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Abstract : In this paper we present a simple algorithm for the state
estimation of stochastic singular linear systems based on the least squares
method.

1. Introduction
The analysis and design of linear singular systems have received great

attention in the last few years as can be seen in the survey of Lewis (1986),
and also in Verghese et al. (1981) and Cobb (1984). The control of these
systems requires, as in the standard case, the knowledge of the state vector.
In the deterministic case one can use the observer theory to estimate the
state vector (El-Tohami et al. (1987), Fahmy and O'Reilly (1989)).
Unfortunately, in the stochastic case there are few works which treat the
problem of control (Bender and Laub (1987 a, b)) and estimation (Dai
(1989a)). The state estimation problem is considered under the assumption
of regularity [det(sE - A) ≠  0] and causality where matrices E and A are

square and singular.
In a recent paper (Darouach and Zasadzinski (1990)), an extension to the

deterministic system with uncertain measurements, where matrices E and A
are rectangular, was presented. In this paper we shall consider a
generalization to the stochastic systems case.

The paper is organized as follows. First the concept of estimability is
introduced and the uniqueness conditions of problem solution are given in
section 2. Then in section 3 an algorithm for the state estimation is derived
from the least squares method. A numerical example is used to illustrate
this algorithm. Section 4 contains conclusion and remarks.
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2. Formulation of the problem
Let us consider the discrete singular linear stochastic system described

b y  :

E xk+1 = A xk + wk ( 1 )
zk = H xk + vk ( 2 )

where xk  is the n-dimensional state vector and zk  is the m-dimensional

output vector. E and A are pxn constant matrices and H is an mxn constant
matrix. wk  and vk  are px1 and mx1 vectors of zero mean white sequences

which covariance matrices are given by :

E{wkw
T
i } = 

 

 W  >  0 i f  i  =  k
0 i f  i  ≠  k

E{vkv
T
i } = 

 

 V  >  0 i f  i  =  k
0 i f  i  ≠  k

E{wkv
T
i } = 0 for all k and i.

When E and A are square matrices (p = n), it is well known (Dai (1989b))
that the knowledge of the structure, especially the observability and
controllability properties, is important in estimation and in optimal control.
In this contribution, we introduce the notion of estimability in the general
case where p may be different from n.

Definition :
System (1)-(2) is said to be estimable if for wk  = vk  = 0 and for some

N > 0, the knowledge of output zk  where k ∈  [0, N] and model equation (1)
is sufficient to determine uniquely xk (k ∈  [0, N]). ❑

System (1)-(2) can be written as follows :

ΦN 

 




 




x0
:
:

xN

 = 

 




 




0
:
0
z0
:

zN

( 3 )

where

ΦN = 

 




 


-A E 0 . . 0 0

: : : :: : :
0 0 0 . . -A E
H 0 0 . . 0 0
: : : :: : :

0 0 0 . . 0 H
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System (1)-(2) is estimable if and only if Φ N has a full column rank.

Our aim is to find the estimate of xk , denoted x^
k / k , based on the

observations z over the time interval [0, k].

If the initial state x0 is assumed to be gaussian with known mean x
_

0, and
variance P0 > 0, independent of vk  and wk , the problem in the least squares

sense can be formulated :

m i n
x̂ i /k

 Jk  = 
1
2 (||x̂0/k - x

_
0||

2

P
- 1
0

 + ∑
i=0

k - 1(||zi+1 - Hx̂i+1/k||
2

V -1 + ||Ex̂i+1/k - Ax̂i /k ||
2

W -1) ) ( 4 )

The following theorem gives the conditions of the estimability and the
uniqueness of the solution of the problem (4).

Theorem 1 :
System (1)-(2) is estimable, given the initial state x0, and problem (4) has

a unique solution if and only if matrices  


 
sE  -  A

H  and  


 
E

H  , where s is a

complex variable, are of full column rank. ❑

Proof :
From equation (3), the estimability condition is given by

rank(Φ N ) = (N+1) n ( 5 )

Now assume that

 


 
sE  -  A

H  or  


 
E

H ( 6 )

is not a full column rank matrix, this is equivalent to the existence of a
column vector q ≠  0 such  that

 


 
sE  -  A

H  q = 0 ( 7 )

o r

rank 


 


 


 
E

H  < n ( 8 )

where s is a complex variable and q is a finite polynomial vector in variable
s given by

q(s) = q0 + s q1 + s2 x2 + .... + sk qk ( 9 )

where k is the minimal index such that qk  ≠ 0 (Gantmacher (1959)).

Substituting (9) into (7) gives
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Tk 

 




 


qk

qk - 1
:

q0

 = 0 ( 1 0 )

where

Tk = 

 





 



E 0 . . 0 0

-A E. . 0 0
: : :: : :

0 0 . . -A E
H 0 . . 0 0
: : :: : :

0 0 . . 0 H

( 1 1 )

is a pmkx(n+1k matrix. Equation (10) is equivalent to matrix Tk  is not of full

column rank. Now from (3) and (11), we can write

ΦN = 

 







 







-A
0
:
:

0
H
0
:
:

0

TN-2

0
:
:
0
E
0
:
:
0
H

( 1 2 )

and from (12) and the assumption (6), we can see that Φ N  is not a full

column rank matrix, thus system (1)-(2) is not estimable, which proves the
theorem. ❑

Theorem 2 :
System (1)-(2) is estimable, given the initial state x0, and problem (4) has

unique solution if and only if the matrix

 


 
E

H ( 1 3 )

is of full column rank. ❑

Proof :
If x0 is known, (3) becomes
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Φ 'N 

 




 




x1
:
:

xN

 = 

 





 





Ax0
0
:
0
z0
:

zN

( 1 4 )

where

Φ 'N = 

 





 



E 0 . . 0 0

-A E. . 0 0
: : :: : :

0 0 . . -A E
H 0 . . 0 0
: : :: : :

0 0 . . 0 H

( 1 5 )

which can be written as

Φ 'N = U 

 





 



E 0 0 . . 0

H 0 0 . . 0
-A E 0 . . 0
0 -A E . . 0
: :: :: :: :

0 . . 0 -A E
0 . . . . 0 H

( 1 6 )

where U is a row permutation matrix.
From the echelon form (16) we can easily deduce that condition (13) is

necessary and sufficient for the matrix Φ 'N  to be of full column rank. ❑

3. Problem solution
The solution to problem (4) is given by the following theorem.

Theorem 3 :

If matrices  


 
sE  -  A

H  and  


 
E

H  are of full column rank, then estimate x^
k / k

that minimizes criterion Jk  is

x̂k/k = Pk/k E
T (W + A Pk-1/k-1 AT)-1 A x̂k-1/k-1 + Pk/k HT  V-1 zk ( 1 7 )

where
Pk/k = (ET (W + A Pk-1/k-1 AT)-1 E + HT V-1 H)-1 ( 1 8 )

with P0/0 = P0 and x̂0/0 = x
_

0. ❑
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Proof :
Differentiating the cost function (4) with respect to x^

i /k  and equating it

to zero, yields a two-point boundary-value problem :

D1 x̂0/k = P0 x
_

0
- C x̂i-1/k + D  x̂i/k  - CT x̂i+1/k = HT V-1 zi
- C x̂k-1/k + Df  x̂k/k = HT  V-1 zk ( 1 9 )

where

D1 = P
-1
0  + AT W-1 A

D = ET W-1 E + HT V-1 H + AT W-1 A
Df = ET W-1 E + HT V-1 H

a n d
C = ET W-1 A ( 2 0 )

From equations (19), after a few manipulations, we obtain the following
recursive equation for x^

k / k  :

x̂k/k = (Df-CKk-1CT)-1CKk-1(Df-CKk-2CT) x̂k-1/k-1 + (Df-CKk-1CT)-1HTV -1zk ( 2 1 )

where
Kk = (D - C Kk-1 C

T)-1 ( 2 2 )

a n d

K
-1
0  = P

-1
0  + AT W-1 A ( 2 3 )

If we define the estimation error εk  by :

εk = xk - x̂k / k

its covariance matrix Pk/k is :

Pk/k = E(εk εT
k ) ( 2 4 )

From equations (21), (23) and definition (24), we obtain after a few
manipulations :

P1/1 = (Df - C K0 C
T)-1 = (K

-1
1  - AT W-1 A)-1

a n d

K
-1
1  = P

-1
1/1 + AT W-1 A

Now if we suppose that :

K
-1
k  = P

-1
k/k + AT W-1 A ( 2 5 )
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from relations (21), (24) and (25), it can be shown that :

Pk+1/k+1 = (Df - C Kk C
T)-1 ( 2 6 )

a n d

K
-1
k+1 = P

-1
k+1/k+1 + AT W-1 A ( 2 7 )

Substituting (22) and (26) into (21) gives (17). (18) can be obtained
from (25) and (26).

Equation (18) represents a generalized Riccati difference equation.❑

Numerical example :
As an example, we consider the singular discrete-time system described

by the following equations :

E xk+1 = A xk + B uk + wk
zk = H xk + vk

where

E = 
 



 

1 1 1 0

2 0 - 1 0
0 1 0 1

, A = 
 



 

1 1 0 0 .59

0 - 1 0 0 .50
1 0 1 0 .09

, B = 
 



 

1 1

2 0
1 2

 and H = 
 



 

1 0 0 1

0 1 -0.5 0
0 0 0 1

The vectors xk , zk , wk  and vk  have the same definition as in equations  (1)
and (2) (n=4, m=3 and p=3). uk  is the q-dimensional input vector (q=2).

The variance matrices of x
_

0, wk and vk are :

P0 = 

 



 

0 . 6 0 0 0

0 0 . 2 0 0
0 0 0 . 5 0
0 0 0 0 . 7

, W = 
 



 

0 . 6 0 0

0 0 . 8 0
0 0 0 . 7

 and V = 
 



 

0 . 3 0 0

0 0 . 3 0
0 0 0 . 6

The estimability conditions of theorem 1 are verified.
Inputs and outputs are plotted in figures 1 and 2. The true and estimated

values of the state vector are shown in figures 3 to 6. The evolution of the
norm ||Pk/k|| (the largest singular value) is plotted in figure 7.

4 . C o n c l u s i o n
By using the notion of estimability for the general discrete-time singular

systems (E xk + 1  = A xk ), where matrices E and A are constant, not

necessarily square, and by applying the least squares estimation method, we
have established a simple algorithm for the state estimation of stochastic
singular linear systems. A numerical example has been presented to
illustrate the algorithm. The evolution of the norm ||Pk/k || was plotted. The
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sequence Pk / k  is the solution of a generalized Riccati equation. The

convergence conditions of this sequence are under study.
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figure 1 : inputs ( : u1, ----- : u2)
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figure 2 : outputs (  : z1, ----- : z2, ...... : z3)
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figure 3 : true and estimated values of x1 (  : true values x1, ----- : x̂1 ,k / k)
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figure 4 : true and estimated values of x2 (  : true values x2, ----- : x̂2 ,k / k)
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figure 5 : true and estimated values of x3 (  : true values x3, ----- : x̂3 ,k / k)

-14

-12

-10

-8

-6

-4

-2

0

2

4

0 5 10 15 20 25 30 35 40 45 50

time

figure 6 : true and estimated values of x4 (  : true values x4, ----- : x̂4 ,k / k)
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figure 7 : evolution of the norm ||Σ k
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