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Stability Analysis and Design for Continuous-Time Takagi-Sugeno
Control Systems

Mohammed CHADLI, Didier MAQUIN and Jos¢ RAGOT

Abstract

This paper discusses conditions on stability and
stabilization of continuous Takagi-Sugeno (T-S)
systems. Stability analysis is derived via nonquadratic
Lyapunov function method and LMIs (Linear Matrix
Inequalities)  formulation. @ The nonquadratic
Lyapunov function is built by inference of quadratic
Lyapunov function on the same basis as the T-S
model itself. We show that stability condition of the
open-loop T-S systems is assured under certain
restrictions on the rate of change of state variables.
Following a similar approach, stabilization of the
closed-loop continuous T-S systems using the
well-known PDC (Parallel Distributed Compensation)
technique is investigated. The design methodology is
illustrated by numerical examples.

Keywords: Takagi-Sugeno (T1-S) models, nonlinear
systems, stability analysis, regulators, Lyapunov
method, LMIs (Linear Matrix Inequalities), BMIs
(Bilinear Matrix Inequalities).

1. Introduction

It is well known that studying the stability of a general
non lnear model of a process is often very difficult.
Thus, we need to develop a simplified model that should
capture the essential features of the process and can be
used to study the stability and the stabilizability of the
non linear process. Such an approach to modeling was
proposed by Takagi-Sugeno [32]. Having the property of
universal approximation [5, 7], this approach includes
the multiple model approach [23] and can be seen also as
Polytopic Linear Differential Inclusions (PLDI) [4].

Using a quadratic Lyapunov approach, the stability
and stabilization of T-S control systems have been
considered extensively. Sufficient stability conditions
depending on the existence of a common positive
definite matrix are then derived [9, 11, 12, 20, 26, 28,
29]. Convex optimization techniques based on LMIs [4]
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have been utilized to derive stability conditions and to
solve the multiobjective control problem [15, 22, 31]. In
[l] stability conditions are derived in terms of
M-matrices and vector Lyapunov functions by regarding
the T-S models as an interconnection of LTI subsystems
while in [21] they are treated as a linear system having
modelling uncertainty. However, if the number of
submodels is large, it might be difficult to find a
common matrix. Moreover, these constraints are often
very conservative and it’s well known that, in a lot of
cases, such a common positive definite matrix does not
exist, whereas the system is stable.

Recently some works have been developed in order to
establish new stability conditions by relaxing some of
the previous constraints. So one way for obtaining
relaxed stability conditions consists of using a piecewise
quadratic Lyapunov function formulated as a set of LMIs
[6, 10, 17, 25, 27]. While in [17, 27], the continuity of
Lyapunov function is carried out by requiring additional
constraints, in [25] the function of Lyapunov can be
discontinuous. A fuzzy Lyapunov function which is state
dependent is also used [3, &, 16, 18, 30]. This method
requires fixing a priori bound on the variation of the
state, to prove the stability of the T-S fuzzy systems [8,
16].

Using a nonquadratic Lyapunov function candidate
depending on the state of the system, we will derive
sufficient condition for stability and stabilization of the
continuous T-S system. The first part proposes a method
to pick the bound of state variables of T-S continuous
models. The second part concerns the stabilization and
establishes relaxed conditions using the well-known
Parallel Distributed Compensation (PDC) technique
[34].

This paper is organized as follows: section 2 presents
an overview of T-S systems and gives previous results.
In section 3, before giving the main result, propositions
to take into account a finite number of rules activated at
each time for less of conservatism are developed. At last,
using the LMI technique for efficient way of resolution,
we develop a method to estimate an upper bound of the
state variation to prove the stability of T-S continuous
systems. In section 4, using the concept of PDC to
perform control laws and LMIs formulation, a similar
approach is used for the stabilization of T-S closed loop
system. In both cases numerical examples are given to



illustrate the effectiveness of the proposed stability
conditions.

In all that follows, the minimum and maximum
eigenvalues of the matrix X will be respectively denoted

by *m(X) and *m(X) the norm of * by Il =57
and the symmetric positive definite matrix (respectively
semipositive definite) X by X>0 (resp. ¥20), ie.
X =Y means that the matrix X-Y is semipositive

definite. The following notation is also used:

n Hoen . 3 2
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i - o . i=1j=1j#i (x,y) =x"y
n2

where (x,y]e]R and_fn ={1,-',H}.VneN

2. Continuous Takagi-Sugeno systems and
previous results

A T-S fuzzy model [32] is of the following form:

Model rule i: If #1() is Mt and...and 2q(1) 5 Mi
jf(f) = A,-x(t) + B‘.l{(t)
Then {y(r)=C,-x{t) (1

A1) =(21(t)..2,(0)

variables (called also the decision variable vector), M;
is a fuzzy set, n is the number of the If-Then rules (i.e.

x(t) e R’

is the vector of the premise

the number of submodels), is the state vector,

m !
u®€R" i the input vector, Y ER s the output
p-P p-m Lp
vector, ERCIHER” .9 CER
The final output of the T-S systems is interpolated as
follows:

() = 2w (2(ONAX() + Bu(t))
i=l

1 (2)
y(t) = Z p‘.{z(r))C‘.x(t)
wi(z(2) = TU)'M q
Y o,(z(1) o;(2(1) = [TM;(=())
where i=1 and J=

The normalized activation function Wi @) in
relation with the i submodel is such that:

S i) =1
=

pi(z)20 Viel, 3)

The choice of the variable 2(f) leads to different class

of systems. It can depend on the measurable state
variables and possibly on the input; in this case, the
system (2) describes a nonlinear system. It can also be an
unknown constant value, system (2) then represents a
polytopic linear differential inclusion (PLDI). More
detail about this type of representation can be found in
[2].

It is assumed in this paper that the activation functions
depend only on the measurable state of the system and
that only r local models are activated for a given x(2),
depending on the structure of the activation functions
p'i'(x(r))_

The unforced T-S system of (2) is defined as follows

n
x(t) = 2 1 (x(1)A;x(2)
i=i @
Let us recall first the basic stability conditions of the
system (4) derived using quadratic Lyapunov function
[29]. If there exists a common matrix P >0 such that

R 3
A P+PA4, <0 Viel, (5)

Then the system described by (4) is globally
asymptotically stable. The existence of such a common
positive definite matrix P is a key issue to check the
stability of a T-S model. Inequalities (5) give a sufficient
condition for ensuring stability of the system described
by (4). However, it is well known that, in a lot of cases, a
common matrix P>0 does not exist whereas the T-S
model is stable. The following lemma gives sufficient
conditions for the non existence of a such matrix P [4].
Lemma 1: If there exists matrices X;,Viel, not all

zero such that

n
X, 20 and XA} X +X;4;20
=1
then the inequalities (5) do not admit a solution P> 0.
In some cases, one way to reduce the conservativeness
of the quadratic analysis is the use of the so-called
S-procedure together with piecewise quadratic Lyapunov
functions [10, 17, 25, 27] or the use of multiple
Lyapunov functions [6].

3. Stability analysis using nonquadratic
Lyapunov function

Consider a Lyapunov function candidate of the form:

P(0) = Y 1 (x(O)F

V (x(0) = x() Px()x(0) B0 (6)

and p;(x(¢)) has the properties (3). This is a radialy
unbounded Lyapunov function [19] since that

v x[r) eR’



g ”x (¢ )Ir ¥ (x(r)) <S¢ ||x (.t‘)“2 (7a)

with

¢ =max (A, (R),.uh, (B,))>0,c, =min(Ary (R),..hy (£,))>0 (7b)

The time-derivative of the Lyapunov function

candidate (6) is
Px(e) = 30T POO)x(0) + x0T P0)i(0) +x(0)T PO)()  (8)

Assumption HI: In the sequel, without loss of
generality, the index of the matrices F,Viel, are

ordered as follows: A2 PR 2.2 F,.

3.1. Stability analysis

To study the stability of the unforced T-S system
(4), we need the following propositions.
Proposition 1: Taking into account the assumption
H1, the last term of (8) can be bounded as follows

() Px(0)x(0) < [ A p(B)

i=I
op; (x(1))

ax(?)
simultaneously activated at each time such that 2<r<n.
Proof: The last term of the derivative of the state
dependent matrix (8) can be written as follows

- n o 0
P =X <—-—”5iff)‘” %)P

i
i=1

where y = max[ ] and r is the number of rules

iel,

)
Considering the upper bound of the derivative of the
normalized activation functions p;(x(z)), denoted by
ap;(x(1))
ox(t)
and using the assumption H/, we obtain

«(0)T Pe0)x(0) < YOI S x0T ey
i=1

Y = max
iel,

(10)

The result of the proposition 1 follows directly
from the above inequality using the properties of the
largest eigenvalue of a symmetric positive definite
matrix.

Theorem 1: Suppose that there exists matrix Q>0
and P >0 such that the following LMIs hold:

(11a)

AP +BA; <-Q
' (11b)

7 T
A P;+PiA;+ Aj B+ FA; <-20
V(i,j)elf,i<j and pi(x(t)u;(x(t))#0. Then the

T-S model (4) is exponentially stable if the following
constraint on the state variation is satisfied:

A
ef < —= Q)

Y2 Am(R)
=

Proof: Consider the Lyapunov function candidate (6). In
order to be a Lyapunov function, its time-derivative (8)
along the trajectories of the T-S system (6) must be
negative. This time-derivative is

P(x(0) = 50 33 1, GO, () (AT, + B4, )x(0)+
=1 =
x(t)" P(x(6))x(t)
= 5O PO+ Y2 (47 P+BA)x+

i=1

(12)

x(r)fip,.(x(:))pj(x(:)){/;fg +P A4+ AP +PA, ]x{t} (13)
i<y .

From (11) and the properties of the normalized
activation functions (3) we deduce

V(x(t)) < =x(t)" Ox(1) lef(x(f))+2i!-l,-(x(t))u;—(x(ﬂ) +

i=1 i<j

x(1)" P(x(£))x(?)
= —x(1) T Qx(t) + x(1) T P(x(t))x(2) (14)
Proposition 1 leads to
V(x(t) < —x(t)T Qx(@) + ROl @I T2 p(B) (15)
i=1

Thus, it is easy to conclude from (15) that the
system (4) is asymptotically stable if the conditions
(12) holds. Moreover, some complementary
calculus given in appendix shows that the system is
exponentially stable.

3.2. Design example
Consider the following example of the form (4)
composed of two LTI local models
2
x(t) = 2 i (x (1) 4;x(1)
i=1
The state evolution matrices and the normalized
activation functions are respectively

(16a)

i Lih 2 =4
A]I|:~l —2]’ A2=[20 —2} (160)
2 2
b @ =1- 255 =24
with:
(0] <43 . (16¢)

Whereas the simulation results indicate that the
system (16) is stable (the proof of stability can be
derived using the Popov criterion as it is given in
appendix 2), the resolution of the LMIs obtained from (5)
shows that there is no quadratic Lyapunov function
ensuring stability of the above T-S model. This



verification can be also made by solving the dual
problem stated in lemma 1. Stability conditions stated in
theorem 1 give the following LMIs:

AR +R4 <-Q

ATP + P4y <-Q

Al P, + P4, + A] B + B4, <20 (17)
By solving LMIs (17) the following values are

obtained

0.77 020 286 010 556 3.08
= Sy = 18a
A [0.20 0.51} B [0,10 0,44] ¢ [3.03 m} e

Then the inequality (12) allows the condition of
stability, namely the upper bound of the state variation of
the system, to be deduced:

[x(2)]| < 7.64 (18b)

Figure 2 shows that, with respect to the constraint (18),
all trajectories of the above T-S systems converge to
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Figure 2. States trajectories of (16) with initial values
4. Nonquadratic stabilizability

4.1. Stabilizability analysis using a nonquadratic
Lyapunov function

In this section, the well-known PDC technique [29] is
utilized to design controllers in order to stabilize the T-S
system (2). The PDC controller is represented by

u(t) = =2 ;i (x(O)K;x(t) (19)
i=1

In the following, the pairs (4;,B;),Viel, are
assumed to be stabilizable. By substituting (19) into (2),
the closed-loop T-S system is expressed as:

n n ~

X(1) = 3 Ypi (e(e)p ; (x(0)) Ay x(t)

j=li=1

Aj = A; - BK; (20b)

To study the stability of the closed-loop T-S
system (20) and find appropriate K; gains, the

(20a)

following propositions are developed.
Proposition 2: Given normalized activation functions as
described in (3), the following inequality holds:

H

Ep.,—(x(r))pj(x(t)) = ,_l, Yil<r<n

i#j 8
where r is the number of rules simultaneously
activated at each time.
Proposition 3: Given normalized activation functions as
described in (3), the following inequality holds:
n ] n
2 (x(0) 2~ = S (xOW (x(0), V257 <n

i=1 i#j

1)

(22)

Proof : In the following, the proof of the proposition 2
and proposition 3 are successively established. From the
properties of the normalized activation function (3), we
have

[z uf-(x(r))]z = (e + T ) (x(0)
andit:lien + -

HEOEEHNEOWED (23)

jl}sing the coroltl;y 4 in [29]:

gu?(x(r» > 5w (x0) (24)

r= i#]

the proposition 2 is deduced. After summation of (23)
multiplied by p;(x(¢), we have

Y (O X pf (x(0) = 1= X (<O (x(1))

i=l i=l i#j

(26)

The left-hand side of (26) can be developed as
Y iDL 1] (<) = X} (x(0)+ T uf (@ (x(0))

i=1 i= i=1 i#]
which leads to

S (0) = 1= X uF e (x(0) = X p (O (x(0)
i=1 i%) i%j
(27)

Then, taking into account the result (21), the
proposition 3 is deduced.

In the following, for less of conservatism, we make
the following assumption:

Assumption H2: It is assumed that only two rules
(sub-models) are activated simultaneously at each time
r=2J. ;

This hypothesis is a very common one especially
when using triangular or trapezoidal type activation
functions. Let us now define the following matrices
where 4, ; are defined by (20b):

Hy = E;Pk + Pk;f,;,- (28)



Theorem 2: Suppose that there exists matrices Q >0,
P.>0 and K;,iel, such that the following conditions
hold:

Hjj <-Q

(29a)
H{,{"+H,fff+Hl'y- “(—Q (29b)

V(i.j)ely.i#j and p;(x(0)p;(x(0)#0. Then the

closed-loop model (20) is exponentially stable if the
following constraint on the state variation is satisfied:

i) < —2m@ (30)

s
ry 2 Au(R)

i=1
Proof: The time-derivative of the Lyapunov function
candidate (8) along the trajectories of the T-S system (20)
is

V(x(0) = x(0)" POe(e))x(t) + x(2) " R(x(1))x(0) (31)

with:
R0)= 3 5 S o, Ome )3, B+ AAy) (32)
Let us;ziél;ln; the sets of index:
U={(i,j;k)ely:i# ik, j#k}
The equality (32) can be also written as
RG(0) = Y 2 O, (RONH,, + H, +H,)+

izj

(33)

"

> i O, O O H e + 3 ),

(i)l

Taking into account the assumption A2, the second
term of the RHS of (33) can be ignored leading to the
following simplified expression

R(x(0)) = Y uf (x(e)p ; (x(O)(Hyy + Hy + Hy)+ Y7 (x(0) Hy
i=l

#J
(34)
The inequality (29b) allows to write
R(x(t) < X u} (x(O)Hy — QX nf (x(O);(x(1)  (35)
i=1

T

From the proposition 3, the expression (35) can be
rewritten as

R(x(1) < Y13 (x(0) iy - %— i#?(x(f))J
=] i=1

= 3 ONHy +Q)—%Q
=l

and from (29a), we obtain R(x(!))<—lQ. Thus
r

considering (31), and according to proposition 1, we
obtain

V(x(1)) < -x(r)" %@r(r)+v|JJ~'c(:)||l|x(r)|i2 Sau(B)  (36)

i=1

Consequently, the condition on the upper bound of
state variation (30) guarantees the exponential stability
of the closed loop T-S system (20).

If the input matrices are
dependant" i.e.

"positively linearly
Assumption H3: 3BeR”™ and «;>0,iel, such
that B; = a;B
An interesting control law of the form [24]

> ui(x(0)o; K;x(t)
u(t)=-=-
21 (x(0)a;

i=1

should be considered instead of the PDC controller (19).

(37)

Consequently, by substituting (37) into (2), the
closed-loop T-S system can be represented as
)= 31 () Ayx(2) (38)

i=I
where Xﬁ is defined in (20b). Notice that in this case,
the system (38) is written without the coupled terms (i.e.
i#j) and the stability conditions are obtained directly

from theorem 2 by substituting 4; by 4;;:

Theorem 3: Suppose that there exists matrices O >0,
F, >0 and K;,iel, such that the following conditions

hold:

Al P+ P d; <0 (39a)
AP+ Pdy+ AL P + RA; <-20 (39b)

V(ij)ely,i<j and p(x(e)p;(x(6))#0. Then the

T-S model (38) is exponentially stable if the following
constraint on the variation of the state is satisfied:

’ A
e <=2 (40)
Y2 Au(R)
i=1
Proof: see theorem 2.
Remarks: If the assumption 43 holds
(1) The control law (37) leads to n(nzﬁ constraints

instead of n® with the PDC control law (19).

(2) The assumption H2 is not required: More precisely,
no constraint on the number of simultaneously
activated rules is required and the bound on the state
variation in the case of the control law (37) is twice
more bigger than these with PDC control law.

It should be noted that constraints (29) and (39) are
Bilinear Matrix Inequalities (BMIs) in P and
K;,Viel,. We know also that many control problems
that require the solution to BMIs can be formulated as
LMIs, which may be solved very efficiently.
Unfortunately our problem is not convex, its LMI



formulation is very difficult and may have multiple local
solutions. In this paper, we use the path-following
method, developed in [13], for solving locally BMI
problem ((29) or (39)). This method utilizes a first order

perturbation approximation to linearize the BMI problem.

Hence, the BMIs are converted into a series of LMIs

iteratively solved until a desired performance is achieved.

Some examples are given in [13, 14], the employed
procedure is the following.

Let P, and K;, be initial values such that
Rk:Pkoi'aﬂ, KJ=KJO+6KJ (41)

Thus, using the definitions (20b) and neglecting the
second order terms O8F B;0K; and B;3K;8F , it is

possible to express a first order approximation H ik of

Hij:

Ao 2 AL By +Pod (B!K,U) Py —BBK,+ ATSP, + 42)
E,PIAf [ i ;[J] B'Df( SRQ’BK

T
T jO BK.T(PROBJ) _F;cOBEBK_;'

As this last equation is linear with regard to the
variables 8P, and 8K, , the corresponding matrix

inequality system (29) becomes a LMI system in 85
and 3K; and can be easily solved. This procedure is

then repeated until obtaining the convergence of the
solution.
It is important to note that the following constraints:

8P| < g|Pro|| and HSKJH(CHKN" 0<<<1, must be

added in order to ensure the validity of the linear
approximation. The major weakness of this method is,
firstly, the choice of initial values for an acceptable
solution and, secondly, the convergence to a solution
which is not guaranteed. For the global resolution of
BMIs one will consult the reference [2].

4.2. Design example
Consider the following T-S model of the form (2)

2
x(1) = 2w (x(O))(A;x(0) + Bu(t))

(43)

with r=n=2

ft ~ tanh(x; (k)))

Hy(xy (k) = ; , Ma(x(k) =1-p(x;(k)),
(231 -7183 2276 1

A=]"1 0 0 [B=]|0
| 0 1 0 3
[1.604 —107 180 1

A =] 1 0 0], B,=[0 (44)
0 1 0 -3

One note that a common quadratic Lyapunov function
to design the T-S controller and then prove the
stabilization of the above closed loop T-S system does

not exist [20, 29]. From conditions (29) given in
theorem 2 and with definitions (28) and (20b), we obtain
the following four BMIs problem in Q, A, A, K, and
K,

B>0,A>0,0>0

Hy; <-Q Viel (45)
Hy, +Hﬂ, Hy; < -Q Vi#jel,
Using the linearization method (42), we obtain:
21 7.6 338 i ok 68.8
B =|76 1421 1468 [P, =|98 1555 2017 | (46a)
338 1468 11368 68.8 2017 2320.6
033540 Yoy 1110
Q=10 15 708 5063 (46b)

1110 50.63 375.82

K, =[7.39 36.07 258.38] K, =[-8.34 —24.36 -279.52] 47

The condition (30) allows the upper bound of the state
variation guaranteeing the exponential stability of the
closed loop T-S systems (43) to be computed:
||J'c(r)|| <109.40

Figure 3 shows that, with respect to the constraint of
the state variation, all trajectories of the above T-S
systems converge to zero.

-
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0';_ 0.5 1 15
T TR R e b e )
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“5'100
2 UM
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Figure 3: States trajectories with initials values
x(0)=[1 -1 01]
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Appendix

Exponential stability
If constraint (12) holds, the inequality (15) can be
written as

V(x(1)) < ~|Blx(0)" x(t) < ~olx(0)|>
where |B| :)LM(Q)—H:&HyikM(E) and o is a positive
1=1

real such that o >|p|, v x(r). With the property (7),

the inequality (48) can be rewritten as:

V(x(t)<-—V(x(t)) . The solution of the above
€
differential equation is:
. @l

Vx(t) < V(0)e

o
-t

which leads to [x(t)|*¢; < |x(0)|>c,e © . Hence

a
e |

1/2
ko)l < ||x(0)p|(fc'-%—) Brk" (50)
|

This last expression shows that the constraint (12)

ensures the exponential stability of the T-S model (4).
Stability domain

The Popov method makes the connection between the
Nyquist harmonic. analysis and the Lyapunov temporal

analysis. The Popov criterion uses a Lyapunov function

candidate of the Lure—type:

y=Cx
Vix)=xTPx+2p [o(vidv
0

(49)

where p >0 is to be chosen. The T-S model (16) can be
rewritten as
{i(f) = Ax(t) - Bo((1))

52
W) = Cx(1) e

[-5 4] [-3] . pitt ot g
where A—[_l _2],3—[_21}&'—[1 0],(P(}’)-T

with the following properties: A is Hurwitz, (4, B) is
controllable, and (4, C) is observable.

The non linear function ¢(.) (figure 4) is such that:
y.0(»)=0; 0.y<o(y)<K.y, where K>0. The transfer

function of the linear part of the system is
G(s)= C(sI- A)"' B, that is: G(s) = —fﬂ
N TG

The frequency condition for the Popov criterion [19]
is given by
‘.Re[(1+jm1.1)(}'(jm)1>%, YoekR (53)

If we plot Re[G(jw)] versus o.3Im[G(jw)] (Popov plot)

(48)with o as a parameter, the condition (53) is satisfied if

the plot lies to the right of the straight line that intercepts

the point «}(lﬂ-_o with slope ! (figure 5).
1

Indeed one can chose K =181 and p=0.14, which
give the domain of stability: x, €[-2.33,+2.33], V x,(¢)

It is instructive to note that, for this value of K, the
circle criterion fails because it is related to the existence
of a common Lyapunov function which do not exist for
this system.

o(y)
.1 SlopeK

Y lim y

Figure 4. Local sector non linearity

[ @ 3m(G(iw) |

WE VSIopc 1/
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Figure 5. The Popov plot.



Mohammed Chadli received the
graduate degree (DEA) from the
Engineering School INSA in Lyon,
France. From October 1999 to 2002 he
was a Ph.D. student at the “Centre de
Recherche en Automatique de Nancy”
(CRAN, Research Center in Automatic
Control) in Nancy, France. He received
the Ph.D. degree from “Institut National
Polytechnique de Lorraine” (INPL) in December 2002. From
2002 to 2004, he was a research associate in CRAN-CNRS
and teacher in INPL. Since 2004, he has been a “Maitre de
Conferences” (Assistant Professor) at the University of
Picardie Jules Verne—Faculty of Mathematics and Computer
Sciences and a researcher in the Center of Robotics and
Automatic control (CREA) in Amiens, France. His research
interests include fuzzy control and robust control with
application in the vehicle domain.

Didier Maquin was born in Nancy,
France on November 22, 1959. He
received a doctoral degree (Ph.D) in
electrical engineering from the University
of Nancy in 1987. He spent about ten
years as a Research and Teaching
Assistant at the «Ecole Nationale
Supérieure de Geologie » of Nancy where
he teached applied mathematics,
automatic control, modeling and signal analysis. Since 2003,
he is a full Professor with the National Polytechnic Institute of
Lorraine (a region of France) and teaches automatic control,
discrete mathematics, diagnosis and supervision more
specifically in two engineer schools. He is the scientific
animator of the « Dependability and system diagnosis » team
of the Research Center for Automatic Control of Nancy. Since
2001, he co-chairs a national research group dealing with
dependability, safety, and supervision under the auspices of the
French National Center for Scientific Research (CNRS). His
current.research interests include model-based fault diagnosis,
data validation and modeling techniques. Prof. Maquin is a
member of the Institute of Electrical and Electronics Engineers
(IEEE).

José Ragot was born in Nancy, France on
April 28, 1947. He received a doctoral
degree (Ph.D) in electrical engineering in
November 1973. He passed its so-called
"Doctorat-es-Sciences" in November
1980. He is now at the "Automatic
Control Research Center of Nancy"
(UMR CNRS 7039) and Professor in
electrical engineering at an engineer
school in geology (ENSG) since 1985.
His field of interest includes modelisation and identification,
data reconciliation and process diagnosis and more generally
every methods allowing to increase the dependability of
industrial process




