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ABSTRACT

A well known method for residual or redundancy generation is extended to systems with

unknown inputs. It is based on the singular form of the system equations which allows the

generation of the substate of the system which is insensitive to the unknown inputs. This

generation is achieved by a two-steps algorithm including, first, the elimination of the unknown

inputs and second, the generation of the redundancy equations. Using these results for fault

detection and isolation, we present a simulated example to illustrate our method.
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INTRODUCTION

The basic principle of fault detection is the comparison of the actual behavior of a process with a

reference behavior. Fault detection and isolation (FDI) schemes may be thought of as consisting

of two stages : residual generation and analysis of these residuals (detection of events,

classification of events into faults and normal modifications of the process and the isolation of

the faulty components). Generally, the residual generation is issued from the knowledge

available upon the process for example analytical models, knowledge base, sensors and

actuators signals, ... One of the most popular approaches is based on the analytical redundancy

(using the mathematical models of the physical system) which leads to express a set of

invariants : the residuals of the process model. These residuals  represent the inconsistency

between the actual plant variables and the mathematical model. They are computed from the

plant observations and with the model of this plant ; they are ideally zero but become non-zero if

the actual system differs from the ideal one (this may be due to sensor or actuator faults,

modelling errors, non exact parameters of the model, ...) Then, the fault detection is achieved by

testing the magnitude of these residuals. When only few sensors are available the analytical

redundancy has to be generated on a "long" time interval. In this case, system observers are

commonly used to estimate state time histories for processes with incomplete set of state

measurements (Gertler 1991). However in a certain number of applications a complete

knowledge of the system inputs is unavailable. Several researchers have investigated state

observers when the inputs are unknown based on a closed-loop observer that can identify states

and inputs simultaneously (Park 1988), with the use of a full-observer (Yang 1988), using an

augmented model to estimate the state and the unknown inputs (Gleason 1990) or by designing

a reduced-order unknown input observer (Kudva 1980), (Guan 1991). In 1989, the advantages

of using the so-called Kronecker Canonical Form was pointed out by Frank as a basis for the

mathematical derivation of the FDI procedure. These have also included, during the past few

years, the works listed in the reference section : the geometric approach to design observer

(Bhattacharyya 1978), the detection using a bank of unknown-input observers (Viswanadham

1987), the use of generalized inverse matrices (Miller 1982) and the design of disturbance

decoupled observer via singular value decomposition (Fairmann 1984). Necessary and

sufficient conditions for the existence of an observer with unknown inputs have been presented

in Meditch (1974) and Kurek (1983). At the same time, singular systems, which can be

considered as incomplete equation systems, have been studied (Dai 1989) with many

applications in control and estimation. The connection between singular systems and systems

with unknown inputs will be examined later.

Observers are used in two major applications : state reconstruction for state control and

diagnosis of process. For the last purpose, the detection and isolation of sensors have received a

lot of attention in the literature (Patton 1989), (Frank 1990). One of the most common

approaches is based on the use of redundancies between the different variables characterizing
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the process under consideration. The generation of these redundancies has also received much

attention, especially for linear systems (Staroswiecki 1989), (Ragot 1990 and 1992),

(Nowakowski 1991) ; for systems with unknown inputs, some papers have been published

(Chow 1984), (Gertler 1991), (Patton 1991) involving a robust residual generation based on

analytical redundancy in terms of parity space. Recently, design methods for isolating additive

failures from changes in the state transition matrix of a system have been examined (Ribbens

1991).

The aim of the paper is to derive some redundancy equations for fault detection and isolation. In

order to eliminate some "unknown inputs" in the redundancy equations we use an annihilator

matrix to left multiply the system equations that results in a singular system representation from

which redundancy equations can be extracted. This is based on the approach proposed in

(Frank 1989) with here an original computation procedure. By assigning different inputs or

outputs as "unknown inputs" the fault isolation is achieved. The problem of the observer design

and residual generation is the core of an FDI process. A systematic investigation of applying

unknown input observer to the FDI process was carried out recently by Wünnenberg. Because

the proposed analysis and design of the FDI observers rely heavily on the Kronecker canonical

form transformation of a given pencil matrix, the FDI problem presentation and design

procedure is made to appear more complicated than necessary (Hou 1991).

In the first section of this presentation, we shall give the principle of the unknown inputs

elimination. We will proceed to a dimension reduction of the state equations, then we will

explain the generation of the redundancy equations after eliminating the unknown inputs by

using singular system representation. Finally, an example is given to show the different

residuals which may be deduced from the redundancy equations.

PRINCIPLE OF UNKNOWN INPUTS ELIMINATION

Although the processes are usually continuous, the diagnosis calculations are generally

performed on discrete data. Therefore, in this presentation we will only consider discretized

models ; however it should be noted that the proposed algorithm also applies to a continuous

model. The considered discrete systems are characterized by an n-dimensional state vector x, a

r-dimensional input vector u, a m-dimensional output vector y and a s-dimensional input vector v

of unknown components. We assume that the number of known output equations m is greater

than the number of unknown inputs s, in order to be sure, a priori, that the system has at least

one redundancy equation. The matrices describing the state evolution have appropriate

dimensions. Systems are represented by the model :

x(k+1) = A x(k) + B u(k) + F v(k) (1a)

y(k) = C x(k) (1b)
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In this form, u(k) is a known input vector and the unknown input v(k) directly appears in the

dynamic part of the state equations. The B and F matrices are assumed to be of full column rank

while the C matrix must be of full row rank. As it is well known, the representation (1a) may

describe a wide variety of fault actuators. If each element of v(k) corresponds to an actuator and

if all performances of the actuators are wished to be observed, then F must be chosen equal to B

; if the jth actuator fails, the effect of this failure can be improved by taking the jth entry of v(k)

as the negative of the jth entry of u(k). If the jth actuator has a bias of magnitude b, then the jth

entry of v(k) is equal to b.

This model may include redundancy equations which essentially take two forms : direct

redundancy when there are relations between outputs of sensors or temporal redundancy when

the time relation between sensor outputs and actuator inputs are considered. Based on this

redundancy, residuals are generated and evaluated in order to detect and locate actuator and

sensor faults.

It should be noted that the system (1) may also be written in its input-output (ARX) form

depending on the two inputs u(z) and v(z) respectively weighted by the transfer functions Gu(z)

and Gv(z). The redundancy equations are obtained first by finding out a stable transfer function

matrix Q(z) left orthogonal to  Gv(z) and second by multiplying the ARX equation by Q(z).

This can be done in the stable factorization framework which is especially suitable for

implementation on a computer (Viswanadham 1988) (Ding 1990).

In this paper, we propose using the state-space representation (1) of the system. In order to find

which part of the output process y is insensitive to the unknown inputs v, we will try to eliminate

these inputs by projection. We define the matrix :

R =   






E

N
(2)

where E represents a left annihilator of F and N a left inverse of F. Expressed in equations these

definitions mean :

R F =  






0

Is
(3)

where Is is the s-dimension identity matrix. Multiplying equation (1a) by R gives :

E x(k+1) = E A x(k) + E B u(k) (4a)

N x(k+1) = N A x(k) + N B u(k) + Is v(k) (4b)
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Equation (4a) depends on the known input ; if its corresponding state is observable, then

equation (4b) should be used to have an estimation of the unknown input v(k). Equations (4a)

and (1b) describe, under a classical representation, a singular system. Then, a regular system

with unknown inputs may be considered as a singular system with known inputs.

It is also interesting to note that the inverse transformation is possible. For that purpose the

singular value decomposition of E is used :

E = U (Σ   0) VT (5)

where U and V are two orthogonal matrices and Σ contains the eigenvalues of E. Using the

change of variable x
_
 = VT x, the state equations are rewritten :

(Σ   0) x
_
(k+1) = UT E A V x

_
(k) + UT  E B u(k) (6a)

y(k) = C V x
_
(k) (6b)

If we subdivide x
_
(k) into x

_
1(k) and x

_
2(k) according to the partition of the matrix (Σ   0), we

obtain, with obvious definitions for A
_

1, A
_

2 and B
_

 :

x
_

1(k+1) = A
_

1 x
_

1(k) +  A
_

2 x
_

2(k) + B
_

 u(k) (7a)

y(k) = C
_

1 x
_

1(k) + C
_

2 x
_

2(k) (7b)

which looks like the structure of a system with partially known inputs. Then, a singular system

may be considered as a regular system with unknown inputs.

For the redundancy extraction purpose we only consider equations (4a) and (1b) with simplified

notation :

E x(k+1) = A x(k) + B u(k) (8a)

y(k) = C x(k) (8b)

with E of dimensions (n-s)xn, A of dimensions (n-s)xn, B of dimensions (n-s)xr and C of

dimensions mxn. We assume that the number of state variables n is greater than the number of

unknown inputs s in order to be sure that their elimination is possible. It is clear that the

elimination of the state x(k) between the equations (8a) and (8b) gives the redundancy equations

directly. Unfortunately, this is achieved through the calculation of the inverse of the singular

pencil of matrices (q E - A) where q is the backward shift operator. We will see later how to

overcome this difficulty.
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DIMENSION REDUCTION OF THE STATE EQUATION

The objective of the present section is the dimension reduction of the state equations. Therefore,

we try to isolate the measured part of the state vector by defining the partition C = (C1   C2) in

which C1 is the regular part of C and the (nxn) matrix P :

P =    






C1

-1 -C1
-1C2

0 In-m

It can easily be verified that CP = (Im   0). With the change of variable x = P 






y

w
, where the

vector w is the unmeasured part of the state vector, the equation (8) are then expressed in the

following form :

(E1   E2) 






y(k+1)

w(k+1)
 = A P  







y(k)

w(k)
 + B u(k) (9)

The matrix EP has been subdivided according to the partition of C, where E1 and E2 are

respectively (n-s)xm and (n-s)x(n-m) matrices.

Two propositions are then established in order to reduce the dimension of the state equations.

Proposition  1

If the system (5) is observable, then rank  E2  = n - m.

Proof : assuming the observability of the system, rank 






E

C
 = n (see Dai 1989). As P is

regular, we also have rank  






EP

CP
 = n. Using the partitioning of EP and CP, it follows :

rank 






E1 E2

Im 0
  = n

As rank(Im) = m, we can deduce the proposition. Moreover, E2 is a full column rank matrix.

Proposition 2

A (n-s)x(n-s) regular Q matrix exists such that :

Q E2 = Q 






E12

E22
 = 







0

In-m
(10)

Proof : this proposition may be directly verified by using the matrix :
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Q =   






Im-s -E12E22

-1

0 E22
-1

(11)

Let us now return to the simplification of the state equations. Multiplying left equation (9a) by

the regular matrix Q leads to :







E11 0

E21 I
 






y(k+1)

w(k+1)
 = 







A11 A12

A21 A22

 






y(k)

w(k)
 + 







B1

B2

 u(k) (12)

where Eij , Aij  and Bi are submatrices obtained by partitioning QE1, QAP and QB. System (12)

can then be rewritten under the form :

w(k+1) = A22 w(k) + ( A21  -E21    B2)  







y(k)

y(k+1)

u(k)

(13a)

E11 y(k+1) - A11 y(k) - B1 u(k) = A12 w(k) (13b)

Equation (13a) describes the dynamic evolution of the substate w(k) driven by the generalized
input ur

T(k) = (yT(k) yT(k+1) uT(k)). We can also define a generalized output vector yr(k) =

E11 y(k+1) - A11 y(k) - B1 u(k). Equation (13b), therefore represents a "measurement

equation" depending on the state w(k) ; the presence of the variable y(k+1) at the time (k+1) is

not constraining because it is only desired to generate redundancy equations. Thus system (13)

can be considered as a standard dynamic system with the former definition of state, generalized

input and generalized output. In order to simplify further notations, this system will be re-

written with classical notation :

xr(k+1) = Ar xr(k) + Br ur(k) (14a)

yr(k) = Cr xr(k) (14b)

Note that this form applies even if A12 = 0. This case corresponds to the particular redundancy

obtained from equation (13b) :

E11 y(k+1) - A11 y(k) - B1 u(k) = 0 (15)

From equations (14), it is then possible to generate the redundancy equations between the inputs

and the outputs. In order to avoid the matrix inversion, we suggest an iterative method which is

based on a progressive elimination of the unknown state xr(k).

-7-



GENERATION OF REDUNDANCY EQUATIONS

Let us return to the general state equations (14) for which it is desired to extract the redundancy

equations between the inputs and the outputs. There are several techniques which may be

applied for that generation using, for example, the expansion in a power series of Ar (Faddev

1963) or the coprime factorization (Kailath 1980). We present here an algorithm based on a

dimension reduction of the state equations. With Cr1 as the greatest regular part of the matrix

Cr, a simple permutation of the elements of xr enables the breakdown of the state equation (14)

into :







xr1(k+1)

xr2(k+1)
 = 







Ar11 Ar12

Ar21 Ar22
 






xr1(k)

xr2(k)
 + 







Br1

Br2
 ur(k) (16a)

yr(k) = Cr1 xr1(k) + Cr2 xr2(k) (16b)

With the change of variables :

x
_

1(k) = Cr1 xr1(k) + Cr2 xr2(k) (17a)

x
_

2(k) =  xr2(k) (17b)

the state equations (16) are rewritten :







x

_
1(k+1)

x
_

2(k+1)

 = 







A

_

11 A
_

12

A
_

21 A
_

22

 







x

_
1(k)

x
_

2(k)

 + 







B

_

1

B
_

2

 ur(k) (18a)

y(k) = x
_

1(k) (18b)

with the definitions :

A
_

11 =  (Cr1 Ar11 + Cr2 Ar21) Cr1
-1 (19a)

A
_

12 =  - A
_

11  Cr2 + Cr1 A12 + Cr2 Ar22 (19b)

A
_

21 =  Ar21  Cr1
-1 (19c)

A
_

22 =  Ar22 - Ar21 Cr1
-1 Cr2 (19d)

B
_

1 =  Cr1 Br1 + Cr2 Br2 (19e)

B
_

2 =  Br2 (19f)

A more interesting presentation of the equations could be now obtained by eliminating the

variable  x
_

1(k) in the state equations which are re-written :

x
_

2(k+1) =  A
_

22  x
_

2(k)  +  (A
_

21    B
_

2 )  






y(k)

ur(k)
(20a)
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z(k) = A
_

12  x
_

2(k) (20b)

with z(k) = y(k+1) - A
_

11 y(k) - B
_

1 ur(k) (20c)

This form highlights the generalized input (y(k), ur(k)) and the generalized measurement z(k)

which drive the evolution of the state variable x
_

2(k). Then, equations (20) are structurally the

same as equations (14) ; therefore, the transformation used in equations (18) may be applied to

equation (20). By this mean, we can eliminate unobservable variables. The procedure is repeated

until the matrix A is reduced to a scalar or the matrix C becomes null.

EXAMPLE

The following example is to demonstrate the design of residuals by mean of the proposed

method. The different codings of the residuals will also be discussed. We will consider the

model system described by equations (1) (n=5, r=2, s=1 and m=4) in which the matrices are

defined by :

A = 











0 0 0 0 0

0 2 0 0 0

0 0 1 0 0

0 0 0 0 1

0 0 0 0 1

B = 











1 0

1 0

2 1

1 0

1 1

F = 











1

1

0

0

1

C = 











1 1 0 0 0

0 0 1 0 0

0 0 0 0 1

0 0 0 1 0

The regular part of C may be constructed by selecting the columns 2, 3, 5 and 4 of the C matrix.

This choice necessitates a rewriting of the state equation according to a permutation of the

number of the state variables. Following the definition of E in equation (5) we can deduce the

singular equation (6a) :











1 0 0 0 -1

0 1 0 0 0

0 0 0 1 0

0 0 1 0 -1

 x(k+1) = 











2 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 1 0 0

 x(k) + 











0 0

2 1

1 0

0 1

 u(k)

Using the proposition 2 and the equation (16), the reader should verify the following numerical

result :
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









1 0 -2 0 0

0 1 0 0 0

0 0 0 1 0

0 0 -1 0 1

  x
_
(k+1) = 











2 0 -2 0 -2

0 1 0 0 0

0 0 1 0 0

0 0 -1 0 0

  x
_
(k) + 











0 -2

2 1

1 0

0 -1

 u(k)

Thus, for that system, the state equations may be written :

x
_

11(k+1) - 2 x
_

13(k+1) = 2 x
_

11(k) - 2 x
_

13(k) - 2 x
_

2(k) - 2 u2(k)

x
_

12(k+1) =  x
_

12(k) + 2 u1(k)  + u2(k)

x
_

14(k+1) = x
_

13(k) + u1(k)

x
_

13(k+1) - x
_

2(k+1) =  x
_

13(k) + u2(k)

where x
_

11, x
_

12, x
_

13 and x
_

14 are the elements of x
_

1 which is completely measured (equation

10b). Here, the generation of the redundancy equation is straightforward because the unknown

state variable x
_

2 may be directly eliminated. We therefore obtain three redundancy equations,

from which we can deduce the residuals under a matrix form (q is the time forward shift

operator) :









r1(k+1)

r2(k+1)

r3(k+1)

 = 







q(q-2) 0 -2(q-1)2 0 0 2(q-1)

0 q-1 0 0 -2 -1

0 0 -1 q -1 0

 













y1(k)

y2(k)

y3(k)

y4(k)

u1(k)

u2(k)

and more succinctly :

r(k+1) = ( )My Mu  






y(k)

u(k)

where r, y and u state for the vectors of residuals, output and input and My and Mu are

convenient matrices.

A significant non-zero value of these residuals indicates the presence of failures in the inputs

and/or outputs measurements. Note that the residuals are a mix of input and output variables ;

therefore the isolation of failures is difficult. One way of enhancing the residuals involves

generating structured residuals which are sensitive to a particular fault (Gertler 1991). The main

advantage of using structured residuals is the resulting simplification of the diagnostic analysis.

A satisfactory requirement for fault isolation is that the new residuals will have separated fault

signatures. For example, assuming that the actuators are functioning correctly, in order that the

residuals are unaffected by ns output faults, all occurrences of the ns concerned variables have

-10-



to be eliminated ; this can be done by using the classical pivotal technique in the incidence

matrix My. For the previous example, with 3 residual equations and 4 outputs, the maximum

number of outputs that may be eliminated is 2. That means that a residual may be sensitive to 2

outputs and consequently the perfect isolation of sensor faults may not be achieved. If we are

concerned with the actuator faults (assuming that the sensors are functioning correctly) then it is

possible to have a complete isolation of the faults. With 3 residuals and 2 outputs it is possible

to obtain, by linear combination, residuals with only one input variable. For example,

considering the submatrix Mu, it is possible to define a matrix W :

W = 







1 2(q-1) -4(q-1)

0 0 -1

1 0 0

such that :

W Mu = 







0 0

1 0

0 2(q-1)

In these conditions, the new residuals e(k) = W r(k) are structured to be sensitive to specific

faults. The second term e2(k) is affected by the failure of the first actuator, the third term e3(k) is

affected by the failure of the second actuator while the first term e1(k) is not affected by actuator

faults which could provide a test to prove that the sensors are functioning properly.

It is also possible to generate structured residuals to isolate faults on sensors and actuators. For

example, let us suppose that faults on outputs 2 and 4 and on input 1 are wished to be isolated.

If we denote Md the regular matrix formed by columns 1, 2 and 5 of (My  Mu), the matrix W

must be calculated such that the columns of the matrix W Md be independent and contain only

one non-zero element. This can be achieved by selecting :

W = 









1
q(q-2) 0 0

0
1

q-1 - 
2

q-1

0 0 -1

Hence the three new residuals e(k) are sensitive to only one of the specified faults. Notice that

this perfect isolation of faults is not always possible because it depends on the rank of the

matrix Md.
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Let us now consider the case of actuator faults detection using a bank of redundancy equations

which are constructed to be directly sensitive to these faults (figure 1). To do this, we consider a

process described by the state equation (21) :

x(k+1) = A x(k) + B u(k) (21a)

y(k) = C x(k) (21b)

We can rewrite the dynamical part :

x(k+1) = A x(k) + Bi ui(k) + B
_

i u
_

i(k) i=1, ..., r (22)

where Bi is the ith column of B and B
_

i is the nx(r-1) matrix obtained from B by deleting Bi. Let

ui(k) be the ith entry of u(k) and u
_

i(k) the (r-1) column vector obtained from u(k) by deleting

ui(k). Now, we construct a set Ri of redundancy equations using the proposed elimination

strategy by treating u
_

i(k) as the unknown inputs. By the nature of the construction, these

redundancy equations are not sensitive to u
_

i(k) whereas variations and failures in ui(k) will

affect the outputs y(k). We repeat the above procedure to construct r sets of unknown-input

redundancy equations. By monitoring these sets of residuals, actuator failures can be isolated.

Indeed, if all sensors are good and all the redundancy equations are verified apart from the ith

then the ith actuator is faulty.

Plant

Redundancy
equations m

Redundancy
 equations 1

SensorsActuators

rm

r1

u

u

1

m

Figure 1 : actuator faults detection using unknown-input redundancy equations
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Let us consider the previous example without explicit unknown input (i.e. F is a null vector).

After eliminating the first input, we obtain the singular system :











1 0 0 -2 0

0 1 0 -2 0

0 0 1 -1 0

0 0 0 -1 1

  x
_
(k+1) = 











2 0 -2 0 -2

0 1 -2 0 0

0 0 0 0 0

0 0 -1 0 0

  x
_
(k) + 











0

1

1

0

 u2(k)

y(k) =  











1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

  x
_
(k)

The state equations are then reduced to :

y1(k+1) - 2 y4(k+1) = 2 y1(k) - 2 y3(k) - 2 x
_

2(k)

y2(k+1) - 2 y4(k+1) = y2(k) - 2 y3(k) + u2(k)

y3(k+1) - y4(k+1) = u2(k)

y4(k+1) - x
_

2(k+1) = y3(k)

The redundancy equations may be obtained by eliminating the state x
_

2(k) between the first and

the last equations. It leads to the following set of residuals :









r11(k+1)

r12(k+1)

r13(k+1)

 = 







q(q-2) 0 2(q-1) 2q(1-q) 0

0 q-1 2 -2q -1

0 0 q -q -1

 











y1(k)

y2(k)

y3(k)

y4(k)

u2(k)

The elimination of the second input leads to the following singular system :











1 0 0 0 0

0 -1 1 0 0

0 0 0 1 0

0 0 0 0 1

  x
_
(k+1) = 











2 0 0 0 -2

0 -1 1 0 0

0 0 1 0 0

0 0 0 0 0

  x
_
(k) + 











2

-1

1

1

 u1(k)

y(k) =  











1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

  x
_
(k)
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Then, this system is also described by the state equations :

y1(k+1) = 2 y1(k) - 2 x
_

2(k) + 2 u1(k)

y2(k+1) - y3(k+1) = y2(k) - y3(k) + u1(k)

y4(k+1) = y3(k) + u1(k)

x
_

2(k+1) = u1(k)

As previously, the elimination of the state x
_

2(k) between the first and the last equations leads to

the new following set of residuals :









r21(k+1)

r22(k+1)

r23(k+1)

 = 







q(q-2) 0 0 0 2(1-q)

0 1-q q-1 0 1

0 0 -1 q -1

 











y1(k)

y2(k)

y3(k)

y4(k)

u1(k)

Clearly, these two last sets of residuals are respectively de-coupled from the two inputs u1(k)

and u2(k). Therefore, they can be used for detecting and identifying faulty actuators.

CONCLUSION

An attractive presentation of the well-known problem of residuals generation has been presented

in the case of systems with unknown inputs. Using a transformation of the process model into a

singular system, the redundancy equations are then formed involving simple calculus. The

proposed method can be used for determining robust parity equations with regard to actuators

failures.
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