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ABSTRACT
In the context omodel-based failure detection and diagnosis, there is residual generation
which can be obtained through a generalized parity space concept. This paper presents
newalgorithm involving the generation of redundancy or parity equations for dynamic
linear time-invariant systems. The proposed schien@ves the successive elimination of
state sub-vectors and their replacement by output values aasvle processing of an
output done one at a time to avoid matrix inversiSome examples point out the
numerical efficiency of the proposed procedure.

INTRODUCTION
A large variety of techniques have been proposed in the last decade for the detection, the
isolation and the estimation of faults in dynamistems (Chow and Willsky, 1984),
(Iserman, 1984), (Frank, 1990). According to the general terminology, these teclangues
related to the following tasks :

- event detection which probably indicates that something is going wrong in the process,
- isolation which is concerned with the exact localization of the events,

- identification and characterization of the eventsriher to estimate their magnitudes and
to give the final diagnosis on the functioning of the process.

The usual procedure of fault detection canrdweghly divided into the following two
steps : generation of a so-called residuals (functions that are accentutiteddaylts) and
fault detectiorbased on a logical device (in order to monitor both the time of occurrence
and the location of the faults). Whatever the techniques ofdatdttion, they all need the
generation of signals that are accentuated by the prestfmats. These signals must be
close to zero when the process behavior is consistent with the modes atiflerent as
possible from zero when this not the case (moreover, if it is possible, they must not be
altered by the causes of false alarm). The proceduregefwgrating these signals are
numerous but may be classified into two groups : input-output residuals olftaimethe
process model and residual-like quantity resulting ftbenidentification of the process
model parameterén each case supplementary information is provided by the calculation



of the covariance matrix of the residuélsis is needed by the decision device in order to
comparehe weights of the different residuals) ; often the covariance matrix is calculated
recursively which allows a comparison of the consecutive values of the residinalst
referring to a prespecified value.

The work described here only focuses on model-based redundancy. As discused
papers ofDeckert (1977), Chow (1984), Massoumnia (1988) these redundancies are
simply functionsof the time evolution of the process : the residual generator takes, as
inputs, the commands of the actuators and the sensor outputs and poatseiuof
residuals which are monitored for failure detection. Assuming that the &aeiltietectable,

four requirementare mainly formulated to obtain a powerful failure detection algorithm.
First, the residuals must be independent of the state of the system : they are daly due
noise in the absence of failures. Second, the failures havedstbeyuished from each
other; this is the problem of isolation which results in a correct choice of the coding
equations strategy. This means that, in an ideal situation, any one sensor affexte just
residual and the affected residual can be associated with only one sensor. Tierdly,
detection scheme has to be insensitive to uncertainties affecting the systemaifipie,
modification of its transfer function, unknown inputs or modeling errothjs; is the
general property of robustness (see for exar(ipde, 1986) and (Winnenberg, 1989))
which is necessary in order to achiegability (i.e. to minimize false alarms and missed
failure detections). Lastly, the observatismdow used for the residual calculation has to
be as short as possible in order to have a rapid failure detédtiertast two requirements

are often conflicting, as, for example, an importdmtation of observation improves the
detection robustness but increases the fault detection delay.

Let us now return to the residual generation through model equations. Seiresiples

may be generally applied among which are : Kalfi#ering, direct input-output model
relations, observers or parameter identification. Note that in the fieldsesfical and
metallurgical engineering and also foower plant processes, special attention has been
given to material and energy balance equatidhese are used to generate residuals from
the direct relation between the different measured flowrates (mateeakogy). Even if
theseaelations are not general, they have the considerable advantage of being structurally
exact because they express the laws of mass and energy conservation ; consgédbently,
residuals differ from zero, this deviation is only due to the fatls. the static case,
Vaclavek (1974rand Serth (1986) proposed several tests for balance equation analysis
which have sincdeen extended to the multilinear case ; at the same time the dynamic
balance equationsave been examined (Gertler, 1973). A popular approach which is
directly issued from the input-output description of a process is knopari#g equations
(Potter, 1977) which is available for static as veal dynamic processes (Willsky, 1976



and Chow, 1984)). The second well-known approach is bastu arconstruction of the
output of the process with the aid albservers either in a deterministic or stochastic
situation ; it uses the estimatierror or a function of it as a residual (Clark, 1978). Both
mentioned approaches are different ways for solving the samefkprdblem. Moreover,
recent papers state the equivalence between residual generatdasdsyer and parity
space approaches which was first poirgatlby Frank (1990) ; this equivalence problem
has been recently addressed in the following papers : (Gertler, 1991), (StarosMa@tki,
(Patton, 1991) and (Magni, 1991).

This paper focuses on the generation of residfraisy the dynamic input-output
equations of processes ; @e not discuss the outcomes of the statistical testing of these
residuals which can be found for example in Patton (1989)n#oductory example is
given to point outhe problem of redundancy and the principle of redundancy extraction.
We then suggest a new algorithm which directly extracts the reduegiaations from the
model process without involving a preliminary state or ougstitmation of the process.
The proposed scheme involvesiaccessive elimination of state sub-vectors and their
replacement by measured output values as well as the processing of one @utjpoe @b
completely avoid matrix inversion.

INTRODUCTORY EXAMPLE
To illustrate the idea aedundancy generation, consider a simple dynamic system ideally
modelized by the discrete third order state equations :

x1(k+1) = 0.5 xq(K) - 0.7 %(k) + 0.7 »(k) (1a)
Xo(k+1) = 0.1 x(K) + 0.8 %(k) + 0.1 (k) + u(k) (1b)
xz(k+1) = -x1(k) (1c)
y(k)  =x3(k) (1d)

In these equations, only a functiontbé state variables is measured and the input u(k) is
assumed to be known. The obtaining of redundancy equations (if they exist) cohsists
eliminating the unknown variableg, o, X3 between the state equatioksr this example,
direct elimination is straightforward and gives the equation :

y(k+3) - 1.3 y(k+2) + 1.17 y(k+1) - 0.63 y(k) - 0.7 u(k) =0 (2)
For this redundancy relation, there are different possible methodshdoresidual

generation. The redundancy equation itself can be takanresidual. For our example,
this would be :

r(k) = y(K) - 1.3 y(k-1) + 1.17 y(k-2) - 0.63 y(k-3) - 0.7 u(k-3)



Such a residual is a moving average process, since it is a function wiogterecent
sensor output and input valuestié sensor is subject to a failure, the residual value r(k)
is correlated with r(k-1), r(k-2) and r(k-3) but not with any of its values preceding r(k-3).

A second possibility is teolve (2) recursively and to compare the result each time to the
actual output of the sensor. Therefore, we calculate :

Y(K) = 1.39(k-1) - 1.179(k-2) + 0.63y(k-3) + 0.7 u(k-3)

and the resulting residual is :
ra(k) = y(K) - §(K)

It should be noticed thahe residual #(k) is not a moving average of the previous values
as it involves the integration of u(k). For examplejias on the actuator will not be
removed in a finite number of steps.

A third method of residual generation is alsmsed on the model §fk) but explicitly
takes into accountoise affecting the process ; as a result, we can design a Kalman filter
from which the innovation sequence directly gives the residuals.

Whatever the methodssed to generate the residuals, these latter are representative of the
faults to be detected. All the methods that meayapplied to analyze the residuals use the
principle of change detection ; these changes look like abrupt modificationsres$itheal,

slow shifts,or abnormal values. A survey of the different techniques may be found in
Basseville (1986) for change detection in signals and sysamchsBarnett (1984) for
outlier detection.

GENERAL APPROACH
From a more general point of view, consider the discrete linear time-invariant system :

x(k+1) = A x(k)+ B u(k) (3a)
y(K) = C x(k) (3b)

with x(k) O R, u(k)0 RM, y(k) O R and appropriate dimensions for the matrices A, B
and C. Using z as the shift forward operator (z f(k) = f(k+1)), the elimination of the state
X gives the redundancy equation :

y(k)=C (z1-A¥1B u(k) 4)

This redundancy equation may also be expressed :

H(2) y(k) = G(2) u(k) (5)



where the matrices G(z) and H(z) are related to those of the state model :

G(z)=CAdj(z1-A) B (6a)
H(z) = Det(z | - A) (6b)

Applying equation(5) to the available measurements on y and u yields a set of parity
equations where e(k) is in general not zero :

e(k) = H(2) y(k) - G(2) u(k) (7)

Thedeviation from zero is the combined result of measurement noises and faults ; if the
noise is negligible the residual may be directly analyatttbrwise a preliminary statistical
treatment must be applieh e(k). The parity vector e(k) can be readily calculated if u(k)
and y(k) are known ; the columns of the matrix (H(z)G(z)) are known as failure
directions andhe vector space spanned by these directions is referred to as the parity
space in which the parity vector lies. The detectability thedisolability of the faults is
thenstrongly connected to the structure of the matrix (H(z) -G(z)). A failure may be
detected by comparing the norm of e(k) to a specified threshb#d Ipcalization of the
failure is then performed by comparing tbieection of the vector e(k) to the failure
directions. In either case a pattern recognition procedure is necessary tofashiete
through their signatures.

A direct formulation of the transfer function may also dletained by the stable
factorization approach (Kailath 1980, Vidyasagar 1985). Gisagy proper rational
transfer function matrif(z), we can define the stable right and left coprime factorization
as:

P(z) = N(z) D(2) (8a)
P(z) =D-Yz) N(z) (8b)

where the different matrices N, N, andD verify :

[]

i A
N Y

-N D

These left and right stable factors (D) and N, D) may also be obtained from state
space descriptions of P(z) for the system desciilyedquations (3) where the transfer
function is expressed by :

P(z)=C(zI-A!B (10)



Stabilizability and detectabilitgnsure that K and F can be found such that A-BK and
A-FC are stable matrices. Then we have (Nett, 1984) :

1y U0 U e O

i %Q %Q §z|-A+FC)1 B F) (11a)
N b 0 | -C

1 U4 oHHe U

i @:Q %Q QZI-A+BK)'1 B F) (11b)
N v 0 | -C

With a judicious choice of the matrices F andtKs possible to reduce the calculation

work which allows the determination of tmeatrices N, D,N and D. This has been
suggested by (Viswanadham, 1987) in a partictdae of the state equations structure ; a
more general method is given in (Fang, 1991). See also (Ding, 1990) and (ahk,

for the application of th&actorization applied to fault detection ; it was demonstrated that
all residual generators can be parametrized in the form :

1) = Q(2) B(2) y(2) -N(2) u(2)) (12)

where Q(z) denotes the parameter matrix cheseh that some specifications about fault
isolation are satisfied (structured residual generation).

Despite the simplicity of the formulation, the generatiothef redundancies is achieved
through matrix calculations involving inversemputations (equations (6a) and (6b) for
the direct generatioor equations (11a) and (11b) when using the coprime factorization).
FaddeeV(1963) suggested an elegant algorithm in order to compute the inverse of the
matrix (zl - A). Bingulaq1975) proposed a method which allows the computation of the
transferfunctions (H(z), G(z)) without the evaluation of the cofactor matrix. Blackwell
(1984) and Hashim (1988) formulated the same problem thraugtiangularisation
procedure of the state equations. Va(§881) proposed a calculation of the transfer
function between each input and each output involving an orthogonal transformiaittn
eliminates the noncontrollable and nonobservable partseash transfer function.
Furthermore, Misra (1987) suggested an approach treenlpwer and upper Hessenberg
form for each input-output pair, the realization of which beintglly controllable and
observableln the extended case of singular systems, Paraskevopoulos (1984) developed
two methods using the pencil matrix properties @neddrazin inverse matrices ; this latter
point was also examined by Saidahmed (1990). Another approach isobaseddivision

of the state equations using the concept of observability but it also needscalatriation

such as rank of matrix.



AN EXAMPLE OF REDUNDANCY GENERATION
Here, we suggest an algorithm based on elimination ofahables. Let us remember that
the basic principle for the redundaneguation generation consists of eliminating the
unknown variables. This elimination may be performedalgregation of equations
(linear combinations) or by projection. To begin with, we reformulate the estpiations
used for the previous example. Thus we try to eliminate the stateset »3. Considering
X3 as the measured part of the state vector, it is possible to rewrite the equations (1) as :

x1(k+1) 05 -0.70xa(k) 0.7 0.000OYy(K)

ion = Hos osbh B* Bor 1odRi B e
xo(k+1) 0.1 0.8 Hxp(k) 0.1 1.00Hu(k)

(k+1) = (-1 O)Exl(k)g (13b)
Y= x2(K)

One then obtains a dynamic state equatbrmeduced dimension and a measurement
equation which only depend on twaknown state variables. Once again, it is possible to
isolate the "measured” componemt Xhis leads to the reduced state equation :

y(k+1)

xo(k+1) = 0.8 (k) + (-0.1 0.1 1) y(K) (14a)
u(k)

y(k+2) - 0.5 y(k+1) + 0.7 y(K) = 0.724) (14b)

It is clear thatequation (14a) describes the time evolution pfdye to the generalized
input (y(k+1), y(k), u(k))while equation (14b) corresponds to the new measurement
equation. Moreover the elimination of the unknostate x between the equation (14a)
and (14b) is straightforward and givbe redundancy equation obtained before (equation
2).

GENERAL ALGORITHM
We have previously outlined the numerical difficulties of the direct approécthe
redundancy equation generation ; this is mainly due to the dimewfsiba matrices to be
inverted. Our objectivas to avoid these matrix inversions. When using successive
transformations one may reduce the staf@ations of the system to one scalar equation ;
generation of redundancy equations is then straightforwardorbpesed scheme, for the
previous example, uses a progressive reduction of the dimension stathesquations ;
each step of this reduction is characterized by the suppression of oneastdile. The
method is continued until@nstant or a matrix of minimal dimension is reached : in the
previous example when the dimension of stete equation is equal to one. This is the
basic idea of our strategy of redundancy equation generation : the unknown variatges



eliminated from the state equations in order to keep only the known vataates y. The
previous example states thhis elimination is achieved without calculating the inverse of
the matrix (zl -A). Let us return to the general segaations (3). With £a non singular
part of the matrix C, a simple permutation of the components of x enables the division :

Exl(kﬂ) E EAM A12 ngl(k) E+ EBl E "

= u
xak+1) B Bz Agp BHxak) B B, (15a)
y(k) = C1 x1(K) + C2 x2(k) (15b)

where x(k) O R!l, x(k) O R™ and the matrices have appropriate dimensions. This
division assumes that the C matrix has follv rank ; if this hypothesis does not hold
(some measures are then physically redundant), one may redudentresion of the
observation equations by considering only those which are independent.

With the invertible linear transformation :

X1(K) = C1 x1(k) + Co x2(K) (16a)
X2(K) = x2(K) _ (16b)
the state equations are rewritten :
erny H Hay &, Hrao H He, H
Her 5 e, 5 o B B, e
X2(k+1) A21 Azz L1 Ix2(K) Ez
y(K) =X1(K) (17b)

with the definitions :

A11=(C1 A11+ G2 Agy) CT (18a)
A12= - Ar1 Co+Cr A1+ G A (18b)
A21= Ag1 CT (18c)
A22= Ag2-A21CT Co (18d)
Bi1= C1Bi+ By (18e)
Bo= B (18f)

Then, the elimination ok1(k) and (k) between equations (17a) afii’b) gives the
redundancy equation :

[(z1-A11) - A12(z 1 - Ap) 1 A1 X1(2) - [Br+ A1z (z1-Ap)1B2]U(z) =0 (19)



It appears that this foris more advantageous than (4) considering the size of the matrix
to be inverted. However, the size of this remainmatrix may be too large. A more

interesting presentation of the equation caw be obtained by eliminating the variable
X1(Kk) in the state equation (17) ; the remaining equations are reducedarttiventaining
the unknown state variabl&s(k) :

B _ L y(k)
Xo(k+1)= A22 X2(k) + (A21 B2) E E (20a)

u(k)
z(K) = A1z %2(K) (20b)
with z(k) = y(k+1)- A11y(K) - By u(k) (20c)

This form points out the generalized input (y(k), u(k)) which drixesevolution of the
state variabl&y(k) and the generalized measureme(kl). Consequently, equations (20)
are structurally identicab equations (3) ; therefore, the transformation used in equations
(15) and (16) may bepplied to equation (20). In this way, we eliminate the unknown
variablesxo(k). The complete solutiowill now be presented ; as mentioned above, the
algorithm is applied sequentialgnd each step is referenced by a supplementary index
"n". For the first step, n=0, the state equations (3) are rewritten :

x(0, k+1) = A(0) x(0, k}+ B(0) u(0, k) (21a)
y(0, k) = C(0) x(0, k) (21b)

where, it is evident, at this step, that x(0, k) = x(k) and the same simplificationfbokthe
other variables and matrices. After the extraction of a regular pé@} 6f thematrix C(0),
we apply the previous results to obtain the partitioned state equations :

Exl(oy k+1) E: Eﬂn(o) A12(0) %20, k) @ Eél(o) E“(O’ 0 (22a)
X2(0, k+1) A21(0) Agx(0) LLIX(0, k) B2(0)

y(0, k) =%(0, k) (22b)

with  X1(0, k) = C1(0) x1(0, k) + G(0) x2(0, k)
X1(0, k) = x2(0, k)

which also gives the reduced equations :

) o o y(0, k)
%2(0, k+1)= Az0) %2(0, K) + (A21(0) B2(0)) Eu o k)E (23a)

¥(0, K)= A1(0) X2(0, k) (23b)



with the pseudo-measurement :

(0, k) = %(0, k+1)- A11(0) X1(0, k) - B u(0, k) (23c)

The reader willnotice thaty(0, k) depends on a signal at time (k+1) ; as we are only
looking for equation generation, no problems of time synchronization have to bentaken
account. In order to simplify the notations, we will drop the subscript 2 of thevatatile

by defining the state variable at step 1 with :

X(1, k) =%(0, k) (24)

So, at step 1, equations (23a) and (23b) are re-noted :
X(1, k+1) = A(1) x(1, k¥ B(2) u(1, k) (25a)
y(1, k) = C(1) x(1, k) (25b)

with evident definitions for the new input u(1, k) and measured variable yéhdalso
for the matrice#\(1), B(1) and C(1). More generally, the complete algorithm is stated as
follows :

X(n, k+1) = A(n) x(n, k}* B(n) u(n, k) n=0,.., N (26a)
y(n, K) = C(n) x(n, K) n=0,.., N (26b)

with the pseudo measurement defined by :

y(n, K) = y(n-1, k+1) - A1(n-1) y(n-1, k) - B(n-1) u(n-1, k) (27¢)

At the final step Na first possibility occurs when the matrix A reduces to a scalar which
allows the constructioaf the redundancy equation without matrix inversion ; eliminating
X(N, k) in equations (26a) and (26b) written for n = N gives :

Y(N, k) (z - A(N)) = C(N) B(N) u(N, k) (28a)

The second possibility occurs when C(N) becomes zero ; theps#uglo-measurement
y(N, k) is zero and the redundancy equation must be generated from equation (20c) as :

y(N-1, k+1) - A12(N-1) y(N-1, k) - Bi(N-1) u(N-1, k) = 0 (28D)

Generalizing the transition from step O (equation (22)) to step 1 (eq(2&yn at each
step we have the following definitions :

A(n+1) = Agy(n) (29a)



B(n+1) =( Apa(n)  Bx(n)) (29b)

C(n+1) = Agx(n) (29c)

AW = ;All(n) Alz(n)g (290)
JA21(n)  Ag2n)

B(n) = ;Bl(n) E (29e)
OB2(n)

c) =(am GM) (291)

A1a(n) = (Cu(n) Ara(n) + Ga(n) Apa(n)) Ci(n) (299)

A12(n) = - A1a(n) Cy(n)+ Cy(n) Ar2a(n) + Gx(n) Azx(n) (29h)

A2i(n) = Apy(n) C1(n) (29i)

A2An) = AoAn) - Aza(n) CT(n) Co(n) (29))

Bi(n) = Cu(n) By(n) + Cx(n) Ba(n) (29K)

Ban) = Ba(n) (291)

y(n-1, k)
un. k) :Eu(n-l, k)é (29m)

Note that the inverse of matrixi(@) which appearsn equation (22) may be simply
avoided if we apply this algorithm for each output after the other ; in this case, the
matrix C(n) reduces to a row-vector and tdraction of the non singular part is
straightforward. The redundancy equati@ne then generated one output at a time and
therefore can beonsidered as self-redundancy equations ; the isolation of the outputs in
each equation may be used for the localization of the sensor failures.

A LAST SIMPLIFICATION
In the state equatiorabtained at each step, we have defined a generalized input vector
(29m) anda pseudo-measurement vector (27c) ; these two vectors only depend on the
input u(k) and on the output y(k) of the giveystem considered at different times. An
appreciable simplification may be given to the previous algoritymexpressing these
relations under a recursive form. At each step, the pseudo-measuf@f®nmay be
expressed :

y(n, k) = F(n-1, 2) y(n-1, k) + G(n-1) u(n-1, k) (30a)

where the matrices F and G are defined by :



F(n-1, 2) = z -A11(n-1) (30b)
G(n-1) = - B(n-1) (30c)
For the first step, it is clear that y(n, k) am@, k) only depend on the values of y(0, k) =

y(k) and u(0, k) = u(k). Accordintp the definitions (29m) and (30a), this dependence
also appears at step n. We can make these relations clear at each step by defining :

y(k)

y(n,k)=(R(n,z)  S(n, 2) (31a)
u(k)
y(k)

un,k)=(P(n,z) Q(n, 2 (31b)
u(k)

where R, S, P and Q are polynomial matrices of the shifable z. To simplify the
computation, one can then ugerecursive formulation of these matrices. From (30a)
written at step (n+1) and using (31) we obtain :

y(n+1, k) =(F(n, z) R(n, 2) + G(n) P(n, ky(k) +

(F(n, 2) S(n, 2) + G(n) Q(n, Jru(k) (32)
Comparing (31a) written at step (n+1) and (32), the following recurrences are deduced :
R(n+1, z) = F(n, z) R(n, z) + G(n) P(n, 2) (33a)
S(n+1, z) = F(n, z) S(n, z) + G(n) Q(n, 2) (33b)

From (29m) written at step (n+1) and substituting the value of y(n, k) anl)ufiven by
equations (31) we obtain :

o _ER(H,Z) S(n,z) EEY(‘O E a4
u(n+1. k) = P(n,z) Q(n,z)FBu(K) (34)

Comparing (31b) and (34) the following recurrences are deduced :

R(n,z)

P(n+1, 2) :E P(n.2) E (35a)
S(n,z)

Q(n+1, 2) = E 0 (n’Z)E (35b)

The expressions of theseudo-measurements and of the generalized input are deduced
from the inputsand the outputs of the given system by using the equations (31a) and
(31b); the matrices which define these transformations maptaéned recursively (33)

and (35).



Finally, if in the equation (28a) we replace y(N, k) and u(N, k)thsir respective
definitions (31a) and (31b), we get the final form of the redundancy equations :

(R(N, 2) (z - A(N)) - C(N) B(N) P(N, J)y(k) +
(S(N, 2) (z - A(N)) - C(N) B(N) Q(N, 2)u(k) = 0 (36a)

When (28b) has to be used we have the redundancy equation :
R(N, z) y(k) + S(N, z) u(k) =0 (36b)
EXAMPLE 1
Consider the four order system described by equations (3a) and (3b), with :
05 -0.7 0.7 0.1
0.0 08 0.1 00
0.0 0.2 0.7 0.2
1.0 0.0 0.1 0.0

c=(0 1 0 0)

oo = O

According to the recurrences given in the previous secti@n,obtain the following
results :

Initial step
A11(0) =0.8 B(0) =1
RO) =1 S(0) =0
P(O) =0 QO) =1
FO) =z-08
First step
A11(1) =0.7 B(l) =(0.02 0)
R(1) =z-0.8 s@1) =-1

Hoco o Ho B o BB B
" e H Bo *® “Bow BB
F(1) =z-07

Second step

A11(2) =0 Bi(2) =(002 0 0)
R2) =2-15z+0.54 S2) =-2z+0.7
z-0.8 1
_ER(l) E_ L ) _ER(l) E_
P2) = Py B i Q(2) = P B

F2) =z



Third step

A11(3) = 0.5 B =(5 7 -07 0
R@B) =#-152+052z+0016  S@3) =-2+0.7z+0.02
_z2-1.5 z+0.54| | z+0.7
RO H z08 | gs@p H -1
PG :Ep(z) E: -1 — QO _EQ(Z) E_ 0
| | 0 f 1
FB) =z-05

The redundancy equation, obtained from (29) is then :

(Z4- 28 +1.37 2-0.254 2 - 0.08) y(k) = & 1.2 2+ 0.43 z + 0.08) u(k)

EXAMPLE 2 (Massoumnia, 1988)
Let us consider the system in equations (3a) and (3b) with the definitions :

0 0O 1 0
110
A=|10 2 O B={/0 1 C:E E
0 01
0 01 1 1

Going through the details of the outlined procedure, it can be shown that forsthe
output Vi (k) we obtain :

R(2) =z(z - 2) S2)=(2-z -2)
C3)=0
y1(k+2) - 2 yi(k+1) + 2 (k) - up(k+1) - wp(k+1) =0 (37a)

Repeating the procedure for the second outpid) ywe get :

R1)=z-1 S(1)=(-1 1)
C(2)=(0 0)
y2(k+1) - yo(K) - ti(k) - up(k) = 0 (37b)

With the assumption that the two actuators are fellyable, the first redundancy equation

is only sensitive to the first sensor and the second equation to the secmal. These
two equations enable the detection and localization of any sémbéme. The same
equations have been foubg Massoumnia (1988) by using the parity space approach
(thereader should note the analogy between the minimal annihilating polynpmiséd

by Massoumnia and the polynomial R introduced here) ; howibeefatter technique
needs the computation of the eigenvalues oRtimeatrix. Notice that equations (37a) and



(37b) allow other redundancy equations by lineambination to be generated ; in
particular elimination of k) or w(k) between (37a) and (37b) gives teqquations the
first of which being sensitive to failug the first actuator and the second being sensitive
to the second actuator. This so-called aggregation procedure can be @pjaeade gross
errors on measured variables (Ragot, 1990).

CONCLUSION
The extraction of redundancy equations has been established for all dyinaarcstate
equations. They may be constructed for eaelasured output and give the so-called-self
redundancy equations ; when it is desired to generate struaqueadions, these self
redundancyequations may be combined to form other equations sensitive to particular
variables. Theproposed algorithm uses a sequential elimination of the unmeasured
variables ; the computation needs onlyititegration of discrete equations without matrix
inversion or rank evaluation (if the different outputs are taken onethéeother). With
some modifications, thalgorithm shown here can be applied to the generation of
redundancyequations issued from unknown input systems and also from singular
systems.
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