
HAL Id: hal-00143962
https://hal.science/hal-00143962

Submitted on 3 May 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mixed models for longitudinal left-censored repeated
measures.

Rodolphe Thiébaut, Hélène Jacqmin-Gadda

To cite this version:
Rodolphe Thiébaut, Hélène Jacqmin-Gadda. Mixed models for longitudinal left-censored re-
peated measures.. Computer Methods and Programs in Biomedicine, 2004, 74 (3), pp.255-60.
�10.1016/j.cmpb.2003.08.004�. �hal-00143962�

https://hal.science/hal-00143962
https://hal.archives-ouvertes.fr


Mixed models for longitudinal left-censored repeated measures 

Rodolphe Thiébaut
a*

, Hélène Jacqmin-Gadda
a
 

a
 INSERM E0338 Biostatistics, ISPED, Université Victor Segalen Bordeaux II, 146, rue Léo 

Saignat 33076, Bordeaux Cedex, France 

 

 

Abstract 

Longitudinal studies could be complicated by left-censored repeated measures. For example, 

in Human Immunodeficiency Virus infection, there is a detection limit of the assay used to 

quantify the plasma viral load. Simple imputation of the limit of the detection or of half of this 

limit for left-censored measures biases estimations and their standard errors. In this paper, we 

review two likelihood-based methods proposed to handle left-censoring of the outcome in 

linear mixed model. We show how to fit these models using SAS® Proc NLMIXED and we 

compare this tool with other programs. Indications and limitations of the programs are 

discussed and an example in the field of HIV infection is shown. 
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1. Introduction 

 Designs with repeated or grouped measures are common in epidemiological studies. 

The linear mixed model for correlated gaussian response is increasingly used, especially since 

availability of methods to fit such models in standard statistical packages like S-PLUS, BUGS 

or SAS [1-3]. 

 However, longitudinal or grouped data could be complicated by left-censoring of some 

measures because of a detection limit of the assay used to quantify the marker. For example, 

this can occur with the concentration of some pollutants in environmental data [4], with 

antibody titre [5] or with Human Immunodeficiency Virus viral load in blood compartment 

(HIV RNA) [6, 7]. This latter example will be used throughout this paper because most of the 

methods to deal with left-censoring through longitudinal models have been proposed in this 

topic. HIV RNA ranged from 0 (in theory) to 6 log10 copies/ml. The detection limit depends 

on the assay generation ranging from 4 log10 copies/ml for the first assays available (in 1996) 

to 0.7 copies/ml today. Despite the improvement of the sensibility of assay, left-censoring is 

still an issue because antiretroviral treatments available since 1996 are very effective and lead 

to a steep decrease of HIV RNA after their initiation. 

 Several methods have been proposed to handle left-censoring of HIV RNA [6-11] 

rather than imputing the value of the detection limit or half of this limit. For mixed models, 

one can distinguish multiple imputation [8] and likelihood-based methods [6, 7, 10]. Among 

likelihood methods, Hughes [6] and Jacqmin-Gadda et al. [7] approaches differ only in the 

optimisation algorithm used to obtain maximum likelihood estimates. Lyles et al. have 

published an approach to deal with left-censoring of HIV RNA as well as informative dropout 

based on an hierarchical formulation of the likelihood [10]. Basically, all these methods lead 

to less biased estimates and increased standard errors of estimates compared to simple 



imputation methods. However, the diffusion of these methods could be limited by the use of 

Fortran [6, 7] or SAS® IML programs [10]. 

 In this paper, we show how to use the new SAS® procedure NLMIXED [12] to fit 

mixed models taking into account left-censored repeated measures. We compare this 

procedure based on the conditional formulation of the likelihood given random effects with 

the algorithm proposed by Jacqmin-Gadda et al. [7] and based on a conditional formulation of 

the likelihood given observed measures. 

 



2. Methods 

2.1 Model 

We considered a linear mixed model [13] applied for modelling log10 HIV RNA. Let ijY , the 

thj  measure at the time ijt   inj ,,1  for the subject i   Ni ,,1 . For each subject i , 

we distinguished the o

in -vector of observed response o

iY  and the c

in -vector of censored 

response c

iY . A general formulation of the linear mixed model with p  explicative variables 

is: 
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where iX  is a pni   design matrix,   is a p -vector of fixed effects, iZ  is a qni   

design matrix which is usually a subset of iX , i  is a q -vector of individual random effects 

with pq  . Random effects and measurement errors  ie  are assumed to be independent. 

 

2.2 Likelihood 

Basically, two approaches are distinguished according to the development of the likelihood. 

 

In Hughes [6] and Jacqmin-Gadda et al. [7] papers, the likelihood is formulated given o

iY : 
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with   the vector of model parameters, u  a c

in -vector  T
nc

i

uuu 21 ,  and  idd cH ,  the 

range of integration with c

ind ,...,2,1  and ic  the c

in -vector of censoring threshold for the 

subject i.  ..
o

iY
f  is the multivariate normal density of observed measures and  ..

,o
i

c
i YY

f  is 

the multivariate normal conditional density of censored measures given observed measures. 

Thus, computation of this likelihood needs calculation of a multiple integral as large as the 

number of censored measured bysubject. 

 

To use the NLMIXED procedure or the Lyles et al. program [10], the likelihood is formulated 

given the random effects: 
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 is the univariate normal conditional density of the observed measure j  in subject i  

given random effects and  ..
i

c
ijY 

  is the univariate normal cumulative distribution function of 

the censored measure j  in subject i  given random effects. With this formulation, 

computation of this likelihood needs calculation of a multiple integral as large as the number 

of random effects included in the model. 



2.3 Computation 

Whatever the method used, estimation of model parameters is based on maximum likelihood 

and need computation of multiple integral. However, the approaches differ in term of 

dimension of the integrals, numerical methods used to compute those integrals and 

optimisation algorithm used to maximise the likelihood. 

The Fortran program proposed by Jacqmin-Gadda et al. [7] to maximise the likelihood (1) is 

called CENSAD and is available at http://www.isped.u-bordeaux2.fr. It is based on a 

Marquardt algorithm [14] that is a Newton-Raphson like algorithm where the diagonal of the 

Hessian matrix is inflated when adapted. To impose a positive constraint of covariance 

parameters, a new parameterisation of the model was used in term of squared root of 2

e  and 

a Cholesky decomposition of the random effects’ covariance matrix. Multiple integrals of 

multivariate normal density as large as the number of censored measures c

in  were numerically 

calculated using a subregion adaptative multiple integration method [15]. This integration 

algorithm was found to be optimal when the size of the integral is less than 10 [16]. The 

algorithm developed by Hughes [6] aims also to maximise the likelihood (1) but it is based on 

an EM algorithm and a Gibbs sampler to compute the integral in the E step. Those two 

algorithms have been previously compared in a simulation study and it has been shown that 

the MCEM algorithm presents more convergence problems and leads to more biased 

estimates for some covariance structures [7]. 

 

The NLMIXED procedure is available since SAS® version 7 and has been written to fit non 

linear mixed model [12, 17]. This procedure allows specifying a general form for the 

conditional distribution of the response variable given the random effects. Thus, a general log 

likelihood function (given the random effects) can be specified using the option general in the 



statement model. Then, the procedure directly maximises the approximate integrated 

likelihood. Several optimisation algorithms can be used with NLMIXED through the option 

technique such as Conjugate Gradient, Double Dogleg, Nelder-Mead Simplex, classic, Ridge 

or Quasi Newton-Raphson. By default, NLMIXED performs a Quasi-Newton optimisation. 

This algorithm works with an approximation of the Hessian matrix and thus does not need 

calculating second order derivatives, which is computationally intensive. This great choice in 

algorithms allows using the optimal one according to the kind of data [18]. By default, the 

computation of the integral over random effects is performed by an adaptive Gaussian 

quadrature method [19] but other methods such as importance sampling (a Monte Carlo 

method) may be chosen using the option methods. The IML program proposed by Lyles et al. 

[10] and NLMIXED are very close in their approach. However, the IML program was written 

for a model including only a random intercept and a random slope and then need to be 

rewritten for another model. The program uses a simple quadrature method to integrate over 

random effects that is clearly weaker than the adaptative quadrature implemented in 

NLMIXED [20]. Moreover, computational time is definitely longer than other methods (about 

half an hour for the presented application). The advantage of IML is the potential of 

programming very different models and, for example handling informative dropout as 

proposed by Lyles et al. [10]. 

 

Differences between approaches are summarised in table 1. 



3. Codes for NLMIXED 

3.1 Univariate mixed model 

The model considered in the following included a fixed    and random  ia  intercept and a 

fixed    and random  ib  slope: 

  ijijiiij etbaY    (3) 

with 
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The code to fit such model accounting for left-censoring of ijY  is: 

proc nlmixed data=TEST QTOL=1E-6; 

parms sigsq1=0.4 sig12=-0.03 sigsq2=0.4 sigsqe=0.2 alpha=3.08 

beta=0.43; 

bounds sigsq1 sigsq2 sigsqe >= 0; 

pi=2*arsin(1); 

mu=alpha+beta*TIME+a_i+b_i*TIME; 

if OBS=1 then ll=(1/(sqrt(2*pi*sigsqe)))*exp(-(RESPONSE-

mu)**2/(2*sigsqe)); 

if OBS=0 then ll=probnorm((RESPONSE-mu)/sqrt(sigsqe)); 

L=log(ll); 

model RESPONSE ~ general(L); 

random a_i b_i ~ normal([0,0],[sigsq1,sig12,sigsq2]) 

subject=ID; 

 

Model parameters must be declared in the first statement parms. Starting values are not 

mandatory but could be crucial in case of convergence difficulties. The statement bounds 

allow specifying some constraints on parameters. In the following example, variance 

parameters ( 2

1 , 2

2  and 2

e ) are constrained to be positive. The dependent variable named 

“RESPONSE” is declared to follow a general log-likelihood that returns the value L in the 

statement model. The programming lines between the statements bounds and model define 



this log-likelihood given the random effects. The conditional distribution of ijY  given the 

random effects is defined by expectancy   ijiiijiiij tbatbaYE   ,  and the 

variance   2, eiiij baYVar  . Then, according to the status of ijY , i.e. observed (OBS=1) or 

left-censored (OBS=0), the contribution to the likelihood is the density or the cumulative 

distribution function calculated by the function probnorm of a univariate normal variable. 

Because the procedure minimises the log-likelihood, the value of the likelihood contribution 

for the observation ijY  is log-transformed. The distribution for the random effects is specified 

in the statement random. Today, only normal distribution is available with NLMIXED. When 

defining the lower triangle of the random effects covariance matrix, some of covariance 

elements can be set to 0. That could be useful to test a covariance with a likelihood ratio 

statistics. In the statement random, the option subject=id defined how the dataset is clustered. 

Nested random effects are not possible at present. 

In case of difficulties for convergence, several options are available apart from changing 

starting points (statement parms) and algorithm (options technique, linesearch, update). For 

example, the option optcheck avoid terminating at a stationary point by checking if the 

likelihood around the convergence point is not better than the likelihood at convergence. The 

convergence criteria (based on likelihood function, parameters or gradient) can be modified. 

Sometimes, difficulties come from numerical calculation of integrals or derivatives. Precision 

or methods for these calculations are modifiable. For example, derivatives can be 

approximated using forward (fd=forward) or central differences (fd=central) and tolerance 

used to adaptively select the number of quadrature points can be decreased (qtol=10
-4

, by 

default). 

The positive constraint on variance parameters ( 2

1 , 2

2  and 2

e ) is not enough to insure that 

the covariance G is positive definite. In the example, this constraint can be respected when 



formulating the constraint on the correlation coefficient. This leads to the same results in the 

example presented in results section. The code is modified as follow: 

proc nlmixed data=TEST QTOL=1E-6; 

parms sigsq1=0.44 ro=0.09 sigsq2=0.07 sigsqe=0.18 alpha=3.08 

beta=0.43; 

bounds -1< ro < 1, sigsq1 sigsq2 sigsqe >= 0; 

pi=2*arsin(1); 

mu=alpha+beta*TIME+a_i+b_i*TIME; 

if OBS=1 then ll=(1/(sqrt(2*pi*sigsqe)))*exp(-(RESPONSE-

mu)**2/(2*sigsqe)); 

if OBS=0 then ll=probnorm((RESPONSE-mu)/sqrt(sigsqe)); 

L=log(ll); 

sig12=(sigsq1*sigsq2)**0.5*ro; 

model RESPONSE ~ general(L); 

random a_i b_i ~ normal([0,0],[sigsq1,sig12,sigsq2]) 

subject=ID; 

 

3.2 Bivariate mixed model 

Extension to a bivariate random effects model as proposed previously with the procedure 

MIXED [21] is also possible with NLMIXED. Thus, parameters of a bivariate model 

accounting for left-censoring of one or both markers can be estimated. The key idea is to 

distinguish the two markers using an indicator (noted VAR in the code). Presentation of 

dataset must be performed as previously reported [21] with, in addition, an indicator of the 

censoring status of the measure. The code for a bivariate model including four random effects, 

i.e. one intercept and one slope for each marker, is presented below. In the programming 

statement, conditional expectancies given random effects are defined according to the marker: 
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When the covariance matrix of random effects, defined in the statement random, is 

unstructured, ten variance parameters must be estimated: 
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So, model parameters are estimated with this code: 

proc nlmixed data=TEST; 

parms alpha1=0.1 beta1=0.1 alpha2=0.1 beta2=0.1 s1=0.1 s2=0.1 

s3=0.1 s4=0.1 s5=0.1 s6=0.1 s7=0.1 s8=0.1 s9=0.1 s10=0.1 

sce1=0.1 sce2=0.1; 

bounds s1 s3 s6 s10 sce1 sce2>=0; 

pi=2*arsin(1); 

 

if VAR=1 then do; 

mu=alpha1+beta1*T+a_i1+b_i1*T; 

sce=sce1; 

end; 

else if VAR=2 then do; 

mu=alpha2+beta2*T+a_i2+b_i2*T; 

sce=sce2; 

end; 

 

if OBS=1 then L=(1/(sqrt(2*pi*sce)))*exp(-(Y-mu)**2/(2*sce)); 

if OBS=0 then L=probnorm((Y-mu)/sqrt(sce)); 

 

ll=log(L); 

model Y ~ general(ll); 

random a_i1 a_i2 b_i1 b_i2~ 

normal([0,0,0,0],[s1,s2,s3,s4,s5,s6,s7,s8,s9,s10]) subject=id; 

 



4. Example 

Estimations of parameters for the model (3) were compared according to the two programs 

previously described. Estimations from a crude approach using the procedure MIXED where 

left-censored measures were replaced by the value of the threshold were also presented. We 

used the data set simulated by Lyles et al. [10]. It is available at 

http://www.blackwellpublishers.co.uk/rss/Volumes/Cv49p4.htm. The true parameters were 

N=50, 5in , 3 , 5.0 , 5.02

1  , 1.02

2  , 1.012   according to the notations in 

section 3.1. In the simulated data set, there were 38/250 (15.2 %) left-censored measures of 

HIV RNA. Results of parameter estimations are reported in table 2. Crude approach without 

handling left-censoring of HIV RNA leads to biased estimates: especially the fixed slope is 

underestimated by 14% and the covariance between intercept and random slope is 

underestimated by 74% compared to less than 10% with other approaches. Obviously, the 

standard errors of estimates are underestimated with the crude approach because of the simple 

imputation of the limit of detection for censored measures. The comparison of crude 

approaches and methods taking into account left-censoring were performed more formally 

elsewhere [7]. Results according to the method used to take into account left-censoring were 

similar. Computation times were several seconds for CENSAD and NLMIXED. Analyses 

were performed in a Windows environment with Pentium III processor. NLMIXED methods 

were performed using SAS® 8.2. CENSAD has been compiled using Fortran Powerstation 

4.0® with default options. The two methods started with estimations obtained from the crude 

approach. 

 

http://www.blackwellpublishers.co.uk/rss/Volumes/Cv49p4.htm


5. Conclusion 

We presented two approaches to fit linear mixed models accounting for left-censoring of the 

response and we showed with an example that they gave the same results. Thus, in a practical 

point of view, to fit mixed models for left-censored repeated measures, one can choose 

between NLMIXED and CENSAD. The main elements to choose between approaches are the 

structure of the data and the model used. In fact, CENSAD will be limited when numerous 

measures are censored while too many random effects will limit NLMIXED because of the 

numerical integration. Another point is the potential extension of the estimation to more 

general model. CENSAD allows including a Gaussian process in the error term like a first 

order auto-regressive process or a Brownian motion. The extension to a bivariate model is 

direct with NLMIXED (see section 3.2) and possible using the other method [22]). Using 

NLMIXED, the main limitation is then the number of random effects. In our experience, the 

procedure was reliable until four random effects leading, for example, to a bivariate model 

with two intercepts and two random slopes. 

Using the approaches presented in this paper, one must keep in mind the limits of the 

methods. In particular, the models are fully parametric and assume the normality of outcome 

distribution. Moreover, in case of missing data, estimations are reliable only if the missngness 

process is not informative [10]. 

 

In conclusion, linear mixed models may be estimated accounting for repeated left-censored 

measures using available tools. In the context of HIV infections, this could be very useful 

because of the occurrence of longitudinal analyses of HIV RNA evolution and the bias 

induced by naïve approaches [6, 7, 10]. 
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Table 1. Summary of different presentations to fit a linear mixed model for left-censored repeated gaussian data. 

 

Approach Tool Integration Optimisation algorithm 

Jacqmin-Gadda et al. 

(CENSAD) [7] 

 

Fortran 77 - Over censored measures 

- Subregion adaptative SADMVN 

[15] 

Marquardt 

Procedure NLMIXED Procedure SAS® /STAT 

module 

- Over random effects 

- Adaptative Gaussian quadrature or 

others* 

Quasi-Newton or others* 

* See text: 2.3 Computation 



Table 2. Parameters estimation and standard deviation (sd) of a mixed model with one intercept and one slope according to the method used. 

Simulated data from Lyles et al. [10]: N=50, 5in , 3 , 5.0 , 5.02

1  , 1.02

2  , 1.012  , 2.02 e . 

Method ̂  

(sd) 
̂  

(sd) 

2

1̂  

(sd) 

12̂  

(sd) 

2

2̂  

(sd) 

ê  

(sd) 

Censoring not handled 

(SAS® Proc MIXED) 

3.08 (0.10) 0.43 (0.05) 0.44 (0.11) -0.026 (0.042) 0.066 (0.029) 0.18 (0.02) 

SAS® Proc NL MIXED 2.94 (0.13) 0.51 (0.062) 0.66 (0.17) -0.11 (0.066) 0.089 (0.040) 0.23 (0.029) 

CENSAD 2.94 (0.13) 0.50 (0.062) 0.66 (0.17) -0.11 (0.066) 0.089 (0.040) 0.23 (0.029) 

 

 

 


