
HAL Id: hal-00143949
https://hal.science/hal-00143949v1

Submitted on 28 Apr 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algorithms for computing finite semigroups
Jean-Eric Pin, Véronique Delcroix

To cite this version:
Jean-Eric Pin, Véronique Delcroix. Algorithms for computing finite semigroups. Foundations of
Computational Mathematics, 1997, Rio de Janeiro, Brazil. pp.112-126. �hal-00143949�

https://hal.science/hal-00143949v1
https://hal.archives-ouvertes.fr

Algorithms for computing finite semigroups

Véronique Froidure and Jean-Éric Pin∗

Abstract

The aim of this paper is to present algorithms to compute finite semi-

groups. The semigroup is given by a set of generators taken in a larger

semigroup, called the “universe”. This universe can be for instance the

semigroup of all functions, partial functions, or relations on the set {1, . . . , n},
or the semigroup of n× n matrices with entries in a given finite semiring.

The algorithm produces simultaneously a presentation of the semi-

group by generators and relations, a confluent rewriting system for this

presentation and the Cayley graph of the semigroup. The elements of the

semigroup are identified with the reduced words of the rewriting system.

We also give some efficient algorithms to compute the Green relations,

the local subsemigroups and the syntactic quasi-order of a subset of the

semigroup.

1 Introduction

There are a number of complete and efficient packages for symbolic computation
on groups, such as CAYLEY or GAP. Comparatively, the existing packages for
semigroups are much less complete. Computers were used for finding the num-
ber of distinct semigroups of small order [34, 35, 36, 6, 21, 23, 13, 12, 30, 9] or to
solve specific questions on semigroups [19], but the main efforts were devoted to
packages dealing with transformation semigroups. Actually, the primary goal of
these packages is to manipulate finite state automata and rational expressions,
and thus semigroups were uniquely considered as transition semigroups of fi-
nite automata. The first such package [5], written in APL, relied on algorithms
developed by Perrot [22, 17]. Given a finite deterministic automaton, it pro-
duced the list of elements of its transition semigroup and the structure of the
regular D-classes, including the Schützenberger group and the sandwich ma-
trix. A much more efficient version, AUTOMATE, was written in C by Cham-
parnaud and Hansel [3]. This interactive package comprised extended func-
tions to manipulate rational languages, but the semigroup part did not include
the computation of the Schützenberger groups. Another package, AMORE,
was developed in Germany under the direction of W. Thomas (in particular
by A. Potthoff) and can be obtained by anonymous ftp at ftp.informatik.uni-
kiel.de:pub/kiel/amore/amore.ps.gz. It is comparable to AUTOMATE, since it
is written in C and is also primarily designed to manipulate finite automata.
However, it includes the computation of all D-classes (regular or not, but with-
out the Schützenberger groups). One can also test whether the transition semi-
group is aperiodic, locally trivial, etc. A much less powerful, but convenient

∗LITP, CNRS, Université Paris VII, 2 Place Jussieu, 75251 Paris Cedex 05, FRANCE

1

package was implemented by Sutner [33] using Mathematica. Other algorithms
to compute Green’s relations in finite transformation semigroups were also pro-
posed in [18].

From the semigroup point of view, the main drawback of these packages lies
in their original conception. Semigroups are always considered as transforma-
tion semigroups, and the algorithms used in these packages heavily rely on this
feature. Although similar algorithms were designed for semigroups of boolean
matrices by Konieczny [15, 16], no general purpose algorithm was proposed so
far in the literature. However, even in theoretical computer science, semigroups
do not always occur as transformation semigroups. For instance, semigroups
of boolean matrices [24, 7, 8] and more generally semigroups of matrices over
commutative semirings [31, 32] occur quite frequently, and therefore there is a
strong need for a semigroup package similar to the existing ones on group the-
ory. As a first step towards this goal, we present in this paper a general purpose
algorithm to compute finite semigroups. Only a part of this algorithm has been
implemented so far, but the first results are quite promising.

2 Definitions

2.1 Semigroups

A semigroup is a set equipped with an internal associative operation which is
usually written in a multiplicative form. A monoid is a semigroup with an
identity element (usually denoted by 1). If S is a semigroup, S1 denotes the
monoid equal to S if S has an identity element and to S ∪{1} otherwise. In the
latter case, the multiplication on S is extended by setting s1 = 1s = s for every
s ∈ S1. The dual of a semigroup S is the semigroup S̃ defined on the set S by
the multiplication x· y = yx. We refer the interested reader to [11, 17, 25, 10, 1]
for more details on semigroup theory.

Example 2.1 Let Tn be the monoid of all functions from {1, . . . , n} into itself
under the multiplication defined by uv = v◦u. This monoid is called the monoid
of all transformations on {1, . . . , n}. A transformation semigroup is simply a
subsemigroup of some Tn. It is a well-known fact that every finite semigroup is
isomorphic to a transformation semigroup. This is the semigroup counterpart of
the group theoretic result that every finite group is isomorphic to a permutation
group.

Example 2.2 A semiring is a set K equipped with two operations, called re-
spectively addition and multiplication, denoted (s, t) → s + t and (s, t) → st,
and an element, denoted 0, such that:

(1) (K, +, 0) is a commutative monoid,

(2) K is a semigroup for the multiplication,

(3) for all s, t1, t2 ∈ K, s(t1 + t2) = st1 + st2 and (t1 + t2)s = t1s + t2s,

(4) for all s ∈ K, 0s = s0 = 0.

2

Thus the only difference with a ring is that inverses with respect to addition
may not exist. Given a semiring K, the set Kn×n of n × n matrices over K
is naturally equipped with a structure of semiring. In particular, Kn×n is a
monoid under multiplication defined by

(rs)i,j =
∑

1≤k≤n

ri,ksk,j

Besides the finite rings, like Z/nZ, several other finite semirings are commonly
used in the literature. We first mention the boolean semiring B = {0, 1}, defined
by the operations 0 + 0 = 0, 0 + 1 = 1 + 0 = 1 + 1 = 1 and 1· 1 = 1, 0· 0 =
0· 1 = 1· 0 = 0. Let us also mention the semiring Zn = {0, 1, . . . , n}, with the
operations ⊕ and ⊗ defined by s ⊕ t = min{s + t, n} and s ⊗ t = min{st, n}.
Other examples include the tropical semiring (N ∪ {∞}, min, +) [31].

A relation R on a semigroup S is stable on the right (resp. left) if, for every
x, y, z ∈ S, x R y implies xz R yz (resp. zx R zy). A relation is stable if
it is stable on the right and on the left. A congruence is a stable equivalence
relation. Thus, an equivalence relation ∼ on S is a congruence if and only if,
for every s, t ∈ S and x, y ∈ S1, s ∼ t implies xsy ∼ xty. If ∼ is a congruence
on S, then there is a well-defined multiplication on the quotient set S/∼, given
by

[s][t] = [st]

where [s] denotes the ∼-class of s ∈ S.
Given two semigroups S and T , a semigroup morphism ϕ : S → T is a map

from S into T such that for all x, y ∈ S, ϕ(xy) = ϕ(x)ϕ(y). Monoid morphisms
are defined analogously, but of course, the condition ϕ(1) = 1 is also required.

A semigroup (resp. monoid) S is a quotient of a semigroup (resp. monoid)
T if there exists a surjective morphism from T onto S. In particular, if ∼ is
a congruence on a semigroup S, then S/∼ is a quotient of S and the map
π : S → S/∼ defined by π(s) = [s] is a surjective morphism, called the quotient
morphism associated with ∼.

Let S be a semigroup. A subsemigroup of S is a subset T of S such that
t, t′ ∈ T implies tt′ ∈ T . Subsemigroups are closed under intersection. In
particular, given a subset A of S, the smallest subsemigroup of S containing A
is called the subsemigroup of S generated by A. The Cayley graph of S (relative
to A) is the graph Γ(S, A) having S1 as set of vertices, and for each vertex s
and each generator a, an edge labeled by a from s to sa.

An element e of a semigroup S is idempotent if e2 = e. If s is an element of a
finite semigroup, the subsemigroup generated by s contains a unique idempotent
and a unique maximal subgroup, whose identity is the unique idempotent. Thus
s has a unique idempotent power, denoted sω.

A zero is an element 0 such that, for every s ∈ S, s0 = 0s = 0. It is a routine
exercise to see that there is at most one zero in a semigroup.

2.2 Free semigroups

An alphabet is a finite set whose elements are letters. A word (over the alphabet
A) is a finite sequence u = (a1, a2, . . . , an) of letters of A. The integer n is the
length of the word and is denoted |u|. In practice, the notation (a1, a2, . . . , an)

3

is shortened to a1a2 · · · an. The empty word, which is the unique word of length
0, is denoted by 1. The (concatenation) product of two words u = a1a2 · · · ap

and v = b1b2 · · · bq is the word uv = a1a2 · · ·apb1b2 · · · bq. The product is an
associative operation on words. The set of all words on the alphabet A is
denoted by A∗. Equipped with the product of words, it is a monoid, with the
empty word as an identity. It is in fact the free monoid on the set A. This
means that A∗ satisfies the following universal property: if ϕ : A → M is a
map from A into a monoid M , there exists a unique monoid morphism from A∗

into M that extends ϕ. This morphism, also denoted ϕ, is simply defined by
ϕ(a1 · · ·an) = ϕ(a1) · · ·ϕ(an).

Let Σ be a subset of A∗ × A∗, and let ∼Σ be the least congruence ∼ on
A∗ such that u ∼ v for every pair (u, v) ∈ Σ. The quotient monoid A∗/∼Σ is
called the monoid presented by (A, Σ). A pair (u, v) ∈ Σ is often denoted u = v.
For instance, the monoid presented by ({a, b}, ab = ba) is isomorphic to N

2, the
free commutative monoid on two generators. Presentations of semigroups are
defined in the same way. Given a presentation Σ, the word problem is to know
whether two given words are equivalent modulo ∼Σ.

From the algorithmic point of view, presentations are in general intractable.
See [14] for a survey. For instance, it is an undecidable problem to know whether
a finitely presented semigroup is finite or not. There also exist finite presented
semigroups with an undecidable word problem. To avoid these difficulties, we
will follow a different approach, that goes back to Sakarovitch [28, 29, 20]. Some
definitions are in order to describe it in a precise way.

Let A be a totally ordered alphabet. The lexicographic order is the total
order used in a dictionary. Formally, it is the order ≤lex on A∗ defined by
u ≤lex v if and only if u is a prefix of v or u = pau′ and v = pbv′ for some
p ∈ A∗, a, b ∈ A with a < b. In the military order, words are ordered by length
and words of equal length are ordered according to the lexicographic order.
Formally, it is the order ≤ on A∗ defined by u ≤ v if and only if |u| < |v| or
|u| = |v| and u ≤lex v.

For instance, if A = {a, b}with a < b, then ababb ≤lex abba but abba < ababb.
The next proposition summarizes elementary properties of the order ≤. The
proof is straightforward and omitted.

Proposition 2.1 Let u, v ∈ A∗ and let a, b ∈ A.

(1) If u < v, then au < av and ua < va.

(2) If ua ≤ vb, then u ≤ v.

An important consequence of Proposition 2.1 is that ≤ is a stable order on
A∗: if u ≤ v, then xuy ≤ xvy for all x, y ∈ A∗.
A reduction is a mapping ρ : A∗ → A∗ satisfying the following conditions:

(1) ρ ◦ ρ = ρ

(2) For all u ∈ A∗ and a ∈ A, ρ(ua) = ρ(ρ(u)a) and ρ(au) = ρ(aρ(u)).

Condition (2) can be extended as follows.

Lemma 2.2 Let ρ be a reduction on A∗. Then for all u, v ∈ A∗, ρ(uv) =
ρ(ρ(u)v) = ρ(uρ(v)).

4

Proof. We prove the equality ρ(uv) = ρ(ρ(u)v) by induction on |v|. If v = 1,
the result follows from condition (1). If the result holds for v, then for every
letter a ∈ A, the following equalities hold by (2)

ρ(uva) = ρ((uv)a) = ρ(ρ(uv)a) = ρ(ρ(ρ(u)v)a) = ρ(ρ(u)va).

Similarly the equality ρ(uv) = ρ(uρ(v)) is proved by induction on |u|.

The set R = ρ(A∗) is called the set of reduced words for ρ. The next
proposition shows how reductions can be used to define monoids.

Proposition 2.3 Let ρ be a reduction on A∗ and let R be the set of its reduced
words. Then R, equipped with the multiplication defined by u· v = ρ(uv), is a
monoid.

Proof. If u, v, w ∈ A∗,

(u· v)·w = ρ(ρ(uv)w) = ρ(uvw) = ρ(uρ(vw)) = u· (v·w)

and thus the multiplication is associative. We claim that ρ(1) is the identity of
the multiplication. If r ∈ R, then r = ρ(u) for some u ∈ A∗. Therefore r· ρ(1) =
ρ(ρ(u)ρ(1)) = ρ(ρ(u)1) = ρ(ρ(u)) = ρ(u) = r and similarly, ρ(1)· r = r.

Conversely, given a monoid M generated by a set A, there is a natural morphism
π : A∗ → M defined by π(a) = a. Define a mapping ρ : A∗ → A∗ by setting, for
each u ∈ A∗,

ρ(u) = min{v ∈ A∗ | π(v) = π(u)}

where the minimum is taken with respect to the military order. Then ρ is a
reduction, called the military reduction, and the elements of M can be identified
with the reduced words for ρ. This reduction also gives a presentation for M .

Theorem 2.4 The monoid M is presented on A by the set of relations {(u =
ρ(u)) | u ∈ MA \ M}.

Proof. Let Σ = {(u = ρ(u)) | u ∈ MA \ M}. First, since π(u) = π(ρ(u)) by
definition, M satisfies all relations of Σ and thus u ∼Σ v implies π(u) = π(v).
We claim that u ∼Σ ρ(u) for every word u ∈ A∗. Since 1 ∈ M , every word
u ∈ A∗ admits a unique factorization of the form u = p(u)s(u) where p(u)
is the maximal prefix of u belonging to M . We prove the claim by induction
on the length n of s(u). If n = 0, then p(u) = u, u = ρ(u) and the claim is
trivial. Assume the claim holds for n and let u be a word such that s(u) =
a1 · · · an+1. Then p(u)a1 · · · an ∼Σ ρ(p(u)a1 · · · an) by induction, and thus
u ∼Σ ρ(p(u)a1 · · · an)an+1. Now, by definition of Σ, ρ(p(u)a1 · · · an)an+1 ∼Σ

ρ(ρ(p(u)a1 · · · an)an+1) = ρ(u). Therefore, u ∼Σ ρ(u), proving the claim. Now
π(u) = π(v) implies ρ(u) = ρ(v) and thus u ∼Σ v. Thus Σ is a presentation of
M .

5

3 The main algorithm

A semigroup S will be given as a subsemigroup of a given semigroup U , called
the universe, generated by a subset A. This universe can be for instance the
semigroup Tn or the semigroup of n by n matrices over a given semiring. We
require the following information on the universe:

- the type of the elements (arrays, matrices over a semiring, etc.),

- an algorithm to compute the product of two elements of U ,

- an algorithm to test equality of two elements of U ,

- the set of generators A.

Given a subset A of a universe U , our main algorithm computes the submonoid of
U generated by A. It is a little simpler to deal with monoids, so this point of view
will be adopted in this presentation, but it is fairly easy to modify our algorithm
to obtain the semigroup generated by A. The result of our computation can be
formalized as follows:

Input : A universe U , a subset A of U and a total order on A.

Output : The military reduction ρ : A∗ → M defining the submonoid M of
U generated by A, the list of elements of M (sorted in military order) and the
Cayley graphs Γ(M, A) and Γ(M̃, A).

3.1 A simplified version

We first present a simplified version of our algorithm, which just produces the
sorted list of elements of M and the rewriting system. As was explained above,
the elements of M are identified with reduced words of A∗. To each element
u ∈ M is associated its value ν(u) in the universe U .

The following pseudocode is our basic algorithm. The set of generators is
given as a totally ordered set A = {a1 < . . . < ak}. The first element of the
list of elements is the empty word 1. The successor of the word u in the list
is denoted Next(u). The variable Last denotes the last element of the current
list.

Let u := 1 and Last := 1.
while true

for i := 1 to k,
compute ν(uai);
if ν(uai) is new

Next(Last) := uai;
Last := uai;

else if ν(uai) = ν(u′) for some u′ < uai, produce the rule uai → u′;
if u has a successor, u := Next(u)
else break;

The algorithm works as follows. For each element u of the list being completed
and for each generator a ∈ A, the value ua is computed. If this value is the value
of some element u′ already in the list, a rule ua → u′ is produced. Otherwise,

6

a new element ua is created. The main properties of our algorithm are given in
the following proposition.

Proposition 3.1 The list of elements of M produced by the algorithm is sorted
for the military order and the rules are all of the form u → v with v < u.

Proof. A state of the program is determined by the values of the triple
(u, Last, i) at the beginning of the for loop. In a given state (u, Last, i), the
output is a list of the form (1, . . . , u, . . . , Last). We claim that the interval
(u, . . . , Last) is sorted for the military order and that Last < uai. This property
is trivially satisfied at the initial state (1, 1, 1). Passing from state (u, Last, i)
to state (u, Last, i + 1) (resp. (u, uai, i + 1)) leaves the property invariant,
since uai < uai+1. Passing from state (u, Last, k) to state (Next(u), Last, 1)
(resp. (Next(u), uak, 1)) also leaves the property invariant. Indeed the interval
(Next(u), . . . , Last) is a subinterval of (u, . . . , Last) and Last < uak. Thus
(u, . . . , Last) (resp. (u, . . . , Last, uak)) is sorted. Furthermore, u < Next(u) ≤
Last < uak by assumption. Therefore, either |Next(u)| = |Last| = |u| + 1
and then Last < uak < Next(u)a1, or |Next(u)| = |u| and Last < uak <
Next(u)a1, since u < Next(u). This proves the claim and shows that the
output is sorted. The second part of the proposition is clear.

We illustrate our algorithm on an example.

Example 3.1 Let U = T6 and let A = {a, b} be the set of generators given in
the following table

1 2 3 4 5 6
a 2 2 4 4 5 6
b 5 3 4 4 6 6

We first calculate the value of the empty word 1 and of the words 1a = a and
1b = b. Next the value of aa is equal to the value of a. This produces the rule
aa → a. The values of ab, ba and bb are new. Next, we calculate in this order
the values of aba, abb, baa, bab, bba and bbb. The first value is new, but the other
ones are not and produce the following rules: abb → aba, baa → ba, bab → bb,
bba → bb and bbb → bb. Therefore, aba is the unique element of length 3 created
at this step. It remains to calculate the values of abaa and abab, which give
the rules abaa → aba and abab → aba. Finally, the elements of the monoid are
represented in the following table

1 2 3 4 5 6
1 1 2 3 4 5 6
a 2 2 4 4 5 6
b 5 3 4 4 6 6
ab 3 3 4 4 6 6
ba 5 4 4 4 6 6
bb 6 4 4 4 6 6
aba 4 4 4 4 6 6

and the rewriting rules are

aa → a abb → aba baa → ba bab → bb
bba → bb bbb → bb abaa → aba abab → aba

7

3.2 The extended version

Some computations are redundant in this algorithm. For instance, in the pre-
vious example, the computation of baa could have been avoided, since the rule
aa → a infers baa → ba. This example is generic. Let u be an element of M ,
and let u = bs, where b is the first letter of u. If, for some generator a ∈ A,
the word sa is not reduced, the word ua will not be reduced. Furthermore, if
sa → r, then ρ(ua) = ρ(bsa) = ρ(br).

Example 3.2 Applying this improvement on the previous example would re-
duce the set of rules to the following set

aa → a abb → aba bab → bb bba → bb bbb → bb

Thus M = ({a, b} | aa = a, abb = aba, bab = bb, bba = bb, bbb = bb)

However, the computation of ρ(ua) requires the knowledge of ρ(br). Therefore,
in order to use the suggested improvement, it is necessary to compute ρ(au) for
every word u and every generator a. In other words, a simultaneous computa-
tion of the Cayley graphs Γ(M, A) and Γ(M̃, A) is required and it is not clear
anymore whether the improvement is not compensated by the extra amount of
computation needed for Γ(M̃, A).

By modifying sligthly our algorithm, we can get around this difficulty. The
main trick is to organize the computation by length. For each value of n,
we compute the products ρ(ua) for |u| = n and a ∈ A. At this stage, the
improvement can be applied : if u = bs and sa → r for some generator a ∈ A,
then ρ(ua) = ρ(br). If r = 1, then ρ(ua) = b. Otherwise, let r = tc , with
c ∈ A. Then t ≤ s by Proposition 2.1 and if t = s, then c < a. Thus if t = s,
ρ(ua) = ρ(uc) and the computation of ρ(uc) has been done, since c < a. Now if
t < s, then |t| ≤ |s| < |u| and thus the computation of ρ(bt) has been done and
furthermore ρ(bt) ≤ bt < bs = u. Therefore, the computation of ρ(ρ(bt)c) has
been done and ρ(ua) = ρ(ρ(bt)c).

Once all the products ρ(ua) are known for all words u of length n, a simple
observation leads to the computation of all ρ(au) for |u| = n. Indeed, if u = pb,
and a ∈ A, ρ(au) = ρ(tb), where t = ρ(ap). Since |t| ≤ |u|, the computation of
ρ(tb) has been done at this stage.

It is interesting to compute the precise number of calls to the procedure
procedure Product that computes the product of two elements in the universe
U .. Let R be the set of relations generated by the program.

Theorem 3.2 The number of calls to the procedure Product is equal to |M |+
|R| − |A| − 1.

Proof. First note that Product is only called during the computation of Γ(M, A).
Let u = bs. The calls to Product during the computation of ρ(ua) occur when
sa is reduced. Then, either ua is a new element, or a new rule ua → ρ(ua) is
produced. Now all rules and all elements of M (except for the identity and the
generators, which are given) are produced in this way. This gives the required
formula.

Another advantage of this algorithm will become apparent in the next sec-
tions. Indeed, the computation of Γ(M̃, A) is actually needed to calculate the

8

Green relations, the local subsemigroups and the syntactic quasi orders (see the
next sections).

A description of the data structure used to represent elements of M is in
order. For a non-empty word u, denote by f(u) (resp. `(u)) its first (resp.
last) letters and by p(u) (resp. s(u)) its prefix (resp. suffix) of length |u| − 1.
Each element u of M (recall that u is a reduced word of A∗) is represented by
a pointer on the following data:

(1) The value ν(u) (an element of U).

(2) The letters f(u) and `(u).

(3) The addresses of p(u) and s(u).

(4) The address Next of the successor of u, the minimal word of the set

{v ∈ A∗ | v is reduced and u < v}

(5) For each generator a ∈ A, the address of ρ(ua) and a flag to indicate
whether ua is reduced.

(6) For each generator a ∈ A, the address of ρ(au).

(7) The length of u.

Note that the word u itself is not stored in this data structure, but can
be easily retrieved, since we know its first letter and the address of its prefix
p(u). The |M | addresses are stored in a sufficiently large table T , of size at
least 10

9
|M |s, where s is the size of an address (in practice a size of 5|M |s

was used). Fast access is ensured through open addressing using a standard
double hashing technique [4, pp. 235–237]. Two hash functions h, h′ : U → N

are given. Let v ∈ U be an element to be searched in the table T . The slots
T [h(v)], T [h(v)+h′(v)], T [h(v)+2h′(v)], T [h(v)+3h′(v)], . . . are probed in this
order and their values are compared to v. The search terminates successfully if
the value v is found and terminates unsuccessfully if an empty slot is found. In
the latter case, v is stored in the empty slot.

This data structure also gives a representation of the Cayley graphs Γ(M, A)
and Γ(M̃, A). Indeed, the addresses of ρ(ua) and ρ(au) are stored for each
element u ∈ M and each generator a ∈ A.

The number of relations, the number of elements and the maximal length
of the reduced words are stored in global variables. Initially, all these variables
are set to 0. We now give the details of the algorithm.

Initialization. The data corresponding to the empty word 1 are filled. The
value ν(1) is the identity of U . The fields corresponding to f(u), `(u), p(u) and
s(u) are irrelevant. The successor of 1 is the letter a1. For each generator ai,
the value ν(ai) is computed. If ν(ai) = ν(aj) for some j < i, the generator ai is
eliminated, and the rule ai → aj is created. Similarly, if ν(ai) = 1, the identity
of U , the generator ai is eliminated, and the rule ai → 1 is created. Otherwise,
the value ν(ai) is stored, its address is given to the field ρ(ai) of 1 and the flag
is set to “reduced”. The fields f(ai), `(ai), p(ai), s(ai) and Next are also filled.
The variables giving the number of relations and the number of elements are
updated.

9

Without lost of generality, we may suppose that no generator has been elim-
inated during this initialization. Thus the list of elements is (1, a1, . . . , ak). The
pseudocode of the main loop is listed below. The variable u represents the cur-
rent word and v represents the minimal word of the current length.

1 let u := a1, v := u and Last := ak;
2 let CurrentLength := 1;
3 repeat

4 while Length(u) = CurrentLength (Computation of uai)
5 {
6 let b := f(u), s := s(u);
7 for i := 1 to k
8 {
9 if sai is not reduced
10 {
11 let r := ρ(sai); (note that r < sai)
12 if r = 1 (empty word)
13 ρ(uai) := b
14 else

15 ρ(uai) := ρ(ρ(bt)c) where c := `(r), t := p(r);
16 }
17 else

18 {
19 compute ν(uai) and search this value in the table;
20 if ν(uai) = ν(u′) for some u′ < uai, produce the rule uai → u′;
21 else

22 T [Last].Next := uai;
23 f(uai) := b; `(uai) := ai; p(uai) := u; s(uai) := s(u)ai;
24 Length(uai) = Length(u) + 1;
25 Last := uai;
26 }
27 }
28 u := T [u].Next;
29 }
30 u := v;
31 while Length(u) = CurrentLength (Computation of aiu)
32 {
33 let p := p(u);
34 for i := 1 to k
35 ρ(aiu) := ρ(ρ(aip)`(u));
36 u := T [u].Next;
37 }
38 v := u;
39 CurrentLength := CurrentLength + 1;
40 until u = Last;

Example 3.3 Let U the semigroup of 2× 2 matrices with entries in Z3 and let

10

A = {a, b}, where

a =

(

1 0
2 1

)

b =

(

1 1
0 2

)

The semigroup S generated by A contains 11 elements.

a =

(

1 0
2 1

)

b =

(

1 1
0 2

)

aa =

(

1 0
3 1

)

ab =

(

1 1
2 3

)

ba =

(

3 1
3 2

)

bb =

(

1 3
0 3

)

aab =

(

1 1
3 3

)

aba =

(

3 1
3 3

)

abb =

(

1 3
2 3

)

bab =

(

3 3
3 3

)

aabb =

(

1 3
3 3

)

Our algorithm produces the following rewriting rules

aaa → aa baa → ba bba → bab bbb → bb
aaba → aba abab → bab baba → bab babb → bab

Note that bab is a zero of S (it is easy to modify our algorithm to search for
a zero). Thus S = ({a, b} | aaa = aa, baa = ba, bba = 0, bbb = bb, aaba =
aba, abab = 0).

Compared to the first version, the advantage of this algorithm is to avoid a
number of computations inside the semigroup U .

4 Green relations

Green’s relations on a semigroup S are defined as follows [17, 25]. If s and t are
elements of S, we set

s L t if there exist x, y ∈ S1 such that s = xt and t = ys,
s R t if there exist x, y ∈ S1 such that s = tx and t = sy,
s J t if there exist x, y, u, v ∈ S1 such that s = xty and t = usv.
s H t if s R t and s L t.

For finite semigroups, there is a convenient representation of the corresponding
equivalence classes. The elements of a given R-class (resp. L-class) are repre-
sented in a row (resp. column). The intersection of an R-class and an L-class
is an H-class. Each J -class is a union of R-classes (and also of L-classes). It is
not obvious to see that this representation is consistent: it relies in particular
on the fact that, in finite semigroups, the relations R and L commute. The
presence of an idempotent in an H-class is indicated by a star. One can show
that each H-class containing an idempotent e is a subsemigroup of S, which is
in fact a group with identity e. Furthermore, all R-classes (resp. L-classes) of
a given J -class have the same number of elements.

∗
a1, a2

∗
a3, a4 a5, a6

b1, b2

∗
b3, b4

∗
b5, b6

A J -class.

11

In this figure, each row is an R-class and each column is an L-class. There are
6 H-classes and 4 idempotents. Each idempotent is the identity of a group of
order 2.
A J -class containing an idempotent is called regular. One can show that in a
regular J -class, every R-class and every L-class contains an idempotent.

The computation of the R-classes is fairly easy. It follows from the obser-
vation that the R-classes of a semigroup S generated by A are the strongly
connected components of the Cayley graph Γ(S, A). The L-classes can be com-
puted in a similar way from the graph Γ(S̃, A) corresponding to the left action
of A on S. This fact is actually used in AMORE to compute the non regular R-
classes. Since our algorithm computes the graphs Γ(S, A) and Γ(S̃, A), Tarjan’s
algorithm [37] can now be used to compute its strongly connected components.

5 Local subsemigroups

If e is an idempotent of a finite semigroup S, the set

eSe = {ese | s ∈ s}

is a subsemigroup of S, called the local subsemigroup associated with e. This
semigroup is in fact a monoid, since e is an identity in eSe. Local semigroups
play an important role in the classification of rational languages [26]. Their
computation is based on the following elementary lemma:

Lemma 5.1 For every idempotent e, eSe = eS ∩ Se.

Proof. The inclusion eSe ⊂ eS ∩ Se is clear. For the opposite inclusion, let
s ∈ eS ∩ Se. Then s = er = te for some r, t ∈ S. Therefore ese = e(er)e =
ere = tee = te = s and thus s ∈ eSe.

This gives a simple way to compute the local semigroup associated with e.
Indeed, eS (resp. Se) is simply the set of vertices reachable from e in the graph
Γ(S, A) (resp. Γ(S̃, A)). Again this computation can be achieved by standard
algorithms [4].

6 Syntactic quasi orders

Let P be a subset of a monoid M . The syntactic quasi-order of P is the quasi-
order ≤P on M defined by u ≤P v if and only if, for every x, y ∈ M ,

xvy ∈ P =⇒ xuy ∈ P

The associated congruence ∼P , defined by u ∼P v if and only if u ≤P v and
v ≤P u, is called the syntactic congruence of P . The quotient semigroup S(P) =
S/∼P is called the syntactic semigroup of P . See [27] for more details.

The computation of ≤P can be achieved as follows. Consider the graph G
whose vertices are the pairs (u, v) ∈ M × M and the edges are of the form
(ua, va) → (u, v) or (au, av) → (u, v), for some a ∈ A. This graph has |M |2

vertices and at most 2|A||M |2 edges. Observe that for every u, v ∈ M , u 6≤P v
if and only if there exist x, y ∈ M such that xuy /∈ P and xvy ∈ P . In other

12

words, u 6≤P v if and only if the vertex (u, v) is reachable in G from a vertex in
P̄ × P (where P̄ denotes the complement of P). Therefore, the computation of
≤P can be reduced to standard graph algorithms as follows:

(1) First compute the graph G. This is easy from the knowledge of Γ(S, A)
and Γ(S̃, A).

(2) Label each vertex (u, v) as follows:

(0, 1) if u /∈ P and v ∈ P

(1, 0) if u ∈ P and v /∈ P

(1, 1) otherwise

(3) Do a depth first search in G (starting from each vertex labeled by (0, 1))
and set to 0 the first component of the label of all visited vertices.

(4) Do a depth first search in G (starting from each vertex labeled by (0, 0)
or (1, 0)) and set to 0 the second component of the label of all visited
vertices.

(5) The label of each vertex now encodes the syntactic quasi-order of P in the
following way:

(1, 1) if u ∼P v

(1, 0) if u ≤P v

(0, 1) if v ≤P u

(0, 0) if u and v are incomparable

7 Experimental results

It is well-known that the monoid Tn is generated, for n ≥ 3, by the set A =
{a, b, c}, where a =

(

1 2 3 ... n−1 n

2 3 4 ... n 1

)

, b =
(

1 2 3 ... n−1 n

2 1 3 ... n−1 n

)

and c =
(

1 2 3 ... n−1 n

1 2 3 ... n−1 1

)

For 3 ≤ n ≤ 7, the following table gives the number of elements and the number
of relations defining Tn over A∗. The last line gives the number of calls to the
function Product

n 3 4 5 6 7
Number of elements 27 256 3125 46656 823543
Number of relations 13 83 751 7935 102592

Calls to Product 36 335 3872 54587 926131

In particular, although the multiplication table of T7 has 678223072849 entries,
less than one million calls to the procedure Product were actually used to com-
pute this monoid. Some performances on a PowerMac 7500/100 are given in
the next table:

Type Generators Elements Time
Upper-triangular boolean matrices of size 5 16 32768 3.73s
Unitriangular boolean matrices of size 6 16 32768 5.51s
T6 3 46656 1.21s
Symmetric group on 8 elements 2 40320 0.95s
Order preserving maps on {1..9} 10 48620 2.40s

13

The semigroup generated by the matrices
(

1 0

1 1

)

and
(

1 1

0 1

)

over Z/59Z (205320
elements) was computed in 8.95s. The computation required 29 megabytes of
memory.
The computation of T7 (823543 elements) required 110 megabytes of memory
on a Sun Sparc 10000.

8 Conclusion

We have given several algorithms to compute finite semigroups. Contrary to
most of the algorithms used in existing packages, our algorithms do not as-
sume that semigroups are given as transformation semigroups. Furthermore,
the number of calls to the procedure Product has been minimized.

9 Acknowledgements

We would like to thank warmly our colleagues of the university of São Paulo
Arnaldo Mandel, Alair Pereira Do Lago and Imre Simon, whose numerous sug-
gestions greatly improved our algorithms and programs. In particular, Arnaldo
Mandel gave the key suggestion that lead to Theorem 3.2.

References

[1] J. Almeida, Finite semigroups and universal algebra, Series in Algebra Vol
3, Word Scientific, Singapore, (1994).

[2] J. J. Cannon, Computing the ideal structure of finite semigroups, Numer.
Math. 18, (1971), 254–266.

[3] J.M. Champarnaud and G. Hansel, AUTOMATE, a computing package
for automata and finite semigroups, J. Symbolic Computation 12, (1991),
197–220.

[4] T. H. Cormen, C. E. Leiserson and R. L. Rivest, Introduction to Algo-
rithms, MIT Press and McGraw-Hill, (1990).

[5] G. Cousineau, J. F. Perrot and J. M. Rifflet, APL programs for direct
computation of a finite semigroup, APL Congres 73, Amsterdam, North
Holand Publishing Co., (1973), 67–74.

[6] G.E. Forsythe, SWAC computes 126 distinct semigroups of order 4, Proc.
Amer. Math. Soc. 6 (1955), 443–447.

[7] V. Froidure, Rangs des relations binaires et Semigroupes de relations non
ambigus, Thèse, Univ. Paris 6, France, (1995).

[8] V. Froidure, Ranks of binary relations, Semigroup Forum, to appear.

[9] P.A. Grillet, Computing finite commutative semigroups, Semigroup Forum,
53, (1996), 140–154.

14

[10] P.M. Higgins, Techniques of Semigroup Theory , Oxford Univ. Press,
(1992).

[11] J.M. Howie, An Introduction to Semigroup Theory , Academic Press, Lon-
don, (1976).

[12] H. Jürgensen, Computers in semigroups, Semigroup Forum, 15, (1977),
1–20.

[13] H. Jürgensen and P. Wick, Die Halbgruppen der Ordnungen ≤ 7, Semi-
group Forum, 14, (1977), 69–79.

[14] O.G. Kharlampovich and M.V. Sapir, Algorithmic problems on varieties,
International Journal of Algebra and Computation 5, (1995) 379–602.

[15] J. Konieczny, Semigroups of Binary Relations, Ph.D. Thesis, State Univ.
of Pennsylvania (1992).

[16] J. Konieczny, Green’s equivalences in finite semigroups of binary relations,
Semigroup Forum 48, (1994), 235–252.

[17] G. Lallement, Semigroups and Combinatorial Applications, John Wiley &
Sons, New York, (1979).

[18] G. Lallement and R. McFadden, On the determination of Green’s relations
in finite transformation semigroups, J. Symbolic Comput. 10, (1990), 481–
498.

[19] E. Lusk and R. McFadden, Using Automated Reasoning Tools; A study of
the Semigroup F2B2, Semigroup Forum 36, (1987), 75–87.

[20] M. Pelletier and J. Sakarovitch, Easy multiplications II. Extensions of Ra-
tional Semigroups, Information and Computation/ 88, (1990), 18–59.

[21] T.S. Motzkin and J.L. Selfridge, Semigroups of order five, Bull. Amer.
Math. Soc. 62, (1956), 14.

[22] J. F. Perrot, Contribution à l’étude des monöıdes syntactiques et de certains
groupes associés aux automates finis, Thèse de doctorat, Univ. de Paris,
France, (1972).

[23] R. J. Plemmons, Cayley tables for all semigroups of order ≤ 6, Auburn
Univ., (1966).

[24] R. J. Plemmons and M. T. West, On the semigroup of binary relations,
Pacific Jour. of Math. 35, (1970), 743–753.

[25] J.-E. Pin, Variétés de langages formels, Masson, Paris, (1984). English
translation: Varieties of formal languages, Plenum, New-York, (1986).

[26] J.-E. Pin, Finite semigroups and recognizable languages : an introduction,
in NATO Advanced Study Institute Semigroups, Formal Languages and
Groups, J. Fountain (ed.), Kluwer academic publishers, (1995), 1–32.

15

[27] J.-E. Pin, A variety theorem without complementation, Izvestiya VUZ
Matematika 39, (1995), 80–90. English version, Russian Mathem. (Iz. VUZ)
39, (1995), 74–83.

[28] J. Sakarovitch, Description des monöıdes de type fini, Elektronische Infor-
mationsverarbeitung und Kybernetik EIK 17 (1981), 417–434.

[29] J. Sakarovitch, Easy multiplications I. The Realm of Kleene’s Theorem,
Information and Computation/ 74, (1987), 173–197.

[30] S. Sato, K. Yama and M. Tokizawa, Semigroups of order 8, Semigroup
Forum 49, (1994), 7–29.

[31] I. Simon, On semigroups of matrices over the tropical semiring, Informa-
tique Théorique et Applications 28, (1994), 277–294.

[32] H. Straubing, The Burnside problem for semigroups of matrices, in Combi-
natorics on Words, Progress and Perspectives, L.J. Cummings (ed.), Acad.
Press, (1983), 279–295.

[33] K. Sutner, Finite State Machines and Syntactic Semigroups, The Mathe-
matica Journal 2, (1991), 78–87.

[34] T. Tamura, Some remarks on semigroups and all types of order 2, 3, J.
Gakugei Tokushima Univ. 3, (1953), 1–11.

[35] T. Tamura, Notes on finite semigroups and determination of semigroups of
order 4, J. Gakugei Tokushima Univ. 5, (1954), 17–27.

[36] K. Tetsuya, T. Hashimoto, T. Akazawa, R. Shibata, T. Inui and T. Tamura,
All semigroups of order 5, J. Gakugei Tokushima Univ. 6, (1955), 19–39
and Erratum.

[37] R. E. Tarjan, Depth first search and linear graph algorithms, SIAM Journal
of Computing 1 (1972) 146–160.

16

