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Résumé: Nous calculons un ensemble d’identités définissant le produit
de Mal’cev de pseudovariétés de semigroupes finis ou de semigroupes finis
ordonnés. Nous caractérisons aussi les parties ponctuelles d’un semigroupe
fini à l’aide d’un morphisme relationnel dans un semigroupe profini. Enfin,
nous appliquons nos résultats à la preuve de la décidabilité des produits de
Mal’cev d’une pseudovariété décidable avec la pseudovariété des semigroupes
nilpotents et avec celle des semigroupes J -triviaux.

Abstract: We compute a set of identities defining the Mal’cev product of
pseudovarieties of finite semigroups or finite ordered semigroups. We also
characterize the pointlike subsets of a finite semigroup by means of a rela-
tional morphism into a profinite semigroup. Finally, we apply our results
to the proof of the decidability of the Mal’cev products of a decidable pseu-
dovariety with the pseudovarieties of nilpotent and of J -trivial semigroups.

The aim of this paper is to study the Mal’cev product of pseudovarieties of semi-
groups and monoids. The Mal’cev product is a very important operation in the lattice of
pseudovarieties, with applications in group theory, in semigroup theory and in language
theory.

It was established by Reiterman [20] that each pseudovariety is defined by a set of
identities in some profinite structure. However, the identity problem, i.e. the problem of
finding a defining set of identities for a pseudovariety, is known to be very difficult, even
for the simple operation of join of two pseudovarieties [1]. Recent work of Almeida and the
second author addressed the problem for the semidirect product of pseudovarieties [5, 6].
In this paper, we solve the analogous problem for the Mal’cev product, that is, we describe
a defining set of identities for a Mal’cev product. Our methods also apply to the case of
pseudovarieties of finite ordered semigroups. Such pseudovarieties can also be defined by
pseudoidentities in a profinite structure as was established by the authors [18].

Let us say immediately that our solution is not effective: even if the pseudovarieties
V and W have decidable membership problems (we say that such pseudovarieties are
decidable), the defining set of identities which we compute for the Mal’cev product W M©V

does not permit in general to prove the decidability of W M©V. But we could hardly hope

1Both authors gratefully acknowledge partial support from PRC Mathématique et Informatique and
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for such a strong result in view of Albert, Baldinger and Rhodes’s result according to
which there exist decidable pseudovarieties — and even pseudovarieties defined by a finite
number of word identities — whose join is not decidable [1].

The question of the decidability of a Mal’cev product is very difficult in general. In
order to address this question, Henckell and Rhodes introduced the pointlike subsets of a
finite semigroup [9]. Along with our result on the identities defining a Mal’cev product, we
give a general theorem describing the pointlike subsets of a finite semigroup. Our results
also lead to specific decidability results: for instance, if V is a decidable pseudovariety
of semigroups, then V M©J1, V M©Nil, V M©J, V M©G, V M©Gp and V M©Gnil are decid-
able as well. Here J1, Nil, J, G, Gp and Gnil denote respectively the pseudovarieties
of idempotent and commutative semigroups, nilpotent semigroups, J -trivial semigroups,
groups, p-groups (p prime) and nilpotent groups. Our results also have consequences in
the study of the decidability of the dot-depth hierarchy, a long-standing open problem
in the theory of formal languages with connections in logic, and more generally, in the
study of the polynomial closure of varieties of recognizable languages. These latter sets of
consequences are explored in another paper by the authors [19].

The two main ingredients in our proofs are the following: the theory of relatively free
profinite semigroups, as it was developed by Almeida [2] and by Almeida and the second
author [4] in order to build upon Reiterman’s theorem; and a lemma by Hunter on the
properties of certain congruences in compact semigroups [13].

The paper is organized as follows. The first section contains the necessary definitions
and results on free profinite semigroups and on identities, as well as Hunter’s lemma.
Section 2 introduces Mal’cev products, and our central result on the characterization of a
Mal’cev product by means of a relational morphism into a certain profinite semigroup is
stated and proved in Section 3 (Theorem 3.1). In the same section, we give a description
of the pointlike subsets of a finite semigroup. In Section 4, we derive from our central
result the computation of a defining set of identities for a Mal’cev product. Finally, in
Section 5, we give several applications of our results, and in particular we show that if V

is decidable, then so are V M©J1, V M©Nil and V M©J.

1 Preliminaries

We first review the basic definitions and results concerning relatively free profinite semi-
groups and ordered semigroups and some important properties of compact semigroups.
For more details on free profinite semigroups, the reader is referred to Almeida’s book [2]
and to the survey [4]. For the ordered case, see [18].

1.1 Relatively free profinite semigroups

A class V of finite semigroups is called a pseudovariety if it is closed under taking subsemi-
groups, homomorphic images and finite direct products. Pseudovarieties of finite monoids
are defined in the same fashion. We will also consider topological semigroups and monoids.
Recall that, by definition, the product is a continuous operation in these objects.

We say that a semigroup (resp. monoid) is profinite if it is a projective limit of finite
semigroups (resp. monoids). More generally, if V is a pseudovariety of semigroups (resp.
monoids), we say that a semigroup (resp. monoid) is pro-V if it is a projective limit of
elements of V. It is known that a semigroup (resp. monoid) is profinite if and only if it
is compact and 0-dimensional [15]. If V is a pseudovariety of semigroups (resp. monoid),
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then a profinite semigroup (resp. monoid) is pro-V if and only if all its finite continuous
homomorphic images are in V. Of course, all elements of V are pro-V, and if W is a
pseudovariety contained in V, then all pro-W semigroups (resp. monoids) are pro-V.

A class of profinite semigroups is called a pro-variety of semigroups if it is closed un-
der taking closed subsemigroups, continuous homomorphic images and arbitrary direct
products. If V is a pseudovariety of semigroups, then the class V̂ of all pro-V semi-
groups is a pro-variety. Conversely, if V is a pro-variety of semigroups and V is the class
of finite elements of V, then V is a pseudovariety and V = V̂. So V 7→ V̂ establishes
a lattice isomorphism between pseudovarieties of semigroups and pro-varieties of semi-
groups. Pro-varieties of monoids are defined similarly, and the analogous connection with
pseudovarieties of monoids holds.

We say that a topological space A is a profinite set if it is a projective limit of finite
sets, or equivalently, if it is compact and totally disconnected [15]. A profinite semigroup
(resp. monoid) S is said to be generated by a profinite set A, A-generated for short, if there
exists a continuous mapping σ : A → S such that the subsemigroup (resp. submonoid)
generated by Aσ is dense in S.

Let V be a pseudovariety and let A be a profinite set. We denote by F̂A(V) the projec-
tive limit of the A-generated elements of V. The topological semigroups (resp. monoids)
of the form F̂A(V) have been widely studied, see Almeida [2], Almeida and Weil [4] or
Zeitoun [25]. The semigroup (resp. monoid) F̂A(V) can be viewed as the completion of
a certain uniform structure on the free semigroup A+ (resp. free monoid A∗), or as the
semigroup (resp. monoid) of A-ary implicit operations on V (when A is finite).

If V is the pseudovariety of all finite semigroups (resp. monoids), we write Â+ (resp.

Â∗) for F̂A(V). We summarize below the main properties of the F̂A(V) which will be used
freely in the sequel.

Theorem 1.1 Let A be a profinite set and let V be a pseudovariety of semigroups (resp.
monoids).

1. F̂A(V) is A-generated and pro-V: in particular there exists a continuous mapping
ι : A → F̂A(V), which is one-to-one if V is non-trivial, such that Aι generates a
dense subsemigroup (resp. submonoid) of F̂A(V).

2. F̂A(V) is the free pro-V semigroup (resp. monoid) over A: If S is pro-V and if
σ : A → S is a continuous mapping, then σ induces a unique continuous morphism
σ̂ : F̂A(V) → S such that ισ̂ = σ.

3. A finite semigroup (resp. monoid) is in V if and only if it is a continuous homo-
morphic image of F̂A(V) for some finite set A.

The case of a profinite set of generators A is considered here for the sake of com-
pleteness. In many applications, it suffices to consider the case where A is finite [2, 4].
However, the profinite case proved to be helpful in the study of the semidirect product
of pseudovarieties, see Almeida and Weil [5]. Since this extension to profinite generating
sets does not introduce specific difficulties in the proofs, the reader of this paper may be
tempted to always assume that the generating sets are finite.

Let us observe the following immediate but useful corollary of Theorem 1.1.

Corollary 1.2 Let V be a pseudovariety of semigroups (resp. monoids), let S and T be
pro-V semigroups (resp. monoids) and let A be a profinite set. If σ : F̂A(V) → S and
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ϕ : T → S are continuous morphisms with ϕ onto, then there exists a continuous morphism
τ : F̂A(V) → T such that τϕ = σ.

F̂A(V) S

B̂+

σ

ϕτ

Another important application of Theorem 1.1 is the following: If W is a sub-pseudo-
variety of V, then the identity of A induces a continuous onto morphism π : F̂A(V) →
F̂A(W), which is called the natural projection of F̂A(V) onto F̂A(W).

Since F̂A(V) is A-generated, its elements can be seen as limits of sequences of words
on the alphabet A. An important such limit is the ω-power, which traditionally denotes
the idempotent power of an element of a finite semigroup [8, 16].

Proposition 1.3 Let A be a profinite set and let V be a pseudovariety of semigroups. Let
x ∈ F̂A(V). The sequence xn! converges in F̂A(V). Its limit, written xω, is idempotent
and, if σ : F̂A(V) → S is a continuous morphism into a finite semigroup, then xωσ is the
unique idempotent power of xσ.

We will also consider here classes of finite ordered semigroups (resp. monoids). Such
a class is called a pseudovariety of ordered semigroups (resp. monoids) if it closed un-
der taking ordered subsemigroups (that is, subsemigroups equipped with the restriction
of the order), images under order-preserving homomorphisms and finite direct products
(equipped with the product order). A general discussion of pseudovarieties of first-order
structures, including the case of ordered semigroups and monoids, can be found in [18].
We say that a topological semigroup (resp. monoid) S equipped with an order relation is
a topological ordered semigroup (resp. monoid) if the order relation is a closed subset of
S × S.

When dealing with ordered semigroups and monoids, we will always assume that the
morphisms under consideration are order-preserving. In particular, the projective limit of
a directed system of ordered semigroups or monoids is itself ordered. For any pseudovariety
V of ordered semigroups (resp. monoids) and any profinite set A, we can define as above
the profinite ordered semigroup (resp. monoid) F̂A(V). Then the analogues of Theorem 1.1
and Corollary 1.2 hold, where all morphisms are assumed to be order-preserving [18].

Observe that for the pseudovariety V of all finite ordered semigroups (resp. monoids),

F̂A(V) coincides with Â+ (resp. Â∗), equipped with the trivial order where x ≤ y if and
only if x = y.

Pro-varieties of ordered semigroups (resp. monoids) are also defined in the obvious
way: they are the classes of profinite ordered semigroups (resp. monoids) closed un-
der taking closed ordered semigroups (resp. submonoids), order-preserving continuous
homomorphic images and arbitrary direct products. As in the unordered case, there is a
lattice isomorphism between pro-varieties and pseudovarieties of ordered semigroups (resp.
monoids).

Unless mentioned otherwise, the results reported in this paper hold for pseudovarieties
of finite semigroups, monoids, ordered semigroups and ordered monoids. In order to
avoid cumbersome statements, the word pseudovariety will now denote any one of these
four kinds of pseudovarieties. Most proofs will silently assume that we are dealing with
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pseudovarieties of semigroups, and unless otherwise indicated, the proofs concerning the
other kinds of pseudovarieties can be handled similarly.

1.2 Identities

Theorem 1.1 leads to the statement of Reiterman’s theorem on the definition of pseudova-
rieties by identities (see Reiterman [20], and Pin and Weil for the ordered case [18]). Let

A be a profinite set and let x, y ∈ Â+. We say that a profinite semigroup S satisfies the

identity x = y if xσ = yσ for each continuous morphism σ : Â+ → S. In the ordered case,
we also say that S satisfies the identity x ≤ y if xσ ≤ yσ for each continuous morphism

σ : Â+ → S. (Any such morphism is order-preserving, since Â+ is equipped with the trivial

order.) The identities of the form x = y or x ≤ y, with x, y ∈ Â∗, satisfied by a profinite
monoid or ordered monoid are defined in the same fashion. In all cases, we say that a class
V of profinite semigroups (resp. monoids, ordered semigroups, ordered monoids) satisfies
a given identity if each element of V satisfies it. The class V satisfies a set Σ of identities
if each element of V satisfies each identity of Σ. The class of all finite (resp. profinite)
semigroups (monoids, ordered semigroups, ordered monoids) which satisfy Σ is said to be

defined by Σ and is denoted [[Σ]] (resp. [[Σ]̂]). It is important to remark the following [18,
Proposition 3.2].

Proposition 1.4 Let V be a pseudovariety and let A be a profinite set. Let π : Â+ →

F̂A(V) (resp. π : Â∗ → F̂A(V)) be the natural projection and let x, y ∈ Â+ (resp. Â∗).
Then V satisfies x = y if and only if xπ = yπ. Similarly, in the ordered case, V satisfies
x ≤ y if and only if xπ ≤ yπ.

Usually (for instance in [2, 4, 18]) it is assumed that the identities we consider are in
finitely many variables, that is, each is of the form x = y (or x ≤ y in the ordered case)

with x, y ∈ Â+ (resp. x, y ∈ Â∗) for some finite set A. Indeed, it suffices to consider such
identities to describe all pseudovarieties, as expressed by the following theorem, originally
proved by Reiterman in the unordered case [20] and extended by the authors in the ordered
case [18].

Theorem 1.5 Let V be a class of finite semigroups (resp. monoids, ordered semigroups,
ordered monoids). Then V is a pseudovariety if and only if there exists a set Σ of identities
such that V = [[Σ]]. Moreover, the set Σ can be chosen in such a way that all its elements
are in finitely many variables.

Since the elements of Â+ and Â∗ are limits of sequences of words, an identity (in the
unordered case) can be seen as the limit of a sequence of word identities. In this sense,
Reiterman’s theorem above is a topological version of Eilenberg and Schützenberger’s the-
orem which states that pseudovarieties of finite semigroups (resp. monoids) are ultimately
defined by sequences of word identities [8, 16].

Example. The following pseudovarieties will play a role in Section 5:

• the class Com of all finite commutative semigroups, Com = [[xy = yx]];

• the class J1 of all finite idempotent and commutative semigroups, J1 = [[xy =
yx, x2 = x]];
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• the class G of all finite groups (a pseudovariety of monoids), G = [[xω = 1]].

Finally, let us note the following consequence of the above results.

Corollary 1.6 Let V be a pseudovariety, and let Σ be a set of identities. Then V = [[Σ]]

if and only if V̂ = [[Σ]̂].

Proof. Since V is the class of finite elements of V̂, it is clear from the definitions that
V̂ = [[Σ]̂] implies V = [[Σ]]. Let us now assume that V = [[Σ]], and let S be a profinite
semigroup in V̂. Then S is the projective limit of a directed set (Si)i∈I of elements of

V. Let πi : S → Si (i ∈ I) be the canonical projections. If a morphism σ : Â+ → S is
continuous, then so are the σπi, since the projections πi are continuous. Let x = y be an
identity of Σ. Since each Si satisfies x = y, we have xσπi = yσπi for each i ∈ I, and hence
xσ = yσ. Thus S satisfies x = y. So V̂ ⊆ [[Σ]̂]

Conversely, let us assume that S satisfies Σ. Then the continuous homomorphic images

of S also satisfy Σ. Let indeed ϕ : S → T be an onto continuous morphism, let x, y ∈ Â+

such that (x = y) ∈ Σ, and let σ : Â+ → T be a continuous morphism. By Corollary

1.2, there exists a continuous morphism τ : Â+ → S such that σ = τϕ. But xτ = yτ

by hypothesis, so xσ = yσ. That is, T satisfies Σ. In particular, the finite continuous
homomorphic images of S satisfy Σ, and hence are in V. Since S is profinite, this implies
that S ∈ V̂, thus concluding the proof. ut

1.3 Some properties of compact semigroups

Compact semigroups share a number of important properties with finite semigroups. In
particular, we will use freely the fact that a non empty compact semigroup has at least
one idempotent [12].

We will also use the following results on congruences in compact semigroups.

Lemma 1.7 Let S be a compact semigroup and let ∼ be an open congruence on S, that
is, a congruence whose graph is an open subset of S × S. Then ∼ is a clopen congruence,
∼ has finite index and the ∼-classes are clopen.

Proof. Let R be the graph of ∼. By hypothesis, R is an open subset of S × S. Let
s ∈ S. Then (s, s) ∈ R and hence there exists an open neighborhood U of s in S such
that U × U ⊆ R. In particular, U lies in the ∼-class [s]∼ of s, and hence [s]∼ is open.
So the ∼-classes form an open partition of S. It follows by compactness that ∼ has finite
index, and hence each ∼-class is clopen. Finally, R is a finite union of products of the
form [s]∼ × [s]∼, so R is clopen. ut

If S is a semigroup and X is a subset of S, the syntactic congruence of X is defined,
for all s, s′ ∈ S, by

s ∼ s′ if and only if for all u, v ∈ S ∪ {1} usv ∈ X ⇔ us′v ∈ X.

It is the coarsest congruence of S which saturates X. Hunter proved the following result
on the syntactic congruence of a clopen set [13, Lemma 4].

Proposition 1.8 If S is a compact semigroup and X is a clopen subset of S, then the
syntactic congruence of X in S is clopen.
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2 Relational morphisms and Mal’cev products

Relational morphisms were first defined by Tilson [23]. If S and T are semigroups, a
relational morphism ϕ : S → T is a relation from S into T , i.e. a mapping from S into the
set of subsets of T , such that

1. sϕ 6= ∅ for all s ∈ S;

2. (sϕ)(tϕ) ⊆ (st)ϕ.

For instance, morphisms and inverses of morphisms are relational morphisms. Also, the
composite of two relational morphisms is a relational morphism.

Let ϕ : S → T be a relation and let R be its graph:

R = {(s, t) ∈ S × T | t ∈ sϕ}.

Let also α : R→ S and β : R→ T be the projections into the first and second coordinates.
We observe that ϕ is a relational morphism if and only if R is a subsemigroup of S × T

and α is onto. In particular ϕ = α−1β. Thus, any relational morphism can be written
as the composite of the inverse of an onto morphism with a morphism. The factorization
ϕ = α−1β is called the canonical factorization of ϕ.

When dealing with monoids, we include in the definition of relational morphisms the
fact that 1 ∈ 1ϕ. Thus the relational morphisms from S to T are exactly the relations
whose graph is a submonoid of S × T with first-coordinate projection onto S. It is not
necessary however to introduce a special notion of relational morphisms for ordered semi-
groups or monoids. Indeed, if S and T are ordered, then the graph R of ϕ is naturally
ordered, as a sub-algebra of the direct product S × T , and the projection morphisms α
and β are order-preserving.

Let C be a class of semigroups (resp. ordered semigroups). We say that the relational
morphism ϕ : S → T is a C-relational morphism if, for each idempotent e of T , the
subsemigroup eϕ−1 = {s ∈ S | e ∈ sϕ} of S lies in C. Let V be a pseudovariety of
semigroups (resp. monoids). If W is a pseudovariety of semigroups, we define the Mal’cev
product W M©V to be the class of all finite semigroups (resp. monoids) S such that there
exists a W-relational morphism from S into an element of V. If W is a pseudovariety
of ordered semigroups, we define similarly W M©V to be the class of all finite ordered
semigroups (resp. monoids) S such that there exists a W-relational morphism from S

into an element of V. Using the notion of canonical factorization, it is not difficult to
verify that, in all cases, W M©V is again a pseudovariety.

Note. Another definition is sometimes adopted, where W M©V is defined to be the class
of all finite S such that there exists a W- (functional) morphism from S into an element
of V. The two definitions yield different classes. However, the pseudovariety generated by
the latter class coincides with our definition.

Also, observe that we will not use — and we have not defined — products of the form
W M©V where V is a pseudovariety of ordered semigroups or ordered monoids.

If S and T are topological semigroups (resp. monoids), we will be interested only in
closed relational morphisms from S to T , that is, relational morphisms whose graph R

is a closed subsemigroup (resp. submonoid) of S × T . The cases most important to us
are those where S and T are either finite, in which case we consider them endowed with
the discrete topology, or compact. We will use the following observation, which follows
immediately from the fact that the continuous image of a compact set is compact.
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Lemma 2.1 Let S be a finite semigroup, let R be a compact semigroup and let σ : R→ S

and π : R → T be continuous morphisms with σ onto. Then the relational morphism
ϕ = σ−1π : S → T is closed.

Let ψ : S → T be a closed relational morphism with S and T compact. For each closed
subset X of S, its image Xψ is closed.

If V is a pseudovariety of semigroups (resp. monoids) and W is a pseudovariety of

semigroups, we define Ŵ M© V̂ to be the class of all profinite semigroups (resp. monoids)

S such that there exists a closed Ŵ-relational morphism ϕ : S → T with T ∈ V̂. If
W is a pseudovariety of ordered semigroups, the class Ŵ M© V̂ of profinite ordered semi-
groups (resp. monoids) is defined similarly. The connection between Ŵ M© V̂ and the
pro-(W M©V) semigroups (resp. monoids) is described in Proposition 4.4 below.

Finally, we will need the following technical factorization lemma.

Proposition 2.2 Let V be a pseudovariety of semigroups (resp. ordered semigroups), let
A be a profinite set, let S and T be profinite semigroups (resp. ordered semigroup) with
S A-generated and T pro-V, and let ϕ : S → T be a closed relational morphism. Then ϕ

factors through F̂A(V). More precisely, if σ : Â+ → S is an onto continuous morphism

and π : Â+ → F̂A(V) is the natural projection, then there exists a continuous morphism
τ : F̂A(V) → T such that ϕ = σ−1πτ .

The same result holds if we replace everywhere semigroups by monoids and Â+ by Â∗.

Proof. Let R be the graph of ϕ and let ϕ = α−1β be the canonical factorization of ϕ.

By Corollary 1.2, there exists a continuous morphism ρ : Â+ → R such that ρα = σ. By
Theorem 1.1, the continuous morphism ρβ factors through F̂A(V) since T is pro-V. That
is, there exists a continuous morphism τ : F̂A(V) → T such that πτ = ρβ.

Â+ F̂A(V)

S R T

σ ρ

π

α β

τ

ϕ

Then σ−1πτ = (α−1ρ−1)(ρβ) = α−1β = ϕ. ut

3 Mal’cev products and pointlike sets

As we saw in Section 2, membership of a finite semigroup or monoid in a Mal’cev product
of the form W M©V involves the consideration of all the relational morphisms into the
(finite) elements of V. Our first important result is a characterization of W M©V in terms
of the properties of a specific relational morphism into a free pro-V object.

Theorem 3.1 Let V and W be pseudovarieties of semigroups. Let A be a profinite set,

let S be a finite semigroup and let σ : Â+ → S be an onto continuous morphism. Let also

π : Â+ → F̂A(V) be the natural projection. The following conditions are equivalent.
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(1) S ∈ W M©V.

(2) The relational morphism σ−1π is a W-relational morphism.

(3) There exists a closed W-relational morphism from S into a pro-V semigroup.

The analogous statements hold when S is a monoid (resp. S is ordered) and V is a
pseudovariety of monoids (resp. W is a pseudovariety of ordered semigroups).

Proof. Let us first verify that (1) implies (2). If S ∈ W M©V, there exists a W-relational
morphism ϕ : S → T with T ∈ V. By Proposition 2.2, there exists a continuous morphism
τ : F̂A(V) → T such that ϕ = σ−1πτ . Let now e be an idempotent of F̂A(V). Then
eπ−1σ ⊆ (eτ)τ−1π−1σ = (eτ)ϕ−1. But eτ is an idempotent of T , so eτϕ−1 ∈ W, and
hence eπ−1σ ∈ W.

By Lemma 2.1, σ−1π is a closed relational morphism, so (2) implies (3).
There remains to verify that (3) implies (1). Let ϕ : S → T be a closed W-relational

morphism, with T pro-V. LetW1, . . .,Wk be the subsemigroups of S in W. Our assumption
implies that, for each idempotent e of T , eϕ−1 is contained in (in fact, is equal to) some
Wi. For each 1 ≤ i ≤ k, let Xi = {t ∈ T | tϕ−1 ⊆Wi}. Then

Xi = T \
⋃

s6∈Wi

sϕ.

Since ϕ is closed, each sϕ is closed by Lemma 2.1, and hence each Xi is open.
Since the topology of T is zero-dimensional, it has a basis of clopen sets, and it follows

that for each idempotent e of T , there exists 1 ≤ i ≤ k and there exists a clopen set Ye

such that e ∈ Ye ⊆ Xi. But E(T ) is closed and hence compact, and E(T ) is contained
in the union of the open sets Ye. So there exist finitely many idempotents e1, . . ., en and
corresponding indices i1, . . . , in such that Yej

⊆ Xij for each j and E(T ) ⊆
⋃n

j=1 Yej
.

By Proposition 1.8, the syntactic congruence of each Ye is clopen. Therefore the
intersection ∼ of the syntactic congruences of the Yej

(1 ≤ j ≤ n) is clopen as well, and
hence it has finite index by Lemma 1.7. Let τ : T → V be the projection of T on its
quotient by ∼. Since ∼ is closed, the projection τ is continuous. Moreover V is finite, so
V ∈ V.

Let now e ∈ E(V ). Then eτ−1 is a ∼-class and a closed subsemigroup of T : by
compactness, it contains an idempotent. Therefore eτ−1 is contained in Yej

for some
1 ≤ j ≤ n, and hence eτ−1 ⊆ Xij . Therefore

eτ−1ϕ−1 =
⋃

t∈eτ−1

tϕ−1 ⊆Wij .

Thus ϕτ : S → V is a W-relational morphism with V ∈ V, that is, S ∈ W M©V. ut

Corollary 3.2 Let (Wi)i∈I and V be pseudovarieties of semigroups. Then

(⋂

i∈I

Wi

)
M©V =

⋂

i∈I

(Wi M©V).

The analogous results hold for pseudovarieties of monoids, ordered semigroups and ordered
monoids.
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Proof. Let S be a finite semigroup, let A be a profinite set and let σ : Â+ → S be an
onto continuous morphism. With the notations of Theorem 3.1, S lies in (

⋂
i∈I Wi) M©V

if and only if, for each idempotent e of F̂A(V), eπ−1σ lies in
⋂

i∈I Wi, that is, if and only
if σ−1π is a Wi-relational morphism for each i. This concludes the proof. ut

Let now V be a pseudovariety of semigroups (resp. monoids). The V-pointlike subsets
of a finite semigroup (resp. monoid) S are the subsets X of S such that, for each relational
morphism ϕ from S into an element T of V, there exists t ∈ T such that X ⊆ tϕ−1. The
problem of the effective characterization of the V-pointlike subsets of a finite semigroup
(resp. monoid) is closely related to the membership problem of the varieties of the form
W M©V [9, 10, 11]. Using quite the same method as for Theorem 3.1, we obtain the
following result.

Theorem 3.3 Let V be a pseudovariety of semigroups, let A be a profinite set and let S

be a finite semigroup. Let σ : Â+ → S be an onto continuous morphism and let π : Â+ →
F̂A(V) be the natural projection. The V-pointlike subsets of S are the xπ−1σ (x ∈ F̂A(V))
and their subsets. The same results holds if we replace everywhere semigroups by monoids

and Â+ by Â∗.

Proof. By Proposition 2.2, if ϕ : S → T is a relational morphism into a finite semigroup
T ∈ V, there exists a continuous morphism τ : F̂A(V) → T such that ϕ = σ−1πτ . In
particular, for each x ∈ F̂A(V), xπ−1σ ⊆ (xτ)τ−1π−1σ = (xτ)ϕ−1, and hence xπ−1σ and
its subsets are V-pointlike subsets of S.

For the converse, let X be a V-pointlike subset of S. Let us consider the (finite) family
S1, . . ., Sk of all subsets of S which are equal to xπ−1σ for some x ∈ F̂A(V). For each
1 ≤ i ≤ k, we fix an element xi such that Si = xiπ

−1σ. We then follow the scheme of the
proof of Theorem 3.1: The relational morphism σ−1π is closed by Lemma 2.1, so for each
i, the set

Xi = {x ∈ F̂A(V) | xπ−1σ ⊆ Si} = F̂A(V) \
⋃

s6∈Si

sσ−1π

is open. Thus, for each x ∈ F̂A(V), there exist an index 1 ≤ i ≤ n and a clopen set
Yx such that x ∈ Yx ⊆ Xi. Using the compactness of F̂A(V) it follows that there exist
finitely many indices i1, . . ., in and clopen sets Y1, . . ., Yn such that F̂A(V) =

⋃n
j=1 Yj and

Yj ⊆ Xij .

We then use Proposition 1.8 to show that there exists a clopen congruence ∼ on F̂A(V)
which refines the syntactic congruences of Y1, . . ., Yn. Let τ : F̂A(V) → T be the projection
onto the quotient of F̂A(V) by ∼. Then T is finite and τ is continuous by Lemma 1.7,
and hence T ∈ V.

Now, consider the relational morphism σ−1πτ : S → T . By definition of V-pointlike
subsets, there exists t ∈ T such that X ⊆ tτ−1π−1σ. But tτ−1 is a ∼-class. Therefore
it is contained in some Yj and hence in some Xij . Thus, for each x ∈ tτ−1, we have
xπ−1σ ⊆ Sij = xijπ

−1σ, and hence

tτ−1π−1σ =
⋃

x∈tτ−1

xπ−1σ ⊆ xijπ
−1σ.

This concludes the proof. ut
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We have defined the V-pointlike subsets of S only in the unordered case, that is
when V is a pseudovariety of semigroups (or monoids) and S is a semigroup (or monoid).
Let us explain here why there is no reason to consider the analogous definition when
S is ordered and V is a class of ordered algebras. We have observed in Section 2 that
the definition of a relational morphism between ordered semigroups depends only on the
algebraic structure of the semigroups, not on their order. If V is a pseudovariety of, say,
ordered semigroups, let V′ be the pseudovariety of semigroups generated by the semigroups
S such that (S,≤) ∈ V for some order ≤ on S. Then V′ is the class of homomorphic
images of elements of V [19, Proposition 3.6]. Thus for each alphabet A, the directed
systems of A-generated elements of V and of A-generated elements of V ′ are cofinal, so
their projective limits are equal, and hence the semigroup part of the ordered semigroup
F̂A(V) coincides with the semigroup F̂A(V′).

Moreover, we verify that a subset X of a finite semigroup S is a V-pointlike if and
only if it is a V′-pointlike. Suppose indeed that X is a V′-pointlike subset. Then for each
relational morphism ϕ : S → V with (V,≤) ∈ V for some order ≤, we have V ∈ V ′, so
there exists v ∈ V such that X ⊆ vϕ−1, and hence X is a V-pointlike. Conversely, if
X is a V-pointlike and if ϕ : S → T is a relational morphism with T ∈ V ′, there exists
a morphism ψ : V → T with (V,≤) ∈ V for some order ≤. Since ϕψ−1 : S → V is a
relational morphism, there exists v ∈ V such that X ⊆ v(ϕψ−1)−1 = (vψ)ϕ−1. Thus,
X is a V′-pointlike. Thus Theorem 3.3 allows also the computation of pointlikes in the
ordered case.

4 Identities defining a Mal’cev product

An important consequence of Theorem 3.1 is the description of a defining set of identities
for the pseudovariety W M©V. First, we introduce the following notation. Let A be a
profinite set and let B be a finite alphabet. Let also ~z = (zb)b∈B ∈ (Â∗)B . Letting bϕ = zb

for each b ∈ B induces a continuous morphism ϕ : B̂∗ → Â∗ by Theorem 1.1. For each
x ∈ B̂∗, we write x(~z) for xϕ. That is, x(~z) is the image of x by a continuous morphism
which depends on ~z. We say that x(~z) is obtained from x by substituting the zb for the
variables of x.

Let B be a finite alphabet, let x, y ∈ B̂+ and let V be a pseudovariety of semigroups
(resp. monoids). An identity x′ = y′ (or x′ ≤ y′) is obtained from the identity x = y (or

x ≤ y) by V-substitution if there exist a profinite set A and a vector ~z = (zb)b∈B ∈ (Â+)B

(resp. (Â∗)B) such that V satisfies the identities zb = zb′ = zω
b for all b, b′ ∈ B, x′ = x(~z)

and y′ = y(~z).
We can now describe a defining set of identities for a Mal’cev product.

Theorem 4.1 Let V be a pseudovariety of semigroups or monoids, and let W be a pseu-
dovariety of semigroups (resp. ordered semigroups). Let Σ be a defining set of identities of
W, each using a finite number of variables. Then W M©V is defined by the identities of the
form x(~z) = y(~z) (resp. x(~z) ≤ y(~z)) obtained from the elements of Σ by V-substitution.
In fact it suffices to consider those identities where the zb use a finite number of variables.

The proof of Theorem 4.1 follows immediately from the two following lemmas.

Lemma 4.2 Let V be a pseudovariety of semigroups (resp. monoids), let B be a finite

alphabet and let x, y ∈ B̂+. Let W be a pseudovariety of semigroups satisfying x = y.
Then W M©V satisfies all the identities obtained from x = y by V-substitution.

11



Similarly, if W is a pseudovariety of ordered semigroups satisfying x ≤ y, then W M©V

satisfies all the identities obtained from x ≤ y by V-substitution.

Proof. Let ~z = (zb)b∈B ∈ (Â+)B be such that V satisfies zb = zb′ = zω
b for all b, b′ ∈ B, let

σ : Â+ → S be a continuous morphism and let π : Â+ → F̂A(V) be the natural projection.
We want to show that x(~z)σ = y(~z)σ. For each b ∈ B, we let bϕ = zb. This induces a

continuous morphism ϕ : B̂+ → Â+, and x(~z) = xϕ, y(~z) = yϕ. By Proposition 1.4, the
hypothesis on ~z implies the existence of an idempotent e of F̂A(V) such that bϕπ = zbπ = e

for each b ∈ B. Since eπ−1 is a closed subsemigroup of Â+, it follows that B̂+ϕ ⊆ eπ−1

and B̂+ϕσ ⊆ eπ−1σ.

B̂+ Â+ F̂A(V)

S

ϕ π

σ
ϕσ

Since S ∈ W M©V, we have Â+σ ∈ W M©V, and hence eπ−1σ ∈ W by Theorem 3.1. So
eπ−1σ satisfies x = y and, in particular, xϕσ = yϕσ, that is, x(~z)σ = y(~z)σ. Thus, S
satisfies x(~z) = y(~z). ut

The proof of Theorem 4.1 will be completed by applying the following lemma to the
case of a finite semigroup.

Lemma 4.3 Let V be a pseudovariety of semigroups (resp. monoids) and let W be a
pseudovariety of semigroups or ordered semigroups. Let Σ be a defining set of identities

for W, each using a finite number of variables, let A be a profinite set and let σ : Â+ → S

(resp. σ : Â∗ → S) be an onto continuous morphism. Finally, let π : Â+ → F̂A(V) (resp.

π : Â∗ → F̂A(V)) be the natural projection. If S satisfies all the identities obtained from
the elements of Σ by V-substitution, then σ−1π : S → F̂A(V) is a closed pro-W-relational
morphism.

Proof. Let e be an idempotent of F̂A(V). We need to show that eπ−1σ is pro-W. By
Corollary 1.6, this reduces to proving that eπ−1σ satisfies Σ. Let (x = y) ∈ Σ, with

x, y ∈ B̂+ for some finite set B. Let ϕ be a continuous morphism from B̂+ into eπ−1σ ⊆ S.
For each b ∈ B, bϕ ∈ (eπ−1)σ, so we can fix an element zb ∈ eπ−1 such that bϕ = zbσ.

Then letting bψ = zb for each b ∈ B induces a continuous morphism ψ : B̂+ → Â+ such
that ψσ = ϕ.

Â+ F̂A(V)

B+ S

π

σ

ϕ

ψ

If ~z = (zb)b∈B , then xψ = x(~z) and yψ = y(~z). Moreover, by definition, zbπ = zb′π = e,
so, by Proposition 1.4, V satisfies zb = zb′ = zω

b for all b, b′ ∈ B. Now, by hypothesis, S
satisfies x(~z) = y(~z), and hence x(~z)σ = y(~z)σ. So xψσ = yψσ, that is, xϕ = yϕ. Thus,
eπ−1σ satisfies x = y. This proves that eπ−1σ satisfies Σ, which concludes the proof. ut
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Lemmas 4.2 and 4.3 also prove the following characterization of the pro-(W M©V)
semigroups.

Proposition 4.4 Let V be a pseudovariety of semigroups (resp. monoids) and let W be

a pseudovariety of semigroups semigroups. Let Z = W M©V. Then Ẑ = Ŵ M© V̂. That is,
Ŵ M© V̂ is the class of pro-(W M©V) semigroups (resp. monoids). The analogous result
hods if W is a pseudovariety of ordered semigroups.

Proof. Let us first consider a semigroup S in Ŵ M© V̂: there exists a closed Ŵ-relational
morphism ϕ : S → T with T ∈ V̂. Let ψ : S → S ′ be a continuous morphism onto a finite
semigroup S ′. For each idempotent e of T , the semigroup eϕ−1ψ is a finite continuous
quotient of eϕ−1, and hence eϕ−1ψ ∈ W. Moreover, ψ−1ϕ is a closed relational morphism
by Lemma 2.1. Therefore, it follows from Theorem 3.1 that S ′ ∈ W M©V. Thus all the
finite continuous homomorphic images of S are in W M©V, and hence S is pro-(W M©V).

Conversely, let us assume that S is a pro-(W M©V) semigroup and let Σ be a set of
defining identities for W. By Corollary 1.6, S satisfies all the identities satisfied by W M©V,
and hence, by Theorem 4.1, S satisfies all the identities obtained from the elements of Σ by
V-substitution. By Lemma 4.3, it follows that S admits a closed Ŵ-relational morphism
into a pro-V semigroup. That is, S ∈ Ŵ M© V̂. ut

5 Application to the computation of Mal’cev products

We say that a class V of finite semigroups (resp. monoids, ordered semigroups, ordered
monoids) is decidable if, given a finite semigroup (resp. monoid, ordered semigroup, or-
dered monoid) S, there is an algorithm to decide whether S ∈ V. The aim of this section
is to study the decidability of the pseudovarieties of the form V M©Z. Let us start with the
pseudovarieties of the form V M©J1. It is well known that J1 admits a finite free object
over each finite alphabet A, namely the power set P(A). In particular, F̂A(J1) = P(A).

The natural projection κ : Â+ → F̂A(J1) = P(A) is called the content morphism. Note
that if u ∈ A∗ is a word, then uκ is the alphabetic content of u, that is, uκ is the set of
letters occurring in u. The following result was observed in [24] in the unordered case.

Theorem 5.1 Let V be a pseudovariety of semigroups (resp. ordered semigroups), let
A be a finite alphabet, let S be a finite semigroup (resp. ordered semigroup) and let
σ : A+ → S be an onto morphism. Then S ∈ V M©J1 if and only if (Bκ−1 ∩ A+)σ ∈ V

for each subset B of A. In particular, if V is decidable, then V M©J1 is decidable.

Proof. Let us first notice that the morphism σ : A+ → S admits a unique continuous

extension σ̂ to Â+. By Theorem 3.1, S ∈ V M©J1 if and only if Bκ−1σ̂ ∈ V for each
subset B of A. Since S and F̂A(J1) are finite, each Bκ−1 and each sσ̂−1 (s ∈ S) is clopen.

But A+ is dense in Â+, so for each s ∈ S and each B ⊆ A such that s ∈ Bκ−1σ̂, the
set sσ̂−1 ∩Bκ−1 ∩A+ is non empty. That is, Bκ−1σ̂ = (Bκ−1 ∩ A+)σ̂ = (Bκ−1 ∩ A+)σ.
In order to conclude the proof, it suffices to observe that Bκ−1 ∩ A+ is the set of all
words with alphabetic content exactly B, and that (Bκ−1 ∩A+)σ is computable (say, by
induction on |B|: Bκ−1 ∩A+ =

⋃
b∈B((B \ {b})κ−1 ∩A+)σ(bB∗)σ). ut

Note. This result is in fact a special case of a more general statement regarding the
products of the form V M©Z where Z admits a finite free object over each finite alphabet
[24, Theorem 1.2]
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The products of the form V M©G have received particular attention in the literature
[11]. More generally, let H be a pseudovariety of groups (that is, a pseudovariety of
monoids consisting only of groups) and let S be a finite monoid. The H-kernel of S
is the set KH(S) =

⋂
1τ−1, where the intersection runs over all relational morphisms

τ : S → H from S into a group H in H. Even though there may exist infinitely many
relational morphisms τ from a given finite monoid S into a group in H, there are only
finitely many possible values for the subset 1τ−1 ⊆ S. It is easy to deduce from this
observation that there exists a single relational morphism τ : S → H into a group H ∈ H

such that 1τ−1 = KH(S). This leads to the following well-known result [11].

Proposition 5.2 Let H be a pseudovariety of groups and let V be a pseudovariety of
semigroups or ordered semigroups. Let S be a finite monoid. Then

S ∈ V M©H if and only if KH(S) ∈ V.

In particular, if V is decidable and if there is an algorithm to decide membership in KH(S),
then V M©H is decidable.

Deciding membership in KH(S) is a difficult question in general. Ash proved that
KG(S) is decidable for any finite semigroup S [7]. More precisely, we say that a subset
T of S is closed under weak conjugacy if sT t ⊆ T and tT s ⊆ T for all s, t ∈ S such
that sts = s. Ash proved that KG(S) is the smallest submonoid of S closed under weak
conjugacy. Ribes and Zalesskĭı gave a new proof of this result [21], and later proved the
decidability of KGp(S) for any prime p (where Gp is the pseudovariety of p-groups) [22].
Recently, Margolis, Sapir and Weil proved the decidability of KGnil

(S), where Gnil is the
pseudovariety of nilpotent groups [14].

Let us also note the following proposition on membership in KH(S).

Proposition 5.3 Let S be a finite monoid, let σ : Â∗ → S be a continuous morphism and
let x ∈ Â∗. If H satisfies x = 1, then xσ ∈ KH(S).

Proof. Let π : Â∗ → F̂A(H) be the canonical projection, and let x ∈ Â∗ such that H satis-
fies x = 1. Then, by Proposition 1.4, xπ = 1. Let now ϕ : S → H be a relational morphism
with H ∈ H. By Proposition 2.2, there exists a continuous morphism τ : F̂A(H) → H

such that ϕ = σ−1πτ . But xπτ = 1, so xσ ∈ 1ϕ−1.

Â∗ F̂A(H)

S H

π

σ

ϕ

τ

This holds for all ϕ, and hence xσ ∈ KH(S). ut

We now consider products of the form V M©Nil, where Nil is the pseudovariety of all
finite nilpotent semigroups. A finite semigroup S is nilpotent if and only if S contains a
single idempotent, which is a zero. That is,

Nil = [[xωy = yxω = xω]].
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It is known that, for any finite alphabet A, F̂A(Nil) = A+ ∪ {0}, where the topology is
characterized by the fact that a sequence of words (un)n≥0 converges to 0 if and only if
the length of the un tends to infinity.

We will give defining sets of identities for products of the form V M©Nil. First note
the following proposition, due to Almeida and Azevedo [3, Corollary 3.4].

Proposition 5.4 Let x ∈ Â+ \ A+. Then there exist elements y, z, t ∈ Â+ such that
x = yzωt.

We can now state and prove the following theorem.

Theorem 5.5 Let V be a pseudovariety of semigroups or ordered semigroups, and let Σ
be a set of identities defining V. Then V M©Nil is defined by the identities obtained from
Σ by substituting for each variable a the value a1a

ω
2 a3.

Proof. Let x, y ∈ Â+. Let B = {a1, a2, a3 | a ∈ A} and let ~t = (ta)a∈A with ta = a1a
ω
2 a3

(ta ∈ B̂+). Let S be a finite semigroup. Using Proposition 5.4 and the fact that Nil

satisfies uω = vω, it is easily verified that S satisfies the identity x(~t) = y(~t) (resp.
x(~t) ≤ y(~t)) if and only if it satisfies all the identities obtained from x = y (resp. x ≤ y)
by Nil-substitution. The theorem now follows from Theorem 4.1. ut

We derive from Theorem 5.5 the following results, the first of which is well known [2],
and the third of which can be found in [25].

Corollary 5.6 The following equalities hold.

(1) G M©Nil = [[xω = yω]].

(2) Com M©Nil = [[xyωz = zyωx]].

(3) [[x = x2]] M©Nil = [[xyωz = (xyωz)2]] = [[xyωz = (xyωz)w]].

(4) J1 M©Nil = [[xyωz = zyωx = (xyωz)w]].

Proof. Here, G is viewed as a pseudovariety of semigroups, and as such it is defined
by the following identities: G = [[xωy = yxω = y]]. By Theorem 5.5, G M©Nil satisfies
(xyωz)ωuvωw = uvωw(xyωz)ω = uvωw, so G M©Nil satisfies yωvω = vωyω = vω (letting
x = z = yω and u = w = vω). By symmetry, it follows that G M©Nil satisfies yω = vω.
Conversely, the pseudovariety [[xω = yω]] satisfies xyω = xxω = xωx = yωx, and therefore
it satisfies (xyωz)ωuvωw = vωuvωw = uvωw. Thus G M©Nil = [[xω = yω]].

By Theorem 5.5, Com M©Nil is defined by the identity

(xyωz)(uvωw) = (uvωw)(xyωz).

Therefore it satisfies xyω = yωxyω. Symmetrically, it satisfies xyω = yωx and hence

xyωz = (xyω)(yωz) = (yωz)(xyω) = zyωx.

Conversely, let V = [[xyωz = zyωx]]. Then V satisfies xyω = yωxyω = yωx, that is, the
idempotents are central in F̂A(V). It follows that V satisfies

yωa1a2 = a1y
ωa2 = a2y

ωa1 = yωa2a1,
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and, more generally,
yωa1 · · · an = yωaσ(1) · · · aσ(n)

for any permutation σ of {1, . . . , n}, since any such permutation is a product of 2-cycles.
In particular, V satisfies

xyωzuvωw = yωvωxzuw = yωvωuwxz = uvωwxyωz.

Therefore Com M©Nil = [[xyωz = zyωx]].
The calculation of [[x = x2]] M©Nil is immediate by Theorem 5.5, and that of J1 M©Nil

follows from the previous ones by Corollary 3.2. ut

We say that a pseudovariety is finitely based if it can be defined by a finite set of
identities, and that it is of finite rank if it can be defined by a set of identities using a
fixed finite set of variables. Then we have the following immediate corollaries.

Corollary 5.7 Let V be a pseudovariety of semigroups or ordered semigroups. If V is
finitely based (resp. of finite rank), then so is V M©Nil.

Corollary 5.8 Let V be a pseudovariety of semigroups (resp. ordered semigroups), let S
be a finite semigroup (resp. ordered semigroup) and let E be the set of idempotents of S.
Then S ∈ V M©Nil if and only if SES ∈ V. In particular, if V is decidable, then so is
V M©Nil.

Let us now consider products of the form V M©J, where J is the pseudovariety of finite
J -trivial semigroups. It is well-known that J = Nil M©J1 [16]. Almeida [2] and Almeida
and Azevedo [3] gave a detailed study of the structure of the free pro-J semigroups.

Proposition 5.9 Let x, y ∈ Â+.

(1) J satisfies xω = yω if and only if xκ = yκ.

(2) J satisfies x = xω if and only if x = uvωw for some u, v, w ∈ Â+ such that (uw)κ ⊆
vκ = xκ.

Proof. These results are consequences of [3, Corollary 4.8], [3, Theorem 4.12] and Propo-
sition 5.4 above. ut

Theorem 5.10 Let V be a pseudovariety of semigroups or ordered semigroups and let Σ
be a set of identities defining V. Then V M©J is defined by the set of all identities obtained
from Σ by substituting, for each variable a ∈ A, an element of the form a1a

ω
2 a3 with

a1, a2, a3 ∈ B̂+ for some alphabet B, (a1a3)κ ⊆ a2κ and a2κ = B for all a ∈ A. Moreover,

V M©J = V M©(Nil M©J1) = (V M©Nil) M©J1 = [[Σ′]].

Proof. The equality (V M©Nil) M©J1 = [[Σ′]] is an immediate consequence of Theorem 5.5
and of Theorem 3.1 in the case of products with J1. Moreover

V M©J = V M©(Nil M©J1) ⊆ (V M©Nil) M©J1

[24, Lemma 1.4]. Finally, the elements of Σ′ are identities obtained from Σ by J-substit-
utions, so [[Σ′]] ⊆ V M©J, which concludes the proof. ut
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Corollary 5.11 If V is decidable, then so is V M©J.

Proof. It is an immediate consequence of Theorem 5.1 and Corollary 5.8. ut

Let DG be the pseudovariety of semigroups in which each regular D-class is a group.

Corollary 5.12 The following equalities hold.

(1) G M©J = DG;

(2) Com M©J = [[xyωz = zyωx | (xz)κ ⊆ yκ]].

(3) [[x = x2]] M©J = [[xyωz = (xyωz)w | (xz)κ ⊆ yκ]].

(4) J1 M©J = [[xyωz = zyωx = (xyωz)w | (xz)κ ⊆ yκ]].

Proof. By Theorem 5.10 and Corollary 5.6, G M©J = [[xω = yω]] M©J1 = [[xω = yω | xκ =
yκ]]. But the latter pseudovariety is equal to DG by [2, Theorem 8.1.7].

The other computations are immediate applications of Theorem 5.10. ut

Our last example deals with the pseudovariety B1, which plays an important role in
the study of the dot-depth hierarchy [19]. By definition,

B1 = [[(xωsyωtxω)ωxωsyωvxω(xωuyωvxω)ω = (xωsyωtxω)ω(xωuyωvxω)ω]].

Proposition 5.13 B1 M©Nil = B1 and B1 M©J1 = B1 M©J.

Proof. It is clear that B1 is contained in B1 M©Nil. Conversely, by Theorem 5.5, B1 M©Nil

satisfies the defining identity of B1 where x, y, s, t, u, v have been replaced respectively
by x1x

ω
2 x3, y1y

ω
2 y3, s1s

ω
2 s3, t1t

ω
2 t3, u1u

ω
2u3 and v1v

ω
2 v3. Letting x1 = x2 = x3 = xω,

y1 = y2 = y3 = yω, s2 = s3 = u2 = u3 = yω and t2 = t3 = v2 = v3 = xω, it follows that
B1 M©Nil satisfies

(xωs1y
ωt1x

ω)ωxωs1y
ωv1x

ω(xωu1y
ωv1x

ω)ω = (xωs1y
ωt1x

ω)ω(xωu1y
ωv1x

ω)ω,

so that B1 M©Nil = B1.
The equality B1 M©J1 = B1 M©J then follows from Theorem 5.10. ut
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