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OBSERVABILITY AND VARIABLES CLASSIFICATION
IN BILINEAR PROCESSES

Journal A - 1990

J. RAGOT, D. MAQUIN, G. BLOCH, W. GOMOLKA

Centre de Recherche en Automatique de Nancy
Centre de Recherche sur la Valorisation des Minerais
BP 40 - Rue du Doyen Marcel Roubault - 54 501 Vandoeuvre Cedex - FRANCE

ABSTRACT

An algorithmic approach is presented which allows the separation of observable
variables of a process described by bilinear equations. Consequently, this separation
gives the equations which contain all the observable variables and allows the
reconciliation of the observable data. Several examples demonstrate the developed
algorithms and indicate the usefulness of the proposed approach in adjusting the

process data through the use of balance equations.

INTRODUCTION

For a process operating under steady state conditions, the variables are constrained by
conservation relations ; if we consider as variables the total flowrate and the
concentration in chemical species, the conservation laws of material give linear and
bilinear equations. In the simple case where all the variables are measured, it is a
common practice to test the consistency of data by evaluating the residues of balance
equations. Generally, data are conflicting in the sense that these residues are too large ;
it is then necessary to reconcile these data by using hypotheses on the statistic

distribution of the measurements.

Unfortunately this case of complete observations almost never occurs in reality for
reasons of cost, convenience or technical feasibility. Typically, we have a partial set of
measurements and we would like to know whether each variable is observable or
unobservable. The observability concept takes into account the fact that some variables



are directly measured and that some others can be deduced from the conservation

relations.

The concept of redundancy and observability is very easy to understand. Let us
consider the small network of Figure I where the points indicate the presence of

measurements.

Fig. 1 : A simple network

It is obvious that we can delete the measurement of stream 1 without making the
associated variable unobservable ; it is due to the fact that stream 1 can be deduced from
2, 3 and 4 ; so the measurement 1 is said to be redundant. On the contrary stream 6 is
not a redundant variable. For complex flowsheets described by graphs, the
decomposition based on the concept of observability has been proposed by several
authors [2], [7].

The importance of observability concept has been discussed in previous papers [7],
[4], [5] and [8]. As an important consequence, classification allows the size reduction
of the problem of data reconciliation. In this paper, our approach for treating bilinear
systems could be based on using and combining observability for linear system
successively for the total flow and for the components.

I - CLASSIFICATION OF VARIABLES : THE LINEAR CASE

The structure of a plant is conveniently represented by mean of its incidence matrix.

The balance equations can be represented by :



m

Y %jXj=0 (D

1
In these equations X represents the total flowrate of the stream j ; akj is the element of
the incidence matrix which denotes the topology of units and streams with agj = 1, if
stream j is an input to unit k and akj = -1, if stream j is an output from unit k. In matrix

notation, equation (1) can be written as follows :
AX=0 (2)

In the flowsheet of figure 1, we have observed that some streams are measured, some
others are unmeasured but deducible, and the others are not measured and not
deducible. A very simple scheme can be used to obtain this classification and specially
the redundant part of the flowsheet ; this scheme, called further the linear strategy, can
be formalized by a series of matrix transformations. The demonstration of these
transformations can be founded in [8] and we only report here the final result. Regular
matrix transformation can express the initial incidence matrix A under the equivalent

form :

measured unmeasured variables

variables
Al I 9) 0 deduction equations
A2 0) I
A3 O 9] O redundancy equations
observable unobservable
variables variabies

For instance, the flowsheet of Figure 2 (the point indicates the position of the

measurements) is characterized by the following incidence matrix :

streams
nodes | 1 2 3 4 5 6 7 8 9

I
II 5 . ¢ -
I : : i . 3 i 9




Fig. 2 : Partially measured flowsheet

The application of the procedure LINEAR gives the equivalent partionned matrix :

equations measured streams unmeasured streams
1 2 9 5 - 3 6 8 9
1 -1 1 . - : 1
3 -1 1 1
4 G -1 1 1
2 : s} & 4

By direct examination of this matrix, we deduce the classification :

streams 1, 2, 4 and 5 are measured and redundant
stream 7 is measured but not redundant

streams 3 and 6 are unmeasured but deducible
streams 8 and 9 are unmeasured and undeducible.

II - CLASSIFICATION OF VARIABLES : THE BILINEAR CASE

Let us consider now a component balance equation around unit k of the following

form :

m
21 akj Xj Yj=0 3)
J=

where X is the flow rate of stream j and Yj is the molar or mass fraction of the
considered component in the jth stream. Note that equation (1) is always available in
order to describe the total flow conservation. In matrix notation, equation (3) can be

written as follows :

AX*Y=0 4)



where the sign * is used to indicate a product of two vectors element by element.

In order to introduce the classification of variables, we consider a simple node with n
streams (n greater than 2), nx streams measured for the X variables and ny streams

measured for the Y variables. Different cases of interest can appear :

(a) nx = n and ny = n. In this case, all the variables X and Y are measured ; the

considered node is observable in X and Y.

(b) nx = n and ny = n - 1. Because the X variables are observable (all are
measured), the bilinear balance equation permits the deduction of the only one
unmeasured Y variable ; the node is completely observable in X and Y.

(©) nx = n and ny < n - 1. Because there are at least two unmeasured Y variables
they cannot be deduced with only one equation. The node is said to be observable in X

but unobservable in Y.

(d) nx =n - 1 and ny = n. The only one unmeasured X variable is deducible from
the linear balance equation ; the node is completely observable in X and Y.

(e) nx =n - 1 and ny = n - 1. Because the X variables are observable (the only one
unmeasured is deducible from the linear balance equation), the bilinear balance

equation permits the deduction of the only one unmeasured Y variable.

® nx =n- 1 and ny < n - 1. The only one unmeasured X variable is deducible ;
the node is completely observable in X. In the bilinear balance equation there are at

least 2 unmeasured variables in Y which are not deducible.

(g) nx = n - 2 and ny = n. Because all the Y variables are measured, the two
unknown X variables may be deduced (at the condition that the streams which are
unmeasured in X have distinct numeric values for their Y measures) by using the linear

and the bilinear balance equations.

The interactions, for the observability concept, between the variables X et Y are only
present and used in cases (b), (¢), (g). The given results are available for a node but

can be directly generalized for an agregation of nodes and for a whole flowsheet.



Let us now summarize, in the so called procedure BILINEARI1, the different aspects
discussed earlier in a systematized algorithmic approach, in order to classify the
variables for a given system. Note that on a numerical point of view, the procedure
only uses very simple calculus : extraction of a regular part of a matrix, permutation of
rows and columns of a matrix, counting measured streams on a node or on a group of

nodes.
Procedure BILINEARI1

SOBSX is the list of the observable streams in X and SOBSY is the list of the
observable streams in Y. At the beginning, these two lists are formed with the
measured streams. The procedure is divided into two major steps. The first one is
concerned with the linear observability : we detect the nodes which have streams
completely observable in X and the nodes which have streams completely observable in
Y. The second step is devoted to the deduction of unmeasured streams by using the
informations given mutually by the X and Y measurements.

Initialization : the lists SOBSX and SOBSY are fulled with the numbers of the

measured streams in X, Y.

Step1:

1a - apply procedure LINEAR to classify the X variables

if some X variables are deducible, complete the list SOBSX

obtain the list NOBSX of the nodes with streams completely observable in X

1b - apply procedure LINEAR to classify the Y variables
obtain the list NOBSY of the nodes with streams completely observable in Y

Step2:
2a - find the nodes in NOBSX with one unobserved Y stream
as the corresponding value can be deduced, complete the list SOBSY

2b - find the nodes in NOBSY with two unobserved X streams
as the corresponding values can be deduced, complete the list SOBSX
take care of the case of nodes with only two streams : the knowledge of Y values is not

sufficient to determine the X values

if SOBSX or SOBSY have changed, go to step 1, else stop the procedure

sl



Consider by example the flowsheet of Figure 3.

Fig. 3 : A simple flowsheet with measurements of flow (point)
and concentration (triangle)

Due to the simplicity of the flowsheet, the classification procedure can be applied by
only visual inspection of the measurement positions. The successive results obtained

by applying the procedure are the following.

Initialization :
SOBSX=(2,3,7,8)
SOBSY =(2,4,5,6,9,10)

NOBSX =()
NOBSY = ()
Fisrt cycle
Step 1:

la - Applying procedure LINEAR for X shows that streams 1, 4, 9 and 10 are
observable. Therefore SOBSX and NOBSX are updated :

SOBSX =(2,3,7,8,1,4,9,10)

NOBSX = (L I, I, IV)

1b - Applying procedure LINEAR for Y shows that the agregated node IV+V has all its
streams observed. Then :

NOBSY = (IV+V)

Step2:

2a - All the nodes of NOBSX have only one unmeasured Y stream except node II.
Therefore SOBSY and NOBSY are updated as :

SOBSY=(2,4,5,6,9,10,8,7, 1)



NOBSY =(LIIL IV, V)

2b - Because the node V is completely observed in Y, the two unmeasured streams (5
and 6) in X can be deduced. The corresponding lists are updated as :

SOBSX =(2,3,7,8.1,4,9,10,5,6)

NOBSX=(LILIOLIV,V)

Second cycle

Step 1 : nothing

Step2:

2a - The node II has only one unmeasured stream (stream 3) ; it can then be deduced
and the lists are updated as :

SOBSY=(2,456910,871,3)

NOBSY = (L I, I, IV, V)

As a conclusion, the flowsheet is totaly observable in X and Y.

III - THE GENERALIZED BILINEAR CASE

Let us consider now a component balance equation around unit k of the following

form :

m
y akj Xj Yij=0 i=1, ..., nc (number of components) (5
=1

where Xj is the flow rate of stream j and Yj is the molar or mass fraction of the

considered component ¢ in the jth stream.
In matrix notation, equation (5) can be written as follows :
AX*Y;=0 il .0 (6)

Procedure BILINEAR?2 is given for two components but can be easily extended for a
number nc of components. As BILINEAR1, the procedure BILINEAR?2 is divided into
two major steps. The first one is concerned with the linear observability : we detect the
nodes which have streams completely observed in X and the nodes which have streams
completely observed in Y1 and Y. The second step is devoted to the deduction of



unmeasured streams by using the mutual information given by the X, Y; and Y

variables.
Procedure BILINEAR2

Initialization : the lists SOBSX, SOBSY1 and SOBSY2 are filled with the numbers of
the measured streams in X, Y1 and Y3 ; the lists NOBSX, NOBSY1 and NOBSY?2 are
formed with the numbers of the corresponding nodes.

Step 1

1a - apply procedure LINEAR to classify the X variables

if some X variables are deducible, complete the list SOBSX

complete the list NOBSX of the nodes with streams completely observed in X

1b - apply procedure LINEAR to classify the Y1, Y7 variables
complete the list NOBSY1 of the nodes with streams completely observed in Y
complete the list NOBSY?2 of the nodes with streams completely observed in Y2

Step2:
2a - find the nodes in NOBSX with one unobserved Y stream ; as this value can be

deduced, complete the lists SOBSY1 and NOBSY1
find the nodes in NOBSX with one unobserved Y3 stream ; as this value can be

deduced, complete the lists SOBSY2 and NOBSY2

2b - find the nodes in NOBSY1 with two unobserved X streams ; as these values can
be deduced, complete the lists SOBSX and NOBSX

find the nodes in NOBSY?2 with two unobserved X streams ; as these values can be
deduced, complete the lists SOBSX and NOBSX

2¢ - find the nodes in NOBSY1 and NOBSY2 with three unobserved X streams and
complete the lists SOBSX and NOBSX (take care of the case of nodes with only two
and three streams ; similar remark as the one given in step 2 of BILINEAR1 algorithm)

if SOBSX, SOBSY1 or SOBSY?2 have changed, go to step 1.

The flowsheet of Figure 4 has been drawn in order to illustrate the different possible

situations.



Fig. 4 : Points indicate flow X, squares the first component Y1
and triangles the second component Y2

Initialization
streams "X" observable

2.35487.%15. 1% [ direct measurement ]

streams "Y1" observable 1, 2, 8,9, 11, 12, 13, 14, 16, 17 [ direct measurement ]

streams "Y?2" observable 1, 3, 7, 8, 11, 12, 13, 16, 17 [ direct measurement ]
First cycle

Step 1

streams "X" observable 1, 4, 8, 10 [ obtained with observability in X ]
Step 2

stream "Y1" observable
stream "Y2" observable

Second cycle

Step 1

nothing

Step 2

streams "X" observable

3,4,5 [ deduced from a complete node in X ]
2.4.5.69. 10 [ deduced from a complete node in X ]

12 13, 17 [ deduced from a complete node in Y]

30 -



Third cycle

Step 1
streams "X" observable 14, 15 [ obtained with observability in X ]
Step 2
stream "Y1" observable 15 [ deduced from a complete node in X ]
streams "Y2" observable 14, 15 [ deduced from complete nodes in X ]

A fourth cycle gives no more information on the observability point of view. Finally,

the observable variables are :

X=[232567.91L16L40. 0010 105,13, 14,15 ]
Yi=[L2801L12 0. 8 611 2045,
Y2={ L3RR LI 1L 610 . 0.4 569 10,18, 10 ]

It is also possible to obtain the observation equations which would be useful to
reconcile all the observable measurements. The preceding classification algorithm

simultaneously gives the corresponding equations.
For the linear equations :

X1-X2+Xy =
X2-X3-X1 =
X3-X4-Xs =
X5 - X6 + X10 =
X6 - X7- X3 =
X7- X9 - X10 =
X1 -Xn+Xi3+X16+X17 =
X12-X13-X14 =
X14 - X15- X16 =

o W o o i i B T

For the bilinear equations due to component 1 :

X1 Y11- X2 Y12+ X4 Y14 -
X2Y12-X3Y13-X11 Y111 =
X5Y1,5-X8Y1,8-X9 Y19 =
X3Y13-X4Y14 -X5Y1,5 =
X11 Yi,11-X12 Y12 + X33 Y1,13 + X16 Y1,16 + X17 Y1,17 =
X12 Y1,12- X13 Y1,13- X14 Y1,14 -

[ <o 5 oo ] o Sl o Ll <o o

%



X14 Y1,14 - X15 Y1,15 - X16 Y1,16 - 4
For the bilinear equations due to component 2 :

X1Y21-X2Y22+X4Y24 =
X3 Y23-X3¥3-X11 Yau =
X3Y23-X4Y24-X5 Y25 -
X5Y25- X6 Y2,6 + X10 Y2,10 =
X6Y2,6-X7Y27-X3Y28 =
X7Y2,7-X9Y29-X10 Y2,10 =
X11 Y211 - X12 Y2,12 + X13 Y2,13+ X16 Y2,16 + X17 Y2,17 =
X12 Y2,12- X13 ¥2,13 - X14 Y2,14 =
X14 Y2,14 - X15 Y2,15 - X16 Y2,16 =

& © G o D D 05

We note that these equations, which they are used all together to reconcile the data,
contain measured variables (some of them are redundant) and unmeasured but

deducible variables.

IV - DATA VALIDATION

From the whole process, we are now able to isolate the part which is observable
(deducible and redundant). We can reconcile the measured data of this subprocess by
taking into account the corresponding balance equations. As we are concerned with
bilinear equations, the estimation problem has, generally, no analytical solution.
However we can propose an iterative procedure.

Generaly speaking, the balance equations for the redundant variables, can always be

written as :
AX=0 (7
B.8Y)S, X =0 ®)

with A of dimension na.va, B, of dimension np;.vpi, and S;, a selection matrix. We
recognize that A is the incidence matrix for the linear equations, B, is the incidence
matrix for the bilinear equations (i=1, ..., nc) and S i selects the components of X used

with Y in order to form the bilinear equations. The operator ® is applied between the

iy



matrix B; and the vector ‘9 in order to form a matrix in which the line k is obtained by
mulnplymg each term of the line k of B, by each term of 9

The least squares estimation problem of true values is reduced to find the minimum
with regard to Ket Qi of the criterion (with i = 1, ..., nc the number of components for

the partial balance equations) :

=%|H§k XIIV1+ E—MH? YII 9)
subject to :

AX=0 (10)

B,9%)S, X =0 vl  w (11)

where H and Hi are the matrices of measurement function for X and Yj,

X and Y; are the measurement vectors of respective dimensions m and vpj,
X and Qi, the estimation vectors of dimensions vy and vp,
V3t and V3, are the inverse variance matrices of the measurements X and Y.

In order to simplify the notation let us also define the diagonal matrix ASiX formed, on

its diagonal, with the elements of S; &. It is then clear that equation (11) can also be

expressed as :

B; Agx ¥; = 0 i=1,..,nc (12)

Similarly, we define the diagonal matrix Ay; formed with Qi vector ; the preceding

equation takes also the form :

B, Ay;S;X = 0 w00 (13)
The Lagrangian associated to problem (9, 10, 11) is :

L=d>+xTA5‘<+nzcu;f(Bi®Qi)sik (14)
=1

The stationary conditions of first order require that :

195



nc
% =HTVy HX -X) +ATx+i§1 (B, Ay; S;)Ty, =0 (15a)

oL .
5" iTlei MY, - Y;) + (B, Asx )T H; =0 i=1, .., nc (15b)
AL _A% -0 (15¢)
oA

AL _me?)s.& =0 sl . .06 (150)
alvlfl 1 1 1

Generally, the system of equations (15) has not any analytical solution ; approximate
solutions must be found (for example by linearization of equations), or iterative

procedures based on hierarchical calculus, must be examined.

We propose a simple solution which is based on a two levels relaxation principle. In

order to simplify the notations, let :

1

Ny.

1

B; Ay, S; (17)

The following calculus allows to determine the estimation &, premultiply equation
(15¢c) by AT :

ATAX =0 (18)

then (15d) by Ny, :

T ;
Ny, Ny; X =0 foek; o H (19)

By adding equations (15a), (18) and (19), we obtain :

¥ il 4 e B <
GH VyxX-A'A- 3 Ny, 1) (20)

with G

T ot T s -1
(H'VyH+A A+ 3 Ny, Ny) 1)

Notice that G matrix is always regular because of the global observability of the

system.

Thus, by combining (20) and (15c), the estimation & can be written as :

‘.



e 1-CATGAOA A DX (22)
ih X =HTVIX- 3 NL (23)
b g St i§1 ;i Hi

Therefore, from equations (15b) and (15d), we obtain :

T ¥ .3 Tl

% =a-q Nx; ; G Ny, ) N, ) G Hy Vy Y, 24

= GNL YN, GHIVD Y 25)
l‘Li_(NXi 1 Xi) NXi YooYy

G= (H]Vy, H + Ny, Ny (26)

From (15b) we have :
-1 ;
BTy, = Agx Hi Vy, (H¥-Y)) . 27

Then X vector given by equation 23, can be written as a function of X, Y, et Qi :

nc
=y 1.1 3 -1 i |
X =H VyX- ¥ S Ay Agx Hj Vi, (H Y- Y)) (28)
Then, using the definition (16), the estimation Qi becomes :

3

1

4 T 3.y
AsxITi- T By (BRI, B ) B I5) Agix H; Yy ¥,

Il

with 1"i Asix Gi Asix (29)

Finally, the solution is obtained through a direct iteration algorithm. The first level
estimates X (equations 22 and 28) after calculating G as a function of the estimation ?i,
initialized to Yj. The second level estimates 91 (equation 29) after calculating I‘i as a

function of X which is produced by the upper level.

Notice that the calculus at each level are relatively reduced, due to the particularly forms
of equations (22) and (29). Moreover, it is possible to use a recurrence formula for
matrix inversion which degenerates into computing the reciprocal of scalars [8]. The
calculus is stopped when all the derivatives of the Lagrangian are kept below a given
threshold.

+ 15



For the flowsheet of Figure 2, the Table 1 indicates the numerical results ; the first
column contains the number of the streams, the second one is related to the
measurements and the last to the estimations. The reconciliation has been performed

with a unit variance on all the measured data.

Stream Measurements Estimations
X Y1 Y2 X & § | s
1 - 13 139 20.844 1493 1.234
2 25.400 1.599 - 25451 1Y 1130
3 9.616 - 2.481 9565 3111 2148}
4 - - - 4.607 2.080 0.676
5 $182 - - 4958 4.080 4.158
6 6.801 - - 0 - 3.425
7 5.432 - 2.000 p G § ¥ 2.000
8 - 2470 7.508 1R18 1412 1000
9 2911 5000 - 3140 5012 2218
10 - - - 2.067 - 1.668
11 15937 0656 0319 15.885 0.685 0.321
12 - 0.802 0.944 30.786 0.811 0.942
13 - 1.004 1.578 3.066 1.003 1.578
14 - 0.805 B 27370 038 OBl
13 - - - 22634 0609 03833
16 5086 1592 1.040 5086 1593 1040
17 - 0.427 2.039 6.748 0429 2.039
Table 1 : Measurements and estimations
CONCLUSION

An algorithm has been developped for determinating the observability of variables in a
process network operating under steady state condition. Starting with only one mass
flow network, the complexity has been increased by investigation of multicomponent
balances. By making intensive use of linear observability we are able to develop and
implement a classification algorithm which is computationally quite efficient.
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