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Abstract 

Bivariate linear mixed models are useful when analyzing longitudinal data of two associated 

markers. In this paper, we present a bivariate linear mixed model including random effects or 

first-order auto-regressive process and independent measurement error for both markers. 

Codes and tricks to fit these models using SAS Proc MIXED are provided. Limitations of this 

program are discussed and an example in the field of HIV infection is shown. Despite some 

limitations, SAS Proc MIXED is a useful tool that may be easily extendable to multivariate 

response in longitudinal studies. 
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1. Introduction 

 Longitudinal data are often collected in epidemiological studies, especially to study 

the evolution of biomedical markers. Thus, linear mixed models [1], recently available in 

standard statistical packages [2, 3], are increasingly used to take into account all available 

information and deal with the intra-subject correlation. 

 When several markers are measured repeatedly, longitudinal multivariate models 

could be used, like in econometrics. However, this extension of univariate models is rarely 

used in biomedicine although it could be useful to study the joint evolution of biomarkers. 

Into example, in HIV infection, several markers are available to measure the quantity of virus 

(plasma viral load noted HIV RNA), the status of immune system (CD4+ T lymphocytes 

which are a specific target of the virus, CD8+ T lymphocytes) or the inflammation process (2 

microglobuline). These markers are associated as the infection measured by HIV RNA 

induces inflammation and the destruction of immune cells. Several authors have developed 

methods to fit evolution of CD4 and CD8 cells [4] or CD4 and 2 microglobuline [5]. Amrick 

Shah et al. [4] used an EM algorithm to fit a bivariate linear random effects model. Sy et al [5] 

used the Fisher scoring method to fit a bivariate linear random effects model including an 

integrated Orstein-Uhlenbeck process (IOU). IOU is a stochastic process that includes 

Brownian motion as special limiting case. 

Their programs were implemented using IML module of SAS Software [6]. However, their 

flexibility is not sufficient to allow a large use by researchers not familiar with IML. Also, the 

EM algorithm chosen is slow.  

In this paper, we propose some tricks to use SAS MIXED procedure in order to fit 

multivariate linear mixed models to multivariate longitudinal gaussian data. SAS MIXED 

procedure uses Newton-Raphson algorithm known to be faster than the EM algorithm [7]. In 



 

 

section 2 and 3, we present bivariate linear mixed models and the code used in SAS to fit 

these models. In section 4, we apply these models to study the joint evolution of HIV RNA 

and CD4+ T lymphocytes in a cohort of HIV-1 infected patients (APROCO) treated with 

highly active antiretroviral treatment. 

 

2. Model for bivariate longitudinal gaussian data 

We define a general bivariate linear mixed model including a random component, a first order 

auto-regressive process and an independent error. 

Let 
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where k

iX  is a k

i pn   design matrix, k  is a kp -vector of fixed effects, k

iZ  is a k

i qn   

design matrix which is usually a subset of k

iX , k

i  is a kq -vector of individual random 

effects with kk pq  . k

iW  is a vector of realization of a first order auto-regressive process 
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 2,  and 
inI  is a ii nn   identity matrix. 

To take into account correlation between both markers, one could use the following bivariate 

linear mixed model: 

iiiiii WZXY    with 
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  represents independent measurement errors. 

The covariance matrix of measurement errors is defined by 
ini I  and 
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(the symbol   represents the Kronecker product). The covariance function of the bivariate 

auto-regressive process 
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 is the process covariance matrix at st   and B is a 22  matrix such that 

(i) the eigenvalues of B have negative real parts, and (ii) C and  CBCBD '  are positive 

definite symmetric [5]. The covariance matrix of random effects is the matrix 
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3. Models using Proc MIXED of SAS software 

3.1 Random effects 

As described in the documentation [3], multivariate random effects models can be fitted using 

the statement random and an indicator variable for each marker to define k

iY , k

iX  and k

iZ . 

To add an independent error for each response variable in a multivariate random effect model, 

one must use the repeated statement with the option GROUP(VAR) where VAR is a binary 



 

 

variable indicating the response variable concerned (VAR=0 for 1Y  and VAR=1 for 2Y  into 

example). This option allows estimation of heterogeneous covariance structure, i.e. the 

variances of the measurement errors are different for each response variable. 

An example of SAS code for a bivariate random effect model with random intercept and 

random slopes is: 

Proc mixed data=BIV; 

class CEN_PAT VAR; 

model Y=VAR VAR*T; 

random VAR VAR*T /type=UN sub=CEN_PAT; 

repeated /type=VC grp=VAR sub=CEN_PAT; 

run ; 

 

where CEN_PAT is a single identification number of each patient and T is time. In this 

example, we have 22121  qqpp  and  ijijijijij tZZXX 12121   for the 

measurement j of the subject i. Note that the two markers are independent if 
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3.2 First order auto-regressive process 

In the repeated statement SAS provides the possibility to fit bivariate models using a 

Kronecker product notation [8]. For instance, in the bivariate case with 3 repeated measures, 

the option type=UN@AR(1) in the statement repeated assumes that the covariance matrix has 

the following structure: 
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www . Compared with the general 

bivariate auto-regressive process defined in the previous section, this structure has two 

important limitations. First, the covariance structure is a first order auto-regressive process for 

discrete data and assumes the measures are equally spaced for all subjects and for the two 

markers. In the univariate case, a continuous time AR(1) model, which allows non equally 



 

 

spaced measures, may be fitted using the structure SP(POW) but this structure is not available 

for multivariate models. The second limitation is that the SAS program allows to estimate 

only one correlation parameter    for the ‘bivariate process’ rather than a matrix B. Thus, 

using this formulation, one assumes that the intra-marker correlation is the same for the two 

markers, i.e.       st

iiii twswCorrtwswCorr


 )(,)(, 2211 . Moreover, one assumes that 

inter-marker correlation is proportional to the intra-marker correlation, i.e. 
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To add an independent measurement error for both markers, one must use the option 

LOCAL(EXP <effects>) which produces exponential local effects, <effects>=VAR being still 

the indicator variable of response variable. These local effects have the form 

    Udiag exp2  where U is a full-rank design matrix. PROC MIXED constructs U in terms 

of 1s and –1s for a classification effect and estimates  . 

An example of SAS code to fit a bivariate first-order auto-regressive model is: 

Proc mixed data=BIV; 

class CEN_PAT VAR; 

model Y=VAR VAR*T; 

repeated VAR /type=UN@AR(1) local=exp(VAR) sub=CEN_PAT; 

run ; 

 

where T is the time as a continuous variable and VAR is the indicator variable. 

The SAS output contains the following covariance parameters estimates: ‘VAR UN(x,y)’ 

which correspond to the matrix containing covariance parameter of the auto-regressive 

process 
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, ‘EXP VAR’ which is the local effect parameter   , ‘Residual’ that 



 

 

we noted r  and a parameter called ‘AR(1)’. From this output, the parameters of the model 

could be calculated as: 



 er 2
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 . 

 

3.3 Incomplete data 

Likelihood based inference used by Proc MIXED is valid whenever the mechanism of 

missing data is ignorable, that is MAR (Missing at Random), i.e. the availability of the 

measurement do not depend on the true value of the marker at the same time, and the 

parameters describing the non-response mechanism are distinct from the model parameters 

[9]. However, using an auto-regressive process, one must be careful when missing data occur. 

By default, a dropout mechanism is assumed to be responsible of missing data by MIXED 

procedure: all missing data are considered to occur after the last observed measurement. To 

take into account for intermittent missing data (one observation missing between two 

observed), a class variable must be used in the repeated statement indicating the order of 

observations within a subject. In the following example, the class variable is a copy of the 

variable time, named ‘Tbis’ : 

Proc mixed data=BIV; 

class CEN_PAT VAR Tbis; 

model Y=VAR VAR*T; 

repeated VAR Tbis /type=UN@AR(1) local=exp(VAR) sub=CEN_PAT; 

run ; 

 

When the measurements of the two markers never occur at the same time because of a design 

consideration, auto-regressive process can not be used unlike random effects model. 

 

4. Application 

4.1 The APROCO Cohort 



 

 

The APROCO (ANRS-EP11) cohort is a prospective observational cohort ongoing in 47 

clinical centres in France. A total of 1,281 HIV-1-infected patients were enrolled from May 

1997 to June 1999 at the initiation of their first highly active antiretroviral therapy containing 

a protease inhibitor. Standardised clinical and biological data including CD4+ cell counts 

measurements and plasma HIV RNA quantification were collected at baseline (M0), one 

month later (M1) and every 4 months (M4-M24) thereafter. In order to ensure sufficient 

available information, only a sub-sample of patients having both plasma HIV RNA and CD4+ 

cell counts measurements at M0 and at least two measurements thereafter were included in 

the analyses. The first measurement after baseline (at one month) was deleted to provide a 

data set with equally spaced measures. Follow-up data were included until the 24
th

 month; 

thus patients had a maximum of 7 measures. The study population and evolution of 

virological response were described elsewhere [10]. Available information at each study time 

and description of the evolution of both markers were presented in table 1 and figure 1. 

 

4.2 Modeling 

To assure normality and homoskedasticity of residuals distribution, variable response was the 

change in value of marker at time t since the initial visit, i.e. 

)0(log)(log)( 1010

1 HIVRNAtHIVRNAtYi   and )0()()( 44

2 CDtCDtYi  . 

Fixed effects included a change of slope intensity at time 4 months as suggested in figure 1. 

Note that we did not include intercept because iYY ii  0)0()0( 21 . 

We compared 4 models providing two forms of covariance structure (random effects or auto-

regressive process) in two formulations (univariate or bivariate). Univariate and bivariate 

random effect models were compared using likelihood ratio test as both models were nested. 

The bivariate model had only four covariance parameters in addition. Comparison of random 



 

 

effects versus auto-regressive process were performed using AIC criteria [11]. A general 

model including random slopes and a bivariate first order auto-regressive process did not 

converge as reported in univariate cases by others (see [12] for example). 

 

The model including two random slopes and a measurement error for each marker was: 
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where k

1  is the first slope before the time months4 , k

2  is the second slope after the 

time   and it  represents the minimum between it  and  . 

Moreover, 
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The model including an auto-regressive process and a measurement error was: 
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4.3 SAS programming 

 

The initial data set had the following presentation : 

CEN_PAT CD4 RNA T 

1001 166 -3.02635 4 



 

 

1001 147 -1.96563 8 

1001 171 -1.42426 12 

1001 355 -1.07208 16 

1001 223 -3.38035 20 

1001 52 -2.08382 24 

1002 -14 -2.84515 4 

1002 -123 -2.84515 8 

With CEN_PAT being the patient number, CD4 the difference in CD4 cell count since 

baseline, RNA the difference in HIV RNA since baseline and T the date of measurement in 

months. The change in slope intensity at 4 months was computed using a data step:  

Data file; set file; 

if T<4 then do ; T1=T;T2=0; end ; 

if T ge 4 then do; T1=CP;T2=T-4; 

end ; 

Then, the structure of input data was transformed to allow bivariate modeling. Mainly, it 

consists in the integration of CD4 and HIV RNA in the same vector (Y here) and an indicator 

variable (VAR here) 

Data var0; set file; 

VAR=0;Y=RNA; 

keep CEN_PAT Y VAR T T1 T2; 

 

Data var1;set file; 

VAR=1;Y=CD4; 

keep CEN_PAT Y VAR T T1 T2; 

 

Data biv ;set var0 var1 ; 

run ; 

Thus, a bivariate random effect model was fitted using the code described below.  

 
Proc mixed data=BIV CL; 

class CEN_PAT VAR; 

model Y=VAR*T1 VAR*T2/noint s; 

random VAR*T1 VAR*T2/type=UN sub=CEN_PAT G GCORR; 

repeated /type=VC grp=VAR sub=CEN_PAT; 

run ; 



 

 

The option "CL" requests confidence limits for the covariance parameter estimates. A 

Satterthwaite approximation is used to construct limits for all parameters that have a default 

lower boundary constraint of zero. In the statement model, the option "noint" was used to 

avoid the inclusion of intercepts and "s" to obtain solution for fixed effects. 

In the same way, a bivariate model with an auto-regressive process and separate measurement 

errors was fitted using the following code: 

Proc mixed data=BIV CL; 

class CEN_PAT VAR T; 

model Y=VAR*T1 VAR*T2 /noint s; 

repeated VAR T/type=UN@AR(1) local=exp(VAR) sub=CEN_PAT; 

run ; 

 

4.4 Results 

The bivariate random effects model was significantly better than two separate univariate 

random effects models (-25194 vs. -25307, likelihood ratio = 226 with 4 degrees of freedom, 

p<10
-4

, table 2) showing a strong association between the two markers. The bivariate random 

effect model allows to estimate the correlation matrix between individual slopes for each 

marker. In this correlation matrix, every element was significantly (p < 0.05) different from 1 

(table 3). Briefly, the highest correlations were between the slopes of the two markers at the 

same period: (   41.0, 1

4

1 RNAHIVCD   before 4 months and   60.0, 2

4

2 RNAHIVCD   after 

4 months). These results were expected because of biological relation between the two 

markers. Moreover, the second slope of CD4 cell count was highly correlated to the first slope 

of the same marker   37.0, 4

2

4

1 CDCD  . 

The bivariate model including a bivariate auto-regressive process was better than the bivariate 

random effects model despite the restrictive assumption that the two intra-marker correlations 

are equal (AIC 50386 vs. 50646). 



 

 

Output obtained with the model including a first order auto-regressive process provide 

estimations of 195,54.1 22
21 

ww
  and 00.721 

ww
 , significantly different from 0 (Wald 

test, p<10
-4

). This last result underlines the relationship between the two markers. The 

parameter 91.0
42.3

11.3
  is the correlation between two consecutive measures of CD4 cell 

count or HIV RNA. Variances of measurement error are calculated as: 

00.7742.3 11.32
1  e


  and 15.042.3 11.32
2  e


 . 

Thus, the relationship between the two makers was underlined by the correlation between the 

markers at each period and the improvement of likelihood of the bivariate model compared to 

two univariate models. Bivariate random effect model offers a direct interpretation of the 

relationship between the markers without assumption on the dependence of one marker in 

relation to the other. 

 

5. Conclusion 

Bivariate models are useful for longitudinal data in biomedical research and can be computed 

using standard statistical package like the SAS system. Moreover, the efficiency of the 

procedure MIXED, which allows quick convergence, should be underlined. However, there 

are some limitations inherent in the identical intra-marker correlations or in the assumption of 

constant period between two measurements for the first order auto-regressive covariance 

structure implemented in the SAS system. Finally, although the number of parameters would 

dramatically increase, particularly in the case of multivariate random effect model, bivariate 

models are easily extendable to multivariate models with more than two dependent variables. 
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Table 1. Measures of CD4 cell count and HIV RNA during follow-up. APROCO Study (N=988). 

 

Month Change in CD4 cell count / mm
3
 

from baseline 

Change in log10 copies/ml HIV RNA 

from baseline 

 N 

 

Mean SD N Mean SD 

4 988 97 130 988 -1.95 1.20 

8 935 126 147 919 -2.01 1.27 

12 901 153 169 894 -2.04 1.34 

16 823 176 180 813 -2.03 1.35 

20 708 192 190 703 -2.00 1.37 

24 534 201 196 530 -1.93 1.37 

 

 



 

 

Table 2. Likelihood of models according to the type of covariance matrix. APROCO Study (N=988). 

 

 

 

Log Likelihood No. of parameters AIC 

Univariate model with two random slopes 

 

-25307 12 50638 

Bivariate model with two random slopes 

 

-25194 16 50420 

Univariate model with AR(1) 

 

-25313 10 50646 

Bivariate model with AR(1) 

 

-25183 10 50386 

).(2)log2( parametersofNolikelihoodAIC   AR(1) : First order auto-regressive process 



 

 

Table 3. Estimated correlation matrix of the bivariate model including two random slopes. APROCO Study (N=988). 

 

 First slope of HIV RNA Second slope of HIV RNA  

 

First slope of CD4+ Second slope of CD4+ 

First slope of HIV RNA 1    

Second slope of HIV RNA  -0.10 1   

First slope of CD4+ -0.41 0.13 1  

Second slope of CD4+ -0.16 -0.60 0.37 1 

 

 

 



 

 

Figure 1. Mean change in observed HIV RNA and CD4+ cell count (95% confidence interval) after initiation of an antiretroviral treatment 

containing a protease inhibitor. APROCO study (N=988). 
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