposed to over-
come ill-posed functional problems including the popular penalization methods.
Friedman (1989) presents the RDA model based on regularization and shrinkage
while Hastie et al. (1994) and Hastie et al. (1995) propose a discriminant analy-
sis penalized by smoothing functionals. On the other hand, it has been used for
Canonical Correlation Analysis in Leurgans et al. (1993) and other examples of
the regularization use are given in Ramsay & Silverman (1997).

Nonlinear methods for functional data analysis have also been developped:
for instance, neural network models (Rossi & Conan-Guez (2005) for multilayer
perceptrons and Rossi et al. (2004) for the SOM algorithm), k-nearest neighbour
models (Biau et al. (2005)) or non parametric discrimination (Ferraty & Vieu
(2003)).

In this paper, we propose a new way to achieve functional regression: the
idea is to join the efficiency of a dimension reduction method using smoothing
penalization, to the strong adaptability of a neural network which can provide
highly non linear solutions even if the number of predictors is too large for
classical nonparametric methods such as kernels smoothing. The functional SIR
dimension reduction method is first presented in Section 2. For this penalized
version, consistency results are given in Section 3. Section 4 discusses Neural
Network and gives consistency results for the proposed model combining FSIR
and Neural Networks (which will be called SIR-NNr). Section 5 is devoted to
applications: Section 5.1 deals with the Tecator data set and Section 5.2 with
the phoneme data set. In Appendix, we give a sketch of the proofs. All programs
have been made using Matlab and are available on request.

2 Sliced Inverse Regression

Let Y be a real random variable and X be a multivariate variable assumed to
have a fourth moment. To overcome the curse of dimensionality in the nonpara-
metric regression of Y on X , Li (1991) introduced the Sliced Inverse Regression.
He considers the following model

Y = f(a′1X, a
′
2X, . . . , a

′
qX, ǫ),
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where ǫ is centered and independent of X , f is an unknown function and
(aj)j=1,...,q are lineary independent vectors.

The space spanned by (aj)j=1,...,q is called EDR (Effective Dimension Re-
duction) space. SIR deals with the estimation of this EDR space and the aim
of sliced inverse regression is to estimate it by means of the eigenvectors of the
matrix V ar(X)−1V ar(E(X |Y )).

In the multivariate context, numerous works deal with SIR. In particular,
methods have been proposed to improve SIR: different estimates of the covari-
ance of the conditional mean have been built (in Hsing & Carroll (1992) and
Zhu & Fang (1996)) while other methods have been proposed to estimate the
EDR space (for example, PHD proposed by Li (1992), SAVE by Cook & Weis-
berg (1991) or MAVE by Xia et al. (2002)). The main interest of this model
is that, once the EDR space is estimated, the estimation of f is obtained very
easily with traditional techniques provided that q is not too large.

2.1 Functional SIR

Now consider a real random variable Y and X a random variable taking its
values in L2

T , the space of squared intregrable functions from a compact interval
T into R. With the usual inner product defined by, for all f, g in L2

T , 〈f, g〉 =∫
T f(t)g(t)dt, L2

T is a Hilbert space. We will assume that the random variable
X is centered, without loss of generality, and has a fourth moment. Then, the
covariance operator of X exists and is defined by ΓX = E(X⊗X) where X⊗X
denotes the operator which associates to any f in L2

T , 〈f,X〉X. We also get
that E(X |Y ) and ΓE(X|Y ) = V ar(E(X |Y )) exist. Ferré and Yao (2003) have
proposed to investigate the following model for functional inverse regression:

Y = f(〈X, a1〉, . . . , 〈X, aq〉, ǫ) (1)

where f is an unknown function, ǫ a random variable which is centered and
independent of X and (aj)j=1,...,q are lineary independent functions of L2

T .
The crucial point of functional SIR is that, unlike the multivariate case,

Γ−1
X is not defined since we have to assume that ΓX is a positive defi-

nite operator which implies that it is not invertible as defined from L2
T

to L2
T . However, if we call (δi)i=1,...,∞ its sequence of eigenvalues and

(ui)i=1,...,∞ those of orthonormed eigenvectors, RΓ the image of ΓX and R−1
Γ ={

h ∈ L2
τ : ∃f ∈ RΓ, h =

∑
i(1/δi)(ui ⊗ ui)(f)

}
, ΓX is a one-to-one mapping

from R−1
Γ to RΓ whose inverse, called Γ−1

X , is defined by Γ−1
X =

∑
i(1/δi)ui⊗ui.

We focus on the estimation of the estimation of the EDR space spanned by
the vectors (aj)j=1,...,q. Now, the key of the method comes from the following
theorem:

Theorem 1 (Ferré & Yao (2003)). Writing A = (〈X, a1〉, . . . , 〈X, aq〉)T , if

(A1) for all u in L2
T there exists v in R

q such that: E(〈u,X〉|A) = vTA

then E(X |Y ) belongs to the subspace spanned by ΓXa1, . . . ,ΓXaq.
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Remark 1. Note that Cook & Weisberg (1991) show that elliptically distributed
variables satisfy condition (A1) in the multidimensional context but this can
be transposed in infinite dimensional Hilbert spaces (see Yao (2001)).

By using the result of Dauxois et al. (2001), a consequence of Theo-
rem 1 is that the EDR subspace contains the ΓX -orthonormed eigenvectors
of Γ−1

X ΓE(X|Y ) associated with the q positive eigenvalues. Then, in the follow-
ing, (aj)j=1,...,q will denote those eigenvectors. This is the generalization of Li
(1991) on SIR to infinite dimensional case.

A basis of the EDR space is thus given by the eigenvector of Γ−1
X ΓE(X|Y ) but

to ensure that these eigenvectors exist in L2
T , we have to assume that (see Ferré

& Yao (2005) for details)
∑

i

∑
j 1/(δiδj)E(E(ζi|Y )E(ζj |Y ))2 < +∞, where

X =
∑

i ζiui is the Karhunen-Loève decomposition of X .

Let {(Xn, Y n)}n=1,...,N be an i.i.d. sample. In order to estimate the EDR
space, we have to choose an estimate for ΓE(X|Y ). We propose a slicing ap-
proach: in Ferré & Yao (2003), the estimate is obtained by partitionning the

domain of Y in (Ih)h=1,...,H and by setting ΓN
E(X|Y ) =

∑H
h=1(Nh/N)µh ⊗

µh − X ⊗ X, where, if I is the indicator function, Nh =
∑N

n=1 I{Y n∈Ih},

µh = (1/Nh)
∑N

n=1X
n
I{Y n∈Ih} and X is the empirical mean. Another ap-

proach, based on a kernel estimate, has been developped in Ferré & Yao (2005).
Although this could be used in our context, we focus on a slicing approach for
the sake of simplicity.

A usual estimate of ΓX is ΓN
X = (1/N)

∑N
n=1X

n ⊗ Xn − X ⊗X , but this
estimate is ill conditionned (because Γ−1

X is not a bounded operator) so the eigen-
vectors of (ΓN

X)−1ΓN
E(X|Y ) do not converge to the eigenvectors of Γ−1

X ΓE(X|Y ).
That is the reason why penalization or regularization is needed.

Ferré & Yao (2003) suggest to proceed like Bosq (1991) by considering,
instead of ΓX , a sequence of finite rank operators with bounded inverses and
converging to ΓX . This leads to the estimates (aN

j )j=1,...,q of (aj)j=1,...,q that,

under some conditions, satisfy ‖ aN
j − aj ‖→p 0.

The authors also suggest a way of estimating the EDR space for functional
data without inverting the covariance operator of the regressor (Ferré & Yao
(2005)).

We propose, in Section 3, a regularized approach by penalization.

2.2 SIR for classification

Let C1, . . . , CH beH groups. When Y is multidimensional, the results of Dauxois
et al. (2001) are still available and by setting Y = (IC1

, . . . , ICH
), where ICh

is the
indicator function of the hth group, Model (1) remains valid and we get a natural
way to include classification problems into FSIR, see Ferré & Villa (2005). Note
that, in the functional case, multivariate methods for discrimination have been
extended, mainly inspired from Linear Discriminant Analysis (LDA). In this
area, let us mention the works of Hastie et al. (1994), Hastie et al. (1995) and
James & Sugar (2003).
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Now, by estimating ΓE(X|Y ) by

ΓN
E(X|Y ) =

1

N

H∑

h=1

NhÊ(X |Y = h) ⊗ Ê(X |Y = h) −X ⊗X

where Nh =
∑N

n=1 I{Y n=h} and Ê(X |Y = h) = (1/Nh)
∑N

n=1X
n
I{Y n=h}, FSIR

leads to a discriminant analysis. The estimation of the EDR space is identical to
the discriminant space in linear discriminant analysis. However, the estimation
of f leads to a natural classification rule. Indeed, since we have, for all x,
f(x) = E(Y |X = x) = (P (C1|X = x), ..., P (CH |X = x)), the estimation of f
coincides with the estimation of the probabilities of the groups conditionally to
X .

3 Regularized functional SIR

In Section 2, we saw that the EDR space contains the eigenvalues of the operator
Γ−1

X ΓE(X|Y ). Thus, as it is the case for Discriminant Analysis, the estimator
of the first direction of the EDR space can be found by maximizing a Rayleigh
criterion: maxa〈ΓE(X|Y )a, a〉/〈ΓXa, a〉. Unfortunately, as ΓN

X is ill conditionned,
the maximization of the empirical Rayleigh expression does not lead to a good
estimate of the EDR space: that is the reason why a regularization is needed.

Provided that we have smooth functions, a relevant method for functional
data is to penalize the covariance operator in the Rayleigh expression by in-
troducing smoothing constraints on the estimated functions. This method has
already proved its great efficiency (see Hastie et al. (1995) for an example of the
penalized discriminant analysis).

3.1 Main result

Let S be the subspace of L2
T of functions with a squared integrable second

derivative. We introduce a penalty through a bilinear form defined on S × S
by, for all f, g in ∈ S, [f, g] =

∫
T
D2f(t)D2g(t)dt. We also define the penalized

bilinear form associated with empirical operators ΓX and ΓN
X :

Qα(f, g) = 〈ΓXf, g〉 + α[f, g] and QN
α (f, g) = 〈ΓN

Xf, g〉 + α[f, g]

where α is a regularization parameter. The solutions of the regularized FIR are
given by maximizing, under orthogonal constraints, the function

γN (a) =
〈ΓN

E(X|Y )a, a〉
〈ΓN

Xa, a〉 + α[a, a]
.

In order to obtain consistency results for the estimates of (aj)j=1,...,q, we
make the following assumptions:
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(A2) E(‖ X ‖4) < +∞;

(A3) for all α > 0, inf‖a‖=1, a∈S Qα(a, a) = ρα > 0;

(A4) ΓN
E(X|Y ) is a continuous operator which converges in probabil-

ity to ΓE(X|Y ) with
√
N rate;

(A5) limN→+∞ α = 0, limN→+∞

√
Nα = +∞;

(A6) (aj)j=1,...,q belong to S and verify, for all u such that
〈ΓXu, a1〉 = 0 and that 〈ΓXu, u〉 = 1, 〈ΓE(X|Y )u, u〉 ≤
〈ΓE(X|Y )a2, a2〉 = λ2 < λ1.

Since, S is not a closed subset, γN could not reach a maximum on S. How-
ever, the following result holds:

Theorem 2. Under assumptions (A1)-(A6), with probability converging to 1,
the function γN reaches its maximum on S when N grows to +∞.
In this case, let then aN

1 be a vector of S for which γN is maximum and which
is such that 〈ΓXa

N
1 , a1〉 = 1. Then,

〈ΓX(aN
1 − a1), a

N
1 − a1〉 →p 0,

when N tends to +∞.

Remark 2. For an understandable presentation, we introduce a particular type
of penalization but previous results can be found for other regularization func-
tionals satisfying the assumptions. For example, we can replace the bilinear
form [., .] by another one which is similar to the one used in Ridge-PDA (Hastie
et al. (1995)).

Remark 3. Assumptions (A2), (A3) and (A5) are technical assumptions that
ensure the existence and convergence for (aN

j )j=1,...,q: (A2) implies that ΓN
X will

converge to ΓX at the
√
N rate; we can find in Leurgans et al. (1993) conditions

that involve (A3). This assumption shows the purpose of regularization: it
controls the scaling of Qα and, thanks to (A5), ensures that the denominator of
γN doesn’t go too fast to 0. Finally (A5) gives a way of choosing regularization
parameter α (for pratical aspects see section 3.2).

Remark 4. When working with a compact operator T , the ridge regularization
T + αI (where I denotes the identity operator) always leads to inf‖α‖=1〈(T +
αI)a, a〉 = ρα > 0 which is exactly assumption (A3). Here, the regularization
applied to ΓX is not the ridge one but is more adapted to the smoothness of
the data; an intuitive meaning of this is the ridge regularization of a D2ΓXD

−2

type operator (see also section 3.2 for a consequence of this penalization and
the link with assumption (A3)).

Remark 5. Assumption (A5) is fullfilled by the usual estimates introduced
above: Li (1991) emphasized the fact that the sliced estimate is consistant,
with rate

√
N , for the variable (Y ∈ Ih)h=1,...,H which satisfies assumption
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(A1) as Y does. Ferré & Yao (2005) proved the consistency of the Nadaraya-
Watson estimate of ΓE(X|Y ) and the hilbertian Central Limit theorem ensures
the consistency of the estimate given for the classification case.

3.2 Practical aspects

On a practical point of view, X has been observed at some points t1, t2, . . . ,
tD (for an understandable presentation, we suppose that these observations
have been centered). The optimization of the penalized Rayleigh expression
described in Section 3.1 can be performed by using, for example, B-Splines
(Bi)i to parametrize aN

1 :

aN
1 (t) =

∑

i

A1iBi(t) = A1B

where B is the matrix containing the values of (Bi(t))i at the points t1, t2, . . . ,
tD. Similarly, the matrix of observations X = (Xn(td))n=1,...,N, d=1,...,D can be

written in the form of B-Splines: X = CB with C =
[
C1, . . . , CN

]′
. Let B(2)

be the vector containing the values D2B(t).

If we use the slicing estimate of ΓE(X|Y ) for regression, we introduce,

for all h = 1, . . . , H, Yh =
[
I{Y 1∈Ih}, . . . , I{Y N∈Ih}

]′
. Then, the prob-

lem of maximizing γN is equivalent to maximizing (A′MeA)/(A′MX,αA)
where Me is the estimator of ΓE(X|Y ) obtained by the slicing approach:

Me =
∑H

h=1(Nh/N)BB′C′YhY
′
hCBB

′ and where MX,α = (1/N)BB′C′CBB′+
αB(2) ′B(2). This expression underlines the role of the penalization: the matrix
(1/N)BB′C′CBB′ is usually ill-conditionned (because of the high-dimension of
the data) and have tiny eigenvalues (that can even be equal to 0). Provided
that B(2) ′B(2) is invertible, the eigenvalues are rescaled in a basis depending on
B(2) and are minored by a strictly positive number depending on α: assumption
(A3) is then practically fullfilled.

The first solution is the eigenvector, with MX,α-norm equal to 1, associated
with the largest eigenvalue of the matrix M−1

X,αMe. By pursuing the procedure
under othogonality constraints, we get that the other solutions are the MX,α-
orthonormal eigenvectors of M−1

X,αMe.

If we deal with classification, the same procedure is achieved by letting Yh =[
I{Y 1=h}, . . . , I{Y N=h}

]′
.

Finally we have to find the optimal value for α. This can be done, if the
sample is large enough (which is the case in the presented applications), by
dividing it into two parts: we apply the previous procedure on the first part to
find (aN

j )j and evaluate the error committed by Model (1) on the second part;
the best parameter is then chosen to minimize this error.
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4 Multilayer perceptrons

4.1 Approximation by multilayer perceptrons

After the EDR space is estimated, the goal is to get an estimation of the function
f in (1): we propose to use a feedforward neural network with one hidden layer.
This method (see, e.g., Bishop (1995) for a review on Neural Networks) is an
alternative to other nonparametric regressions if the dimension of the EDR
space is too large. It has the advantage of working in any cases while some
nonparametric methods, such as kernel smoothing or splines smoothing, face
the curse of dimensionality.

The main interest of neural networks is their ability to approximate any
function with the desired precision (universal approximation); see, for instance,
Hornik (1993) for the multivariate context and Stinchcombe (1999) and Rossi
& Conan-Guez (2005) in the infinite dimensional one.

4.2 A consistency result

Multi-layer perceptrons approximations of functionals in infinite dimensional
spaces have been studied in Chen & Chen (1995), Sandberg & Xu (1996) and
Rossi & Conan-Guez (2005). Several strategies are available either by directly
using the curves as inputs of the feedforward neural networks or by first project-
ing the data onto a classical functional basis (such as a spline basis, a Fourier
basis, wavelets) or a basis derived from the PCA of X . This latter approach is
used by Thodberg (1996).

Our approach is similar but, instead of projecting the data onto a fixed basis
or a principal component basis, we project them onto the EDR space. The EDR
space behaves as an efficient subspace for the regression of Y on X and it is
a way to get a basis which takes into account the relationship between Y and
X. In fact, the data are projected onto an estimation of the EDR space, so the
accuracy of the projection and then the estimation of the optimal weights for
the neural network also depend on how good the EDR space is estimated.

We construct a perceptron (see Figure 2) with one hidden layer having

• as inputs, the coordinates of the projection of X onto Span{(aj)j=1,...,q}:
〈X, a1〉, . . . , 〈X, aq〉;

• q2 neurons on the hidden layer (where q2 is a parameter to be estimated);

• as outputs, one neuron for regression and H neurons for classification,
representing target Y .

[Figure 2 about here.]

The output of such a neural network is then
∑q2

i=1 w
(2)
i g

(∑q
j=1 w

(1)
i,j 〈X, aj〉 + w

(0)
i

)
where g is the activation function

(for example a sigmoid). The purpose of the training step is then to find w∗
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which minimizes a loss function L between the output of the neural network

with weights w =
(
(w

(2)
i )i=1,...,q2

, (w
(1)
i,j )j=1,...,q

i=1,...,q2
, (w

(0)
i )i=1,...,q2

)
, and the target

Y :

w∗ = argmin




E



 L




q2∑

i=1

w
(2)
i g




q∑

j=1

w
(1)
i,j 〈X, aj〉 + w

(0)
i



 , Y












 . (2)

Actually, we obtain an estimation w∗
N of w∗ by

w∗
N = arg min






N∑

n=1

L




q2∑

i=1

w
(2)
i g




q∑

j=1

w
(1)
i,j 〈Xn, aN

j 〉 + w
(0)
i



 , Y n








 .

White (1989) gives a consistency theorem for the weights of a neural networks
estimated by a set of iid observations. Since (aN

j )j is an estimation of the EDR
space deduced from the whole data set {(Xn, Y n)}n, the inputs of our functional
perceptron used to determine w∗

N do not satisfy the iid assumption and a proper
consistency result is then needed.

Let us introduce some notations: ζ is the function from O × W (O is an
open set of R

q+1 and W is a compact set of R
(q+2)q2 ) such as for all z =

(u, y) in O, ζ(z, w) = L
(∑q2

i=1 w
(2)
i g

(∑q
j=1 w

(1)
i,j uj + w

(0)
i

)
, y

)
; Z is the couple

of random variables ({〈X, aj〉}j , Y ) and (Zn)n=1,...,N are observations of Z;

finally, (Z̃n
N )n=1,...,N are the couples of ({〈Xn, aN

j 〉}j , Y
n). In our context, the

consistency of the Multi-layer Perceptron is given by the following theorem:

Theorem 3. Under assumptions (A1)-(A6) and the following assumptions

(A7) for all z in O, ζ(z, .) is continuous;

(A8) there is a measurable function ζ̃ from O into R such that, for
all z in O, for all w in W, |ζ(z, w)| < ζ̃(z) and E(ζ̃(Z)) < +∞;

(A9) for all w in W, there exists C(w) > 0 such that, for all (x, y)
and (x′, y′) in O, |ζ((x, y), w) − ζ((x′, y), w)| ≤ C(w) ‖ x− x′ ‖

(A10) for all w in W, ζ(., w) is measurable.

If W∗ is the set of minimizers of the problem (2) then

d(w∗
N ,W∗) →p 0

as N tends to +∞ with d defined by: d(w,W) = infw̃∈W ‖ w − w̃ ‖ where ‖ . ‖
is the usual euclidean distance.
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Remark 6. This list of assumptions is, for example, verified by a perceptron
with one hidden layer and a sigmoid function g(x) = ex/(1 + ex) on the hidden
layer associated with the square error L(ψ, y) =‖ ψ − y ‖2 provided that Y is
bounded.

Remark 7. Assumptions (A1)-(A6) ensure the convergence of (aN
j )j=1,...,q to

(aj)j=1,...,q but they can be replaced by a list of assumptions implying the same
result. For example, we would have the same consistency result by projecting
the data on the estimated EDR space found by the functional SIR presented in
Ferré & Yao (2003) and Ferré & Yao (2005).

5 Applications

5.1 Tecator data

As already said, the Tecator data problem consists in predicting the fat content
of pieces of meat from a near infrared absorbance spectrum. We have N = 215
observations of (X,Y ) where X is the spectrum of absorbance discretized at one
hundred points and Y is the fat content.

In order to compute the procedure described in section 3.2, we project the
data onto a cubic Spline basis. Because of their smoothness, these data are very
well projected onto a basis with 40 equally spaced knots (actually, when using
40 equally spaced knots, or more, the interpolation of the observations by the
Spline basis is exact); then, for simplicity reasons, we used this projection for
the computation when needed and used the original data in the other cases. We
tried several classical methods in order to test the efficiency of SIR-NNr. The
competitors are:

• SIR-NNr: the functional SIR regularized by penalization, presented in
Section 3, precedes a neural network. The neural network training step is
made by early stopping procedure: the learning sample is divided into 3
samples (training / validation / test); the training sample is used to train
the neural network, the validation sample for an early stopping procedure
(when the validation error increases, training is stopped) and this training
step is performed 10 times. The best performance of the test sample gives
the optimal weights;

• SIR-NNk: here we use the smoothed functional inverse regression
method presented in Ferré & Yao (2003) as pre-processing to a neural
network; the purpose is to show the benefit of the regularization. The
neural network is also trained by early stopping;

• PCA-NN: in order to show the advantage of SIR, we compute a prin-
cipal component analysis (as Thodberg (1996)) before a neural network
procedure is used (a classical neural network while Thodberg uses a so-
phisticated bayesian neural network);
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• NNf : this method is the functional neural network (the Spline projections
are used to represent the functional weights and inputs) described by Rossi
& Conan-Guez (2005). In this paper, B-Spline basis projection is selected
by cross-validation which leads to a huge computational time: we do not
follow this approach and use the cubic basis with 40 knots;

• SIR-L: after projecting the data onto the EDR space determined by regu-
larized SIR, we compute a linear regression in order to show the efficiency
of a neural network compared to a classical parametric method.

We also have to notice that some classical nonparametric methods, such as
kernel estimates which depend on the euclidean norm, can not be used for this
data set as the dimensionality of the EDR space is too large compared with the
number of data (the value of q is given in Table 1).

Before we compare the different methods and in order to limit computa-
tional time, we determined the best parameters for each one. Our sample is
divided into two parts: on the first one, we determine the values of (aN

j )j and
of the weights of the neural network for various values of α, q and q2. On the
second part, we determine the standard error of prediction (SEP): the “best”
parameters are those which minimize this SEP (see Table 1).

[Table 1 about here.]

Then, in order to see, not only the error made by each method, but also
its variability, we randomly build 50 samples divided as follows: the learning
sample contains 172 observations and the test sample contains 43. All five
methods are first trained on the learning sample (with their optimal parameters
pre-determined as described above) and the standard error of prediction (SEP)
is then performed on the test sample.

Figure 3 gives the boxplot of the test errors for the 50 samples.

[Figure 3 about here.]

These results show the excellent performances obtained by SIR-NNr: its
SEP average over the 50 samples is twice lower than any of the other competi-
tors. Moreover, this method garantees a good stability unlike the others. SIR
seems to be a very good pre-processing stage, as SIR-NNk also obtains good
performances. Then we have NNf but its rather good results suffer from a very
slow computational time. To show this, we give the computational time of each
method: when SIR-NNr takes 100 seconds per sample, NNf takes 350 and SIR-L
only 1. Clearly NNf is very expensive while SIR-L is very fast but works poorly.
Actually, it is closely related to the number of inputs: 42 for NNf and 20 for
SIR-NNr.

5.2 Phoneme data

In this section, we compare our methodology with other approaches on a clas-
sification problem, namely the phoneme data. The data are log-periodograms
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of a 32 ms duration corresponding to recorded speakers; it deals with the dis-
crimination of five speech frames corresponding to five phonemes transcribed as
follow: [sh] as in “she”, [dcl] as in “dark”, [iy] as in “she”, [aa] as in “dark” and
[ao] as in “water”. Finally, the data consist in 4 509 log-periodograms of a 256
length (see Figure 4).

[Figure 4 about here.]

We tried several classical methods in order to test the efficiency of SIR-NNr
which is compared with:

• SIR-NNp: a classical SIR as presented in Ferré & Yao (2003) as prepro-
cessing of a neural network;

• SIR-K: a regularized functional SIR where the function f is estimated by
a nonparametric kernel method;

• Ridge-PDA: the penalized discriminant analysis introduced in Hastie
et al. (1995) which uses ridge penalty;

• NPCD-PCA: a nonparametric method using kernels and semi-metrics
based on Principal Component Analysis and introduced by Ferraty &
Vieu (2003).

The optimal parameters for these methods, choosen as in the previous ex-
ample, are shown in Table 2.

[Table 2 about here.]

For the SIR stage, the optimal dimension of the EDR space is set to 4: it is the
maximum dimension possible as the operator ΓN

E(X|Y ) is of rank H − 1. We can
also see that this dimension is relevant by looking at the projection of the data
onto the EDR space (for SIR-NNr, for example, see Figure 5): only the fourth
axis is able to separate the phonems [aa] and [ao].

[Figure 5 about here.]

Then we randomly build 50 samples divided as follows: the learning sample
contains 1 735 log-periodograms (347 for each class) and the test sample contains
also 1 735 (347 for each class). All five methods are first trained on the learning
sample and the test error rate is then computed on the test sample. Figure 6
proposes the boxplot of the test error rates.

[Figure 6 about here.]

The results of SIR-NNr, SIR-NNp and SIR-K are very close. The benefit of
SIR is highlighted since those three methods work better than others based on
different projections of data. The advantage of regularization is also revealed
since it leads again to the best results. Then comes RPDA and finally NPCD-
PCA which provides the poorest performances. On the contrary, due to a low
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dimensionality, neural networks seem to be less performant than kernels and to
have a bigger variability (standard deviation is 0.56 for SIR-NNr and only 0.40
for SIR-K): this problem can be removed by increasing the number of training
steps, by using more sophisticated architecture or a regularization technique
(such as weight decay) but at the price of a larger computational cost. Finally,
if SIR-K obtains the best mean (8.09 % versus 8.21 % for SIR-NNr), SIR-NNr
is the method which reaches the best minimum which shows its great potential.

In conclusion, both on regression and classification problems, regularized
SIR-NN is a competitive solution for functional problems: we can explain these
good results by noting that the procedure combines an efficient dimension re-
duction model and the great accuracy of a neural network, which is able to
approximate almost every function. Thus this model can be efficient both for
ill-posed problems thanks to the penalized functional and for problems with a
large dimensionality thanks to the neural network step. Finally it has another
great advantage: computational time is rather short and does not increase too
much with the number of observation points for the curves.
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A Appendix

Here we give the main lines of the proofs of Theorems 2 and 3.

A.1 Theorem 2

The proof of this theorem is related to the one of Theorem 1 in Leurgans et al.
(1993) and only sketches are given.

Lemma 1: Using Central Limit Theorem, it is easy to show that if δN =
max{9ΓN

X − ΓX9; 9ΓN
E(X|Y ) − ΓE(X|Y )9} and if the sequence (kN )N satisfies√

NkN → +∞ then k−1
N δN →p 0.

Existence: We have for α in [0, 1], Qα = (1 − α)〈ΓX ., .〉 + αQ1 and then,
for all u such that ‖ u ‖= 1, (1/α)Qα(u, u) > (1/α− 1)〈ΓXu, u〉 + Q1 > ρ1 by
the positiveness of ΓX . Then,

√
Nρα > α

√
Nρ1 and we have

√
Nρα → +∞ . (3)

Then, by Lemma 1, noting ∆N
1 = ΓN

X − ΓX ,
limN→+∞ P

(
{ω ∈ Ω : 9∆N

1 9 ≤ (1/2)ρα}
)

= 1 (where Ω denotes the probabil-
ity space on which X and Y are defined). But, we have

{ω ∈ Ω : 9∆N
1 9 ≤ 1

2
ρα} ⊂

{
ω : ∀ a ∈ S, ‖ a ‖= 1, QN

α (a, a) ≥ 1

2
ρα > 0

}



16 L. Ferré and N. Villa Scand J Statist

and finally the right hand part of the previous equation has a probability con-
verging to 1 when N converges to +∞.

Let B(0, 1) be the weak closure of {a ∈ S QN
α (a, a) = 1} and ζ be the

functional defined on {a ∈ S QN
α (a, a) = 1} by ζ(a) = 〈ΓN

E(X|Y )a, a〉, then ζ

can be extended to a uniformly continuous functional ζ̃ defined on B(0, 1) for
the weak topology. Finally, provided that QN

α (a, a) ≥ (1/2)ρα, ζ̃ reaches its
maximum on weak compact B(0, 1) which concludes the proof of the existence
of (aN

j )j=1,...,q.
Consistency: For the following, we suppose that we consider a ω̃ ∈ Ω such

that ω̃ ∈
{
ω ∈ Ω : γN has a maximum on S and reaches it

}
. Let λN

1 = λN
1 (w̃)

be this maximum and λα
1 be the maximum of γα(a) = 〈ΓE(X|Y )a, a〉/(〈ΓXa, a〉+

α[a, a]) on S; λα
1 is well defined thanks to assumption (A3).

Considering γα(a)/γ0(a), we easily show that

λα
1 → λ1. (4)

Then, by proving that supa∈S |γN(a) − γα(a)| →p 0, we can show that
∣∣λN

1 − λα
1

∣∣ →p 0. (5)

Finally, by combining (4) and (5), we conclude that

λN
1 →p λ1 (6)

Then, by using (6), we demonstrate that

γ(aN
1 ) →p λ1 = γ(a1). (7)

Thanks to the conclusion of Theorem 1 we show that
limN→+∞ P(〈ΓE(X|Y )a1, a

N
1 − a1〉 = 〈ΓXa1, a

N
1 − a1〉 = 0) = 1. Let

µN be 〈ΓX(aN
1 − a1), a

N
1 − a1〉; if 〈ΓE(X|Y )a1, a

N
1 − a1〉 = 0, we have

λ−1
1 γ(aN

1 ) ≤ (1+λ−1
1 λ2µN )/(1+µN ). As λ−1

1 λ2 < 1, the right hand side of the
previous inequality is less than 1; but λ−1

1 γ(aN
1 ) converges in probability to 1

by (7) so (1 + λ−1
1 λ2µN )/(1 + µN ) →p 1 and then we conclude with µN →p 0.

A.2 Theorem 3

The proof of this theorem is close to the one found in Rossi & Conan-Guez
(2005); the main difference is that the projection for the data is a random
variable. The proof will be divided into two parts:

We first prove that

sup
w∈W

∣∣∣∣∣
1

N

N∑

n=1

ζ(Z̃n
N , w) − E(ζ(Z,w))

∣∣∣∣∣ →p 0. (8)

Forall w in W , we have
∣∣∣∣∣
1

N

N∑

n=1

ζ(Z̃n
N , w) − E(ζ(Z,w))

∣∣∣∣∣
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≤
∣∣∣∣∣
1

N

N∑

n=1

ζ(Z̃n
N , w) − 1

N

N∑

n=1

ζ(Zn, w)

∣∣∣∣∣ +

∣∣∣∣∣
1

N

N∑

n=1

ζ(Zn, w) − E(ζ(Z,w))

∣∣∣∣∣ .

For proving that
∣∣∣(1/N)

∑N
n=1 ζ(Zn, w) − E(ζ(Z,w))

∣∣∣ →a.s. 0, we need

a general Uniform Strong Law of Large Numbers. Such a result is given
in Rossi & Conan-Guez (2005) and, by assumptions (A7), (A8) and
(A10), Corollary 3 of Rossi & Conan-Guez (2005) directly implies that

supw∈W

∣∣∣(1/N)
∑N

n=1 ζ(Zn, w) − E(ζ(Z,w))
∣∣∣ →a.s. 0.

Using assumption (A9) we see that

∣∣∣ 1
N

∑N
n=1

(
ζ(Z̃n

N , w) − ζ(Zn, w)
)∣∣∣

≤ C(w)
[∑q

j=1 〈ΓN
X(aN

j − aj), a
N
j − aj〉

]1/2

As 9ΓN
X − ΓX9 →p 0 and as, for all j = 1, . . . , q, 〈ΓX(aN

j − aj), a
N
j − aj〉 →p 0,

we then conclude that supw∈W

∣∣∣(1/N)
∑N

n=1

(
ζ(Z̃n

N , w) − ζ(Zn, w)
)∣∣∣ →p 0 (by

the same reference as above), which finally implies (8).
Secondly, let ǫ be a positive real. According to the Dominated Convergence

Theorem, E(ζ(Z, .)) is a continuous function which reaches its minimum m on
compact set W . Then we can show that there is a η(ǫ) > 0 such that, for all w
in W ,

|E(ζ(Z,w)) −m| ≤ η ⇒ d(w,W∗) ≤ ǫ. (9)

Then let Ωη,N be the following subset of Ω

{
ω ∈ Ω : sup

w∈W

∣∣∣∣∣
1

N

N∑

n=1

ζ(Z̃n
N , w) − E(ζ(Z,w))

∣∣∣∣∣ ≤
η

3

}
.

If ω ∈ Ωη,N then, as W is a compact set, we can find, for all N ∈ N, w∗
N (ω) ∈ W

which minimizes (1/N)
∑N

n=1 ζ(Z̃
n
N (ω), w). Let w∗ be in the closure of (w∗

N )N ;
then by arguments similar to the ones used in the first part of the proof we show
that, for all ω ∈ Ωη,N and for all w ∈ W , E(ζ(Z,w∗)) ≤ E(ζ(z, w)) + η, which
implies by the use of (9) that Ωη,N ⊂ {ω d(w∗(ω),W∗) ≤ ǫ} and this concludes
the proof as limN→+∞ P (Ωη,N ) = 1.



18 L. Ferré and N. Villa Scand J Statist

List of Figures

1 The regressor curves . . . . . . . . . . . . . . . . . . . . . . . . . 19
2 Neural network estimating f . . . . . . . . . . . . . . . . . . . . 20
3 Tecator data set: SEP for 50 samples . . . . . . . . . . . . . . . . 21
4 A sample of 10 log-periodograms per class . . . . . . . . . . . . . 22
5 Projection onto the EDR space of 50 log-periodograms by class . 23
6 Phoneme Data: Test error rates for 50 samples . . . . . . . . . . 24



Scand J Statist Functional MLP 19

Figure 1: The regressor curves
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Figure 2: Neural network estimating f
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Figure 3: Tecator data set: SEP for 50 samples
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Figure 4: A sample of 10 log-periodograms per class
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Figure 6: Phoneme Data: Test error rates for 50 samples
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Table 1: Best parameters for the five compared methods

Parameter 1 Parameter 2 Parameter 3

PCA-NN kn = 25 q2 = 12
(PCA dimension) (number of neurons)

NNf q2 = 18
(number of neurons)

SIR-NNr α = 5 q = 20 q2 = 10
(regularization of ΓX) (SIR dimension) (number of neurons)

SIR-NNk h = 0,5 q= 10 q2 = 15
(kernel window) (SIR dimension) (number of neurons)

SIR-L α = 0,5 q = 20
(regularization of ΓX) (SIR dimension)
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Table 2: Best parameters for the five compared methods

Parameter 1 Parameter 2 Parameter 3

SIR-NNr α = 10 q = 4 q2 = 15
(regularization of ΓX) (SIR dimension) (number of neurons)

SIR-NNp kn = 17 q = 4 q2 = 12
(PCA dimension) (SIR dimension) (number of neurons)

SIR-K α = 10−3 q = 4 h = 1
(regularization of ΓX) (SIR dimension) (kernel bandwidth)

RPDA α = 5 q= 4
(regularization of ΓX) (PDA dimension)

NPCD-PCA kn = 7 h = 25
(PCA dimension) (kernel window)


