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Fault detection and isolation and sensor
network design
Didier Maquin — Marie Luong — José Ragot

Centre de Recherche en Automatique de Nancy, CNRS UA 821
2, avenue de la forét de Haye, 54516 Vandaeuvre-lés-Nancy cedex

ABSTRACT. The model-based approach to fault detection and isolation in automated process
has received considerable attention during the last two decades. One of the approaches to
Jacilitate fault isolation is to design a structured residual set. The term structured here means
that each residual is designed to be sensitive to a certain group of faults and insensitive to
others. However, despite this issue has been recognised for a long time, the problem of
designing such residuals is not completely solved. In the context of linear static systems, this

paper proposes a new method for sensor network design respecting some sensor failure
detectability and isolability requirements.

RESUME. La détection et la localisation de défaillances dans les systémes automatisés a fait
l'objet de nombreux travaux au cours de ces vingt derniéres années. L’une des approches
facilitant la localisation des défaillances consiste a générer un ensemble structuré de résidus.
Le vocable structuré signifie ici que chaque résidu est congu pour étre sensible a certaines
défaillances et insensible a d’autres. Cependant, bien que cet objectif ait été identifié depuis
fort longtemps, le probléme de la conception de tels résidus n’est pas encore complétement
résolu. Dans le cadre des systémes statiques linéaires, cet article propose une nouvelle

méthode de placement de capteurs sur un processus, respectant certaines spécifications de
détectabilité et d’isolabilité de défaillances.

KEY-WORDS : sensor network design, redundancy, failure detection and isolation, model-based
diagnosis, linear systems, carriage networks.

MOTS-CLES : placement de capteurs, redondance, détection et localisation de défaillances,
diagnostic a base de modéles, systéemes linéaires, réseaux de transport.

1. Introduction

In all industrial processes, measurements of the process states are made during
operation for the purpose of control and supervision. The performances of the latter
depend on extensive and accurate process data which are obtained through these
measurements. It is never possible to measure each and every process variable,
however, the exploitation of mass and energy balance relationships between



different variables of a steady-state process allows some or all of the unmeasured
variables to be estimated. Most of the decisions regarding the selection of variables
to be measured and the corresponding sensors to be used are made early in the
design phase of a plant. This problem is referred to as the sensor network design
problem.

Traditionally, the selection of sensors was driven by the needs of the control loop
design. However, emerging data reconciliation techniques have set up the scenario
for a revision of the criteria of sensor location. Indeed, different criteria have been
used for the design, such as ensuring observability of variables (Vaclavek and
Loucka, 1976), maximising the accuracy of estimation of variables (Kretsovalis and
Mah, 1987; Bagajewicz, 1995), minimisation of cost while ensuring the
observability of variables (Madron and Veverka, 1993), maximising the reliability of
estimation of variables when sensor failures are likely to occur (Ali and Narasimhan,
1993), minimise the cost or maximise the reliability of the instrumentation system
while satisfying constraints on redundancy degrees of variables (Maquin et al.,
1996).

In this paper, we investigate the problem of sensor network design for linear
processes in order to guarantee the detectability and/or the isolability of sensor
failures. An attempt to solve this type of problem has been published very recently,
in a slight different context (Carpentier and Litwak, 1996). The proposed design is
based on extensive usage of the concept of redundancy degree of a variable (Maquin
et al., 1996) and structural analysis of the system model. As the constraints of
detectability and isolability are expressed in terms of redundancy degree constraints,
they may be taken into account within other types of constraints. So, the sensor
network design, leads to minimise the cost of sensor installation while satisfying
some constraints such the unmeasurability of certain variables, the obligation of
measurement of other ones (or consideration of already measured variables), the
variable observability or the insurance of a certain redundancy degree. The problem
may be solved either with a matricial analysis of the cycle matrix associated to the
graph representing the linear process, or using technique of mixed linear
programming.

This paper is organised as follows. In the second section, the process codification
is described and some classical transformations of graph theory are remembered.
Then, the main results of redundancy analysis are described in the third section. In
the fourth section, the redundancy degree of a variable is defined and methods of
evaluation of this degree are presented. The fifth section is dedicated to failure
detection and isolation. These properties are remembered using the occurrence
matrix of redundancy equations and the failure signature. The links between failure
detectability, isolability and redundancy degree of a variable are pointed out in the
sixth section. A method for designing sensor network satisfying failure detectability
and isolability requirements is then described in the following section. The problem
is formulated as a linear programming problem. The resulting optimisation problem
is solved using a binary mixed integer programming method in order to take into
account the occurrences and locations of sensors. The last section presents sensor
network design examples.



2. Process Codification

We consider only processes which may be described by a carriage network
(figure 1), the nodes of which correspond to elementary equations and the arcs 10
variables. For a physical interpretation, a node may be a processing unit and an arc, a
material or energy transfer stream.

Figure 1: a carriage network

This type of process may be described by a set of linear equations:
AX =0 [1]

where A (n,v) is the so-called node incidence matrix with n giving the number of
equations and v the number of variables and X (v,1) is the variable vector. In a
certain number of applications, it is much easier to use the cycle matrix of the
associated graph. In order to transform the network into a graph, all the input/output
arcs are linked to a so-called environment node.

The matrix B of the fundamental cycles of the graph may be easily deduccd from
the incidence matrix (Deo, 1967). For that purpose, the following transformations
may be used. First, the incidence matrix is partitioned (using simple permutation of
columns) according to its regular part A,:

A=(A, A,) (

12

Then, the fundamental cycle matrix may be written:

(B, 1) 3]

where B is obtained from the relation:



BT =-A'A, (4]

and I is the identity matrix with appropriate dimensions. The absolute value means
that only the variable occurrences in the cycles are significant. Using linear
combinations of the rows of this fundamental cycle matrix, it is possible to generate
the matrix C, of all the cycles of the graph.

3. Redundancy analysis

Let us first recall the description of the considered systems, in the failure-free
case:

model equation: AX" =0 [Sa]
measurement equation: X, =HX +¢ [5b]

where X,, (m,1) is the vector of measurements, H (m,v) the measurement selection
matrix (as all process variables are not measured) and € is a vector of measurement
errors which are normally distributed with zero mean and known variance matrix V.

Assuming that all the measurements are direct, the X" vector of variables can be
. . . * 3 *

splited into measured variable vector X,, (m,1) and unmeasured variable vector X
((v—=m),1). Then, the system [5] may be written:

*

AX +A:Xz=0 [6a]

m m
X. X »¢ [6b]

If rank(A;)<v—m, the system is said to be redundant and the redundancy

equations may be obtained by projection. Premultiplying equation [6a] by a matrix
Q defined by QA =0, we obtain the following equation:

*

MX, =0 (71

r-om

with M, = QA,, 8]

The matrix M, defines the redundancy equations of the considered system.

4. Degree of redundancy concept

From the preceding notion of redundancy, one may define the concept of degree
of redundancy (Maquin et al., 1996). Let us begin by the notion of minimal
observability. A variable is redundant of degree O (minimal observability) if there
exists, at least, a configuration such that the breakdown of only one sensor makes
this variable inaccessible.



This notion may be extended. A redundant variable of degree k is an observable
variable which value remains deducible even when k whatever sensors
simultaneously breakdown. The determination of the degree of redundancy of a
variable is easily obtained by applying the following rule which uses the matrix of
all the cycles of the associated graph:

A variable is redundant of degree k if, and only if, it belongs only to cycles
comprising at least k+1 measured variables.

The degree of redundancy of a variable is easily determined by counting the
minimum number of measuied variables in the cycles where it intervenes.

The redundancy degree of a variable may also be defined from the set of
redundancy equations of a system defined in the previous section (matrix M,.). In
fact, this set of equations is not unique ; let us call this set primary set of redundancy
equations. From this primary set, it is possible to construct a secondary set by
generation of all the possible linear combinations of primary set equations. Now, let
us consider the whole set of equations (primary plus secondary). Then, the
redundancy degree of a variable may be defined as follows. Any variable belonging
to whatever redundancy equation is a least redundant of degree 1 moreover if there
exists a subset of k (k>2) redundancy equations (among the whole set of redundancy
equations as defined previously) with a unique common measured variable, the
redundancy degree of this variable is equal to k.

5. Failure detection and isolation

Process measurements are subject to two main types of errors. The first embraces
random errors, generally assumed independent and Gaussian with zero mean. The
second embraces gross errors provoked by non-random events such as sensor
malfunction or instrument biases.

Various methods have been proposed in recent years for gross error detection and
isolation in process data (Mah and Tamhane, 1982; Serth and Heenan, 1986:
Rosenberg et al., 1987; Narasimhan and Mah, 1987; Crowe, 1989). The parity space
or imbalance residual method, which are strictly identical (Maquin and Ragot, 1991).
is briefly remember here.

Due to the presence of measurement errors, the measurement vector X, does not
satisfy the constraint equations and the residual vector, R is given by:

R=M,X, [9]

With the previous hypothesis of a Gaussian distribution of the measurement
errors, the vector R also follows a normal distribution with zero mean:

Esp(R)=0 [10]

and covariance Vp:



Ve =M VMT [11]

In order to compare the elements of the R vector, let us define a normalised
residual vector Ry, with the entry R (i) defined by:

R(1)

Ry (i) = —— iy =5 12
v () NAT) fori=1,..,r : [12]

Each entry R (i) follows a normal distribution with zero mean and unity
variance. A simple statistical two tailed test can therefore be employed: we may
concluded that residual i is not a normal one if:

|Ry ()] >t [13]

Classically, one may choose the critical constant 7 to control the familywise Type
[error rate at some pre-assigned level . Even if we assume the presence of only one
gross error, the relationship between the "bad" residual(s) and the suspect
measurement is not so easy. It depends on the structure of the equations and the
location of the failure. In some cases, it is not possible to suspect only one
measurement. In order to locate suspect measurements, each individual test yields a
Boolean decision, the full set of parallel tests resulting in a Boolean vector, the
failure signature. This signature is then analysed in order to arrive at a failure
inference. Let us defined the occurrence matrix as the absolute value of the matrix of
redundancy equations. Since each column of this matrix corresponds to a process
variable and each row to a residual, a 1 in any position of this matrix signifies that
the given residual is influenced by a failure on the given variable. Thus under ideal
circumstances, the signature of a failure is identical to the respective column of the
occurrence matrix. This implies that for each failure to be detectable, no column of
the matrix should contain only zero elements, and for each signature to be isolable,
all celumns must be different (Gertler and Singer, 1985).

It is important to note that the properties of failure detectability and isolability
n't de on the choice of the primary set of redundancy equations. So. if a
failure is detectable or isolable using the failure signature constructed on the basis of
the primary set of equations, so it is using the failure signature constructed on the

basis of the whole set of redundancy equations as defined in the previous section.

6. Relationship between detectability, isolability and redundancy degree

In this section, the close links between failure detectability, isolability and
redundancy degree of a variable are emphasised.

The failure of a sensor is detectable if and only if the corresponding variable is.
at least, redundant of degree one. This first result is obvious. For a sensor failure (o
be detectable, the corresponding variable might intervene in the calculus of, at least.
one residual.” As residuals are obtained from the redundancy equations, the



considered measured variable might belong to a redundancy equation, so might be
redundant of degree one.

The second result is more interesting. The failure of a sensor is isolable if and
only if the corresponding variable is, at least, redundant of degree two. Let us
consider two variables x; and x;j which degree of redundancy is equal to two. Using
the definition of the degree of redundancy given in section 3, it means that X; oceurs
in two redundancy equations, let 7, and r,, of the whole set of redundancy equations
such x;is the unique common measured variable. The variable x; also occurs in two
such type of redundancy equations. So, the subvector v; of the occurrence matrix

corresponding to the two redundancy equations r, and r, for the variable X; is the
following:

X;
i

v =
rb 1

Taking into account the definition of the redundancy degree of a variable, if 5
occurs in one of the redundancy equations among r, and ry, it cannot occur in the
other. Another possibility is that x;does not occur in any of these two equations. So
the subvector v; of the occurrence matrix corresponding to the two redundancy
equations r, and r, for the variable x; is one of the following:

J .l‘!-
it AL Lo
V. = V.= V., =
7 J J
rb 0 ?'b l r‘;, 0

As the subvectors v; and vjare systematically distinct, and taking into account the

invariance of the isolability property with regard to the choice of the primary set of
equation, one deduces that the failure of a sensor is isolable if the corresponding
variable is, at least, redundant of degree two.

This last result is the main result of the paper as isolability of sensor failures may
now be taken into account in sensor network desi gn.

7. Sensor network design

Now, we propose a method for designing sensor network satisfying failure
detectability and isolability requirements. Taking into account the previous
equivalencies, we specify the lists the variables of which we ought to ensure a given,
degree of redundancy (list Ly for the variables which must be redundant of degree k).

Moreover, a weight, proportional to the installation cost of the corresponding sensor.
1s associated to each variable.

The main goal of the design then consists in determining the variables which
must be measured in order to satisfy the constraints on the degrees of redundancy
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whilst minimising the global cost of installation (if all the costs are identical, it is the
number of sensors which is minimised). This problem may be formulated as follows:

v
minimume-u-
PrOblem })1 TH T s

subjectto dr(x;)2k Vx; el;

(14]

where w; represents the installation cost of the sensor measuring the variable X, U, 1S
a Boolean number which indicates if the variable x; must be measured to meet the
redundancy constraints (1: must be measured, 0: elsewhere), and dr(x;) denotes the
. redundancy degree of the variable x;. In fact, some components u; are fx/xed to 1 as all
the variables on which properties of sensor failure (detectability or isolability) are
imposed must, of course, be measured.

The problem P, may easily be transformed into a linear programming problem.
Indeed, sensor network design consists in measuring a given number of variables per
cycles depending on the redundancy degree which must be ensured whilst
minimising the associated cost. This problem can be stated as follows:

minimum W7 U
Problem P, u [15]
subjectto CU 2N

where W = [w,] is the cost or weight vector of dimension v, U = [1;] is a partially
unknown vector of Boolean numbers. C is a cycle matrix the construction of which
will be explained latter and N is a vector which entries are equal to the minimum
number of measurements per cycle for satisfying the redundancy constraints.

Let us now explain the construction of C and N. The matrix C is built from the
matrix of all the cycles of the graph removing the cycles involving only variables
which do not belong to any lists L, Indeed, there is not any constraints on the
variables belonging to these cycles. The entries of the vector N are computed as
follows. If a cycle contains a variable belonging to the list L,. the redundancy
constraints will be satisfied only if k+1 variables belonging to this cycle are
measured. As a cycle may contain variables belonging to different lists L,. the entry
n; will be equal to the maximum number of variables which must be measured. If a
given cycle contains less variables than this minimum number of variables to be
measured, the problem has no solution, except if we accept to use hardware
redundancy, that is to say to place more than one sensor for measuring a variable.

The problem may be simplified when some variables are already measured. In
fact, two situations may occur. The first one concerns a complete sensor network
design, i.e. there is not any measurements yet. However, taking into account a
previous remark, even in this situation, some variables must be measured (those on
which it is desired to obtain detectability or isolability of sensor failure). The second
situation deals with a partial design taking into account a list of already measured
variables. In all the cases, the problem of sensor network design must be solved
taking into account that some variables must be measured (or are already measured



which is equivalent). Therefore, some of the u; are fixed to 1 and it is very useful to
take this situation into account before solving the problem. Indeed, the size of the
problem (15) may be reduced, if the columns of the cycle matrix C corresponding to
the measured variables are cancelled and if, simultaneously, the vector N of the
minimum number of measurements per cycle is updated (each entry n; must be
decreased of the number of measured variables in the cycle number i). After this
treatment, some cycles of the C matrix don’t support any constraints, that is to say
n; = 0 and these cycles and the corresponding entry in the vector N may be removed.

In this way, it is also possible to take into account the unmeasurability of certain
variables. Indeed, it suffices to cancel in the C matrix the columns corresponding to
these unmeasurable variables without other modifications.

8. Examples

Let us consider the process described by figure 1. The incidence matrix

corresponding to the network is given in table 1 (for convenience, the "." states for
the value 0).

b 2. -3 4 S & ;. 8- O M F- 0% 43 15 15
1 -1 -1 :
I . i ; o=l =] 7 : : G : :
II 2 i s S 2 RS, o Al . . 1
\% 1 =l =] j
: I =1 =]
I . : . S ey el g
II ; : } el . i Tl e :
1160 O ; : e : ; : . X i1 -~

Table 1: incidence matrix

The associated fundamental cycle matrix is given in table 2:

Lol 3 4 5 8- 1 .8 3 5 3% 03 1t 1%
1 : B i
2 e ]
3 1 1 : ] : ;
+ - 3 | S :
3 £ 1 1 :
6 ; 1 1 e
7 E- 1 1 1 1 I

Table 2: fundamental cycle matrix

As the matrix of all the cycles of the graph comprises 127 cycles, it is not shown
here. Assume that the vector of measured variables is the following X,, = (x2. x3. \5.

x7, x10. 211, x14, xlS)T Using simple linear combinations of equations (rows) and
exchanging of variables (columns) lead to the canonical form of this incidence



matrix (table 3) where the left column denotes the names of the transformed
equations:

2.3 '3 71 18 i 16 S @t A& 8 3% . 8 2
a | -1 -1 1 |
b | N o S
c |-1 -1 : 1
d -1 -1 -1 1
e |-1 -1 -1 . : 2 : 1 .
f L e . g s 1 :
g -1 . - . -1 . : x . 1 .
h P o~} wil.. ; 2 : . . ]

Table 3: canonical form of the incidence matrix

For a detailed description of the used transformations which lead to the above
form of the incidence matrix, we refer the reader to earlier published works (Maquin
et al., 1987; Ragot et al., 1990). This canonical form can be easily read. The
measured variables x2, x3, x5, x7, x10, x11 and x14 are linked by redundancy
equations (defined by row a and b of the canonical form). The unmeasured variables
x1, x9, x12 and x13 can be deduced as each one of them only appears as a single
unknown in one equation (rows c, e, f and h of the canonical form). The measured
variable x15 does not appear in any redundancy equation. Finally the unmeasured
variables x4, x6 and x8, which appear in equations containing at least two unknowns.
cannot be deduced.

So, for the considered example, the matrix M, of redundancy equations is the
following:

2.3 5 o3 SRR AR
Mel<l = - F I w
E

Table 4: matrix of redundancy equations
Now, let us consider the following problem:

How many sensors must be added and which variables must be measured in order
to be able to detect a sensor failure on variable x15 and to isolate sensor failures on
variables x5 and x11 ?

The reader may remark that, with the initial set of measurements, these
constraints are not satisfied. Neither sensor failure is isolable and the sensor tailure
of variable x15 is not detectable as this variable doesn’t occur in any redundancy
equation. Taking into account the results of section 6, this problem may be solved by
designing a sensor network which guarantee at least a redundancy degree of x15
equal to 1, and redundancy degrees of x5 and x11 equals to 2, i.e. L, = {x15} and
L, = {x5, x11}. In this problem, some variables are already measured and using the
treatment prescribed in the previous section, the matrix dimension of C reduces from



(127,15) to (8,7). The resulting problem of optimisation may be solved using the
public domain code LP_SOLVE!. The input file is given below:

min:ul+ud+u6+ud+ud+ul2+ul3;
ub+u8+u9g>=1;

ud+u9>=1;
ul+ud+ub+u8+ud+ul2>=1;
ul+u9+ul2>=1;
ud+ub+uB8+u9+ull>=1;
ud+ulid>=1;

ul2+ul3>=1;
ud+u6+u8+ul2+ull>=1;

ul<=l; ud<=l; ub<=1l; u8<=1l; u9<=1; ul2<=1; ul3<=l;
int ul,u4,u6,u8,u9,ul2,ul3;

The reader will notice the second group of constraints. As LP_SOLVE can only
handle positive values for the variables and taking into account their declaration as
integers, the optimisation variables are constrained to be Boolean (0 or I).
LP_SOLVE gives the following result: {ul=0, u4=0, u6=0, u8=0, u9=1, ul2=I,
ul3=0}which implies the measurement of the two variables x9 and x12. Analysing
the redundancy of the system with these two new measurements, one obtains the
following occurrence matrix:

£ 85 F 8 I3l 1 4 IS
B AT

e g

Table 5: occurrence matrix of redundancy equations

As the columns corresponding to the variables x5 and x11 are unique, sensor
failures measuring these variables are isolable and as variable x15 intervenes in a
redundancy equation, the corresponding sensor failure is detectable. The reader may
notice that the proposed solution is not unique, in this case, and the measurement of
the couple (x9, x13) also satisfies the constraints.

Let us consider the same design problem considering now the unmeasurability of
the variable x9. The resulting optimisation problem is described by the following
input file (which may, in fact, be easily deduced from the previous one):

min:x1+x4+x6+x8+x12+x13;
xX6+x8>=1;

x4>=1;

KL +x4+x6+xB+x12>=1;

! LP_SOLVE is a public domain code written in C by M. Berkelaar (michel @es ele.tue.nl). It can be
retrieved from the address ftp://ftp.es.ele.tue.nl/pub/lp_solve



x1+x12>=1;
X4+x64x8+x13>=1;

LAk i

W124x13>=1;
XKA+x6+xB+x12+x13>=1;

ul<=1; ud<=1l; ub<=1l; uB<=1; ul2<=1l; ull3<=1;
int ul,ud,u6,us,ul2,ul3;

LP_SOLVE gives the following result: {ul=0, u4=1, u6=1, u8=0, nt2—1
ul3=1}which implies the measurement of the variables x4, x6, x12 and x13. The
occurrence matrix corresponding to these measurements is the following:

2 -3 4 5. 8.7 W B 35 1% 4§ 4%

Table 6: occurrence matrix of redundancy equations

Analysing this occurrence matrix, one can establish that many sensor failures are
now isolable (x2, x5, x10, x11, x12, x13, x14, x15). This result is largely better than
the imposed constraints. This is due to the set of initially already measured variables.
This is confirmed by the redundancy analysis of the system with this set of
measurements which leads to the following result:

Variable =
Redundancy degree| 1 2

24 5 6 -2 B B 3011 1233 08 18
£ L. Lt 4 1 -3 3 2 3 % 3.9

Table 7: redundancy degrees of variables

Let us consider again the same design problem but without any initial
measurements nor unmeasurability constraints. The reader will verify that one of the
solutions consists in measuring the variables x2, x3, x5, x7, X v EO Y LE ¢13 and
x15. It leads to the following occurrence matrix:

8 8- 1113 15
g o o
1
1

; : 1 1
= o)

Table 8: occurrence matrix of redundancy equations

9. Conclusion

In this paper, the problem of sensor network design is addressed using the
powerful concept of redundancy degree of variables. The design is formulated as a



particular optimisation problem involving Boolean variables and is solved using a
mixed binary integer linear programming method. The proposed procedure is
developed to handle specifications of importance (expressed by redundancy
degrees), measurability of process variables and performances of diagnosis of sensor
failures (detectability and isolability). Sensor network design examples illustrate the
relevance of the proposed method.
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