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Languages recognized by finite

supersoluble groups

Olivier Carton∗ Jean-Eric Pin∗ Xaro Soler-Escrivà†

April 1, 2007

Abstract

In this paper, we give two descriptions of the languages recognized by

finite supersoluble groups. We first show that such a language belongs

to the Boolean algebra generated by the modular products of elementary

commutative languages. An elementary commutative language is defined

by a condition specifying the number of occurrences of each letter in its

words, modulo some fixed integer. Our second characterization makes use

of counting functions computed by transducers in strict triangular form.

Eilenberg’s variety theorem [4] is a powerful tool for classifying regular lan-
guages. It states that, given a variety of finite monoids V, the class of languages
V whose syntactic monoid belongs to V is a variety of languages, that is, a class
of regular languages closed under finite union, complement, left and right quo-
tients and inverse of morphisms. Further, the correspondence V → V between
varieties of finite monoids and varieties of languages is one-to-one and onto.

Eilenberg’s theorem can be used in both ways: given a variety of languages,
one can look for the corresponding variety of monoids, or, given a variety of
monoids, one can seek for a combinatorial description of the corresponding
variety of languages. Examples abund in the literature: for instance, aperi-
odic monoids correspond to star-free languages, J -trivial languages to piecewise
testable languages, etc. We refer the reader to [5] for a survey.

It is therefore natural to ask for a nice characterization of the variety of
languages corresponding to the variety of groups. The answer to this frequently
asked question is unfortunately negative: there is no known satisfactory answer
to this question. The reason is hidden in the complexity of finite groups since
a solution would probably require a description of the languages recognized by
each finite simple group . . .

However, solutions are known for some important subvarieties: commutative
groups [4], p-groups [4, 10, 11], nilpotent groups [4, 9] and soluble groups [7, 11].
The aim of this paper is to complete these results by giving a description of the
languages corresponding to the variety of supersoluble groups.
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05, France.
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We first proceed in Section 1 to an algebraic study of the variety of super-
soluble groups. Most of the results of this section were actually known before,
but we try to present them in a selfcontained way that suits our needs for the
next sections. We show in particular that the variety of supersoluble groups is
generated by the Borel groups Bn(Fp) for all n > 0 and all primes p.

In Section 2, we first state, in a slightly improved version, the description of
the languages recognized by commutative groups. In this new version, these lan-
guages are described as a disjoint union of “elementary languages”, which have
a simple combinatorial description. We also define the modular concatenation
product, an operation on languages first introduced by Straubing [7].

Our main result (Corollary 2.10) states that the languages recognized by su-
persoluble groups can be obtained in two steps: first take the modular products
of elementary languages and then take the Boolean algebra generated by these
languages.

In the last part of the paper, we give another characterization of the lan-
guages recognized by supersoluble groups, which relies on the following idea.
Given a function τ from words to numbers and an integer r, consider the lan-
guage of all words u such that τ(u) = r. One can say that this language is defined
by counting modulo τ . This leads to the idea of describing regular languages
by suitable counting functions. It turns out that this idea is very successful for
describing group languages: for instance, languages of commutative groups can
be described by counting letters and languages of p-groups can be described
by counting subwords. Our second description of the languages recognized by
supersoluble groups (Corollary 2.12) makes use of counting functions computed
by transducers in strict triangular form (the precise definition can be found
in Section 2.4). It would be nice to have a simple combinatorial description of
these transducers, but there is unfortunately no evidence that such a description
exists.

1 The variety of supersoluble groups

Throughout this paper, the term variety will be used to mean a class of finite
groups (or monoids) closed under finite direct products, subgroups (submonoids)
and morphic images.

The collection of all varieties of groups forms a complete lattice under in-
clusion. The join

∨

Hi of a family (Hi)i∈I of varieties of groups, consists of all
groups which are quotients of subgroups of direct products H1 × · · · × Hn with
Hk ∈ Hik

, for some ik ∈ I. If U and V are two varieties of groups, the product
variety U ∗ V consists of all groups G having a normal subgroup U ∈ U such
that G/U ∈ V.

For a prime p, Gp denotes the variety of all p-groups. For any positive

integer d, Abd denotes the variety of all abelian groups of exponent dividing d.
A group G is supersoluble if it has a normal series with cyclic factors. The class
of all finite supersoluble groups form a variety of groups.

The following decomposition of this variety of groups was given in [2].

Proposition 1.1 The variety of finite supersoluble groups is the join
∨

p prime

(

Gp ∗ Abp−1
)

,
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As shown in [1], the variety Gp ∗ Abp−1 is defined by the identities

(xp−1yp−1)pω

= 1 and (xω−1yω−1xy)pω

= 1

There is another interesting characterization of this variety. For any commu-
tative ring K, let us denote by Mn(K) be the monoid of n × n matrices with
entries in k and by Tn(K) the submonoid of upper triangular matrices. We
also denote by GLn(K) (respectively Bn(K)) the group of invertible matrices
of Mn(K) (respectively Tn(K)). The group Bn(K) is known as the Borel sub-
group of GLn(K). Finally, we denote by UTn(K) the group of unitriangular
matrices of GLn(K) (upper triangular matrices with ones on the diagonal) and
by Fp = Z/pZ the field with p elements.

Theorem 1.2 A group belongs to the variety Gp ∗ Abp−1 if and only if it is
isomorphic to a subgroup of Bn(Fp) for some n > 0.

Proof. Let G be a group of order n of Gp∗Ab
p−1. As any finite group, G can be

faithfully represented as a subgroup of GLn(Fp). Now, it follows from [1, Prop.
3.6] that if a subgroup of Mn(Fp) belongs to Gp ∗ Abp−1, then it is conjugate
to a subgroup of Tn(Fp). This means there exists an element g ∈ GLn(Fp)
such that the group gGg−1 is a subgroup of Tn(Fp). One needs to be careful
when using this result since in [1], the notion of subgroup is taken in the sense
of semigroup theory: the identity of the group is an idempotent which is not
necessarily the identity matrix. However, if G is a subgroup of GLn(Fp), then
so is gGg−1 and thus G is isomorphic to a subgroup of Bn(Fp).

It remains to prove that the group Bn(Fp) itself belongs to Gp ∗Abp−1. Let
π the morphism which maps a matrix of Bn(Fp) onto its diagonal. The range
of this morphism is the group (F∗

p)
n, which belongs to Abp−1, and its kernel

is UTn(Fp), which is well-known to be a p-group. Therefore Bn(Fp) belongs to
Gp ∗ Abp−1.

Corollary 1.3 The variety of supersoluble groups is generated by the Borel
groups Bn(Fp) for all n > 0 and all primes p.

2 Languages

We shall denote by Up the variety of languages associated with the variety of
groups Gp∗Abp−1 and by U the variety of languages associated with the variety
of supersoluble groups. Proposition 1.1 shows that U is the join of the varieties
of languages Up, for any prime p. These varieties of languages will be described
in Section 2.3. Before that, we need a precise description of the varieties of
languages corresponding to Abn and to Gp.

2.1 Languages recognized by Abelian groups

A description of the variety of languages Abn associated with Abn was given
in [4]. It relies on the fact that this variety is generated by the cyclic groups of
order n.
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Proposition 2.1 For each alphabet A, Abn(A∗) is the Boolean algebra gener-
ated by the languages of the form

F (a, k, n) = {u ∈ A∗ | |u|a ≡ k mod n} = ((B∗a)n)∗(B∗a)kB∗,

where a ∈ A, B = A \ {a} and 0 6 k < n.

We shall need an improved version of this result, which avoids using com-
plementation. Let A = {a1, . . . , as} be an alphabet. Let us call n-elementary
commutative a language of the form

F (r1, . . . , rs, n) = {u ∈ A∗ | |u|a1
≡ r1, . . . , |u|as

≡ rs mod n}

where r1, . . . , rs ∈ {0, . . . , n − 1}. Thus, with the notation of Proposition 2.1,

F (r1, . . . , rs, n) = F (a1, r1, n) ∩ . . . ∩ F (as, rs, n)

Proposition 2.2 A language is recognized by a group in Ab
n if and only if it

is a disjoint union of n-elementary commutative languages.

Proof. Let A = {a1, . . . , as}, let G be a group in Ab
n and let ϕ : A∗ → G be

a morphism. If L is recognized by ϕ, then L = ϕ−1(P ) for some subset P of G.
Put ϕ(a1) = g1, . . . , ϕ(as) = gs. Let u ∈ A∗ and, for 1 6 i 6 s, let |u|ai

≡ ri

mod n. Adopting an additive notation for G, we get

ϕ(u) =
∑

16i6s

|u|ai
gi =

∑

16i6s

rigi

Therefore u ∈ L if and only if
∑

16i6s rigi ∈ P and hence

L =
⋃

(r1,...,rs)∈E

F (r1, . . . , rs, n)

where E = {(r1, . . . , rs) |
∑

16i6s rigi ∈ P}. This concludes the proof, since the
languages F (r1, . . . , rs, n) are clearly pairwise disjoint.

2.2 Languages recognized by p-groups

A few auxiliary definitions are required to describe the variety of languages Gp

associated with Gp, for a given prime p.
A word u = a1a2 · · ·an (where a1, . . . , an are letters) is a subword of a word

v if v can be factored as v = v0a1v1 · · · anvn. For instance, ab is a subword of
cacbc. Given two words u and v, we denote by

(

v
u

)

the number of distinct ways
to write u as a subword of v.

More formally, if u = a1a2 · · ·an, then

(

v

u

)

= Card{(v0, v1, . . . , vn) | v0a1v1 · · ·anvn = v}

Observe that if u is a letter a, then
(

v
a

)

is simply the number of occurrences of
the letter a in v, also denoted by |v|a.

The following result is credited to Eilenberg and Schützenberger in [4].
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Proposition 2.3 A language of A∗ is recognized by a p-group if and only if it
is a Boolean combination of the languages

S(u, r, p) = {v ∈ A∗ |

(

v

u

)

≡ r mod p},

for 0 6 r < p and u ∈ A∗.

Another characterization, given in [10, 11], relies on a variation of the con-
catenation product, called the modular concatenation product and first intro-
duced in [7]. Let L0, . . . , Lk be languages of A∗, let a1, . . . , ak be letters of A
and let r and p be integers such that 0 6 r < p. We define (L0a1L1 · · · akLk)r,p

as the set of all words u in A∗ such that the number of factorizations of u in
the form u = u0a1u1 · · · akuk, with ui ∈ Li for 0 6 i 6 k, is congruent to r
modulo p.

Proposition 2.4 A language of A∗ is recognized by a p-group if and only if it
is a Boolean combination of languages of the form (A∗a1A

∗ · · · akA∗)r,p, where
0 6 r < p, k > 0 and a1, . . . , ak ∈ A.

Contrary to the concatenation product, the modular concatenation product
does not distribute over union. For instance, if A = {a, b},

({b}a{1, ba})1,2 = {ba, baba}, ({bab}a{1, ba})1,2 = {baba, bababa}

but ({b, bab}a{1, ba})1,2 = {ba, babab}

since baba = (b)a(ba) = (bab)a(1). However, a weaker property holds.

Proposition 2.5 Let L0, . . . , Lk be languages of A∗ and let i ∈ {0, . . . , k}.
Suppose that Li is the disjoint union of the languages Li,1, . . . , Li,ℓ. Then each
modular product (L0a1L1 · · ·akLk)r,p is a union of intersections of languages
of the form (L0a1L1 · · ·Li−1aiLi,jai+1Li+1 · · · akLk)s,p, with 1 6 j 6 ℓ and
0 6 s < p.

Proof. We claim that (L0a1L1 · · · akLk)r,p is equal to

⋃

r1+...+rℓ≡r mod p
06r1,...,rℓ<p

⋂

16j6l

(L0a1L1 · · ·Li−1aiLi,jai+1Li+1 · · · akLk)rj ,p

For a given word u, consider the set F (u) of all k-uples (u0, u1, . . . , uk) such that
u = u0a1u1 · · · akuk, with u0 ∈ L0, . . . , uk ∈ Lk. The set F (u) is the disjoint
union of the sets Fj(u) defined by

Fj(u) = {(u0, u1, . . . , uk) ∈ F (u) | ui ∈ Li,j}

It follows that |F (u)| =
∑

16j6ℓ |Fj(u)| and hence |F (u)| ≡ r mod p if and
only if there exist r1, . . . , rℓ such that r1 + . . .+ rℓ ≡ r and |F1(u)| ≡ r1 mod p,
. . . , |Fℓ(u)| ≡ rℓ mod p. This proves the claim and the proposition.

Coming back to the previous example, one has

({b}a{1, ba})0,2 = A∗ \ {ba, baba}, ({bab}a{1, ba})0,2 = A∗ \ {baba, bababa}
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Therefore

({b}a{1, ba})0,2 ∩ ({bab}a{1, ba})1,2 = {bababa}

({b}a{1, ba})1,2 ∩ ({bab}a{1, ba})0,2 = {ba}

and the union of these two languages is exactly ({b, bab}a{1, ba})1,2.

2.3 Languages recognized by supersoluble groups

We shall need two auxiliary tools to characterize the languages of Up. The
first one is an operation on groups introduced in [10, 11] to study the modular
concatenation product.

Let G1, . . . , Gr be groups. Denote by K = Fp[G1 × · · · × Gr] the group
algebra of G1 × · · · × Gr over Fp. The Schützenberger product over Fp of the
groups G1, . . . , Gr, denoted by Fp♦(G1, . . . , Gr), is the subgroup of GLr(K)
made up of matrices m = (mi,j) such that

(1) mi,j = 0, for i > j,

(2) mi,i = (1, . . . , 1, gi, 1, . . . , 1) for some gi ∈ Gi,

(3) mi,j ∈ Fp[1 × · · · × 1 × Gi × · · · × Gj × 1 × · · · × 1], for i < j.

The following result was first proved in [10, 11].

Proposition 2.6 Let, for 0 6 i 6 k, Li be a language of A∗ recognized by a
group Gi. Then the language (L0a1L1 · · · akLk)r,p is recognized by the group
Fp♦(G0, . . . , Gk).

Our second tool, the sequential transducer of a morphism, is required to
characterize the languages recognized by the wreath product of two monoids.

Let G be a group and let ϕ : A∗ → G be a monoid morphism. Set BG =
G×A. The sequential function associated with ϕ is the function σϕ : A∗ → B∗

G

defined by

σϕ(a1a2 · · · an) = (1, a1)(ϕ(a1), a2) · · · (ϕ(a1 · · · an−1), an)

Straubing’s wreath product principle [7, 8, 6] leads immediately to the following
result.

Proposition 2.7 For every alphabet A, Up(A
∗) is the smallest Boolean algebra

containing Abp−1(A∗) and the languages of the form σ−1
ϕ (V ), where σϕ is the

sequential function associated with a morphism ϕ : A∗ → G, with G ∈ Abp−1,
and V is a language of B∗

G recognized by a p-group.

We are now ready to state our main theorem, which gives a more explicit
form of the languages of Up.

Theorem 2.8 Let L be a language of A∗. The following conditions are equiv-
alent:

(1) L is recognized by a group in Gp ∗ Abp−1,

(2) L is a Boolean combination of languages of the form (L0a1L1 · · ·akLk)r,p,
where each Li is a (p − 1)-elementary commutative language,
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(3) L is a Boolean combination of languages of the form (L0a1L1 · · ·akLk)r,p,
where each Li is a Boolean combination of (p−1)-elementary commutative
languages.

Proof. (2) implies (3) is trivial.
(3) implies (1). By Proposition 2.1, any Boolean combination of (p − 1)-

elementary commutative languages is recognized by a group in Abp−1. Fur-
ther, Proposition 2.6 shows that, if each language Li is recognized by a group
Gi, then the language (L0a1L1 · · ·akLk)r,p is recognized by the group G =
Fp♦(G0, . . . , Gk). Consequently, it just remains to showing that if the groups Gi

are all in Abp−1, then G is an element of Gp∗Abp−1. Let π : G → G0×· · ·×Gk

be the surjective morphism which maps each matrix onto the product of its diag-
onal elements. Thus if m ∈ G, π(m) = m0,0 · · ·mk,k. We claim that Ker(π) is a
p-group. Indeed, if m belongs to Ker(π), then mi,j = 0 if i > j, mi,i = (1, . . . , 1)
for i = 0, . . . , k and mi,j ∈ Fp[1×· · ·×1×Gi×· · ·×Gj×1×· · ·×1], for i < j. No-
tice that, for i < j, the (i, j)-th entry of m can be written as

∑

h∈Gi×···×Gj
αhh

for some αh ∈ Fp. Since there are exactly p|Gi|···|Gj| elements of this form, the
order of Ker(π) is a power of p (more precisely,

∏

i<j p|Gi|···|Gj|) and Ker(π) is

a p-group. Therefore, G ∈ Gp ∗ Ab
p−1.

(1) implies (2). With the notation of Proposition 2.7, it suffices to show that
the languages of Abp−1(A∗) and the languages σ−1

ϕ (V ) are of the form described
in (2). For the languages of Abp−1(A∗), this follows directly from Proposition
2.1. Consider now a language σ−1

ϕ (V ), where σϕ is the sequential function

associated with a morphism ϕ : A∗ → G, with G ∈ Abp−1, and V is a language
of B∗

G recognized by a p-group. Since σ−1
ϕ commutes with Boolean operations,

we may assume by Proposition 2.3, that V = S(u, r, p) with 0 6 r < p and
u ∈ B∗

G. Since BG = G × A, u is a word of the form (g1, c1) · · · (gk, ck), where
g1, . . . , gk ∈ G and c1, . . . , ck ∈ A. Thus V is the set of words v ∈ B∗

G such that

Card {(v0, v1, . . . , vk) | v0(g1, c1)v1 · · · vk−1(gk, ck)vk = v} ≡ r mod p

Let us now compute σ−1
ϕ (V ). If u = a1 · · · an, then

σϕ(a1 · · · an) = (1, a1)(ϕ(a1), a2) · · · (ϕ(a1 · · ·an−1), an)

Therefore u belongs to σ−1
ϕ (V ) if and only if it belongs to

(

ϕ−1(h1)c1ϕ
−1(h2)c2 · · ·ϕ−1(hk)ckA∗

)

r,p

where h1 = g1, h2 = (g1ϕ(c1))
−1

g2, . . . , hk = (gk−1ϕ(ck−1))
−1gk. Since G is

in Abp−1, the languages ϕ−1(h1), . . . ϕ
−1(hk) are, by Proposition 2.2, a dis-

joint union of (p − 1)-elementary commutative languages. To conclude the
proof, it remains to use Proposition 2.5 to “distribute” the modular product
(L0a1L1 · · ·akLk)r,p over this disjoint union.

We can now formulate our result in terms of varieties of languages.

Corollary 2.9 For every alphabet A, Up(A
∗) is the Boolean algebra generated

by the languages of the form (L0a1L1 · · · akLk)r,p, where each Li is a (p − 1)-
elementary commutative language of A∗.
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Corollary 2.10 For every alphabet A, U(A∗) is the Boolean algebra generated
by the languages of the form (L0a1L1 · · · akLk)r,p, where each Li is a (p − 1)-
elementary commutative language of A∗, for any prime p.

2.4 Transducers and languages recognized by supersoluble

groups

We now give another description of the variety of languages associated with the
variety of supersoluble groups.

A transducer with output in Fp is a 5-tuple T = (Q, A, I, F, E) where Q is
a finite set of states, A is the input alphabet, I ⊆ Q is the set of initial and
F ⊆ Q the set of final states. The set of transitions E is a finite subset of
Q × A × F

∗
p × Q. Intuitively, a transition (p, a, r, q) is interpreted as follows: if

a is an input letter, the automaton moves from state p to state q and produces
the output r.

It is convenient to represent a transition (p, a, r, q) as an edge p
a|r
−→ q. Initial

(resp. final) outputs are represented by incoming (resp. outgoing) arrows. A
successful path is a sequence of consecutive transitions:

q0
a1|r1

−→ q1
a2|r2

−→ q2 · · · qn−1
an|rn
−→ qn

starting in some initial state and ending in some final state. The label of the
path is the word a1a2 · · · an. Its output is the product r1r2 · · · rn. The function
realized by T maps each word u of A∗ onto the sum of the outputs of all successful
paths of label u.

1 2 3
a| − 1 b|2

a|1

a|2, b|1 a|1, b|2 a| − 1, b|2

Figure 2.1: A transducer with output in F5.

For instance, if τ is the transduction realised by the transducer of Figure 2.1,
there are five successful paths of input label abab.

(1) 1
a|2
−→ 1

b|1
−→ 1

a|−1
−→ 2

b|2
−→ 3 (2) 1

a|2
−→ 1

b|1
−→ 1

a|1
−→ 3

b|2
−→ 3

(3) 1
a|−1
−→ 2

b|2
−→ 2

a|1
−→ 2

b|2
−→ 3 (4) 1

a|−1
−→ 2

b|2
−→ 3

a|−1
−→ 3

b|2
−→ 3

(5) 1
a|1
−→ 3

b|2
−→ 3

a|−1
−→ 3

b|2
−→ 3

The output of the first path is 2 × 1 × (−1) × 2 = 1 mod 5, the output of
the other paths are respectively −1, 1, −1 and 1. It follows that τ(abab) =
1 − 1 + 1 − 1 + 1 = 1.

A transducer is in strict triangular form if Q = {1, . . . , n}, 1 is the unique
initial state, n is the unique final state, and its transitions satisfy the two fol-
lowing conditions:
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(1) there is no transition from p to q such that p > q,

(2) for p < q and for each letter a ∈ A, there is at most one transition from p
to q with label a,

(3) for each letter a ∈ A and every state q ∈ Q there is exactly one transition

of the form q
a|r
−→ q, for some r ∈ F

∗
p.

For instance, the transducer in Figure 2.1 is in strict triangular form. To each
such transducer is associated a morphism µ : A∗ → Bn(Fp), called its linear
representation, and defined as follows. For each letter a ∈ A,

µ(a)p,q =

{

0 if there is no transition of label a from p to q

r if p
a|r
−→ q is the unique transition of label a from p to q

On our example, we obtain

µ(a) =





2 −1 1
0 1 0
0 0 −1



 µ(b) =





1 0 0
0 2 2
0 0 2



 µ(abab) =





−1 2 1
0 −1 0
0 0 −1





The linear presentation gives an easy way to compute the function realised by
the transducer, since τ(u) = µ(u)1,n (see [3] for details). For instance, on our
example, µ(abab)1,3 = 1.

We can now state our last characterisation of the variety of languages Up.

Theorem 2.11 A language belongs to Up(A
∗) if and only if is a Boolean com-

bination of languages of the form τ−1(r), where r ∈ Fp and τ : A∗ → Fp is a
function realised by some transducer in strict triangular form.

Proof. Let B be the Boolean algebra described in the statement of the theorem.
We want to show that B = Up(A

∗).
Consider a function τ : A∗ → Fp realised by a transducer in strict triangular

form and let µ : A∗ → Bn(Fp) be its linear representation. Let r ∈ Fp. We
claim that the language τ−1(r) is recognized by Bn(Fp). Indeed, since τ−1(r) =
{u ∈ A∗ | µ(u)1,n = r}, one has τ−1(r) = µ−1(R) where R is the set of all
matrices m of Bn(Fp) such that m1,n = r. This proves the claim and shows
that the languages of the form τ−1(r) are in Up(A

∗). The inclusion B ⊆ Up(A
∗)

follows, since both B and Up(A
∗) are Boolean algebras.

Conversely, since by Theorem 1.2, the variety Gp ∗ Abp−1 is generated by
the groups Bn(Fp), the Boolean algebra Up(A

∗) is generated by the languages
recognized by Bn(Fp), for some n > 0. Consider a language L of A∗ recognized
by Bn(Fp). By definition, there exists a morphism η : A∗ → Bn(Fp) and a
subset P of Bn(Fp) such that L = η−1(P ). We claim that L belongs to B. Since
η−1(P ) =

⋃

m∈P η−1(m), it suffices to establish the result when P contains a
single matrix m. Observe that

η−1(m) =
⋂

16i,j6n

Li,j where Li,j = {u ∈ A∗ | η(u)i,j = mi,j}

Put t = j − i + 1 and let µ : A∗ → Bt(Fp) be the morphism defined, for all
a ∈ A, by

µ(a)k,ℓ = η(a)i+k−1,i+ℓ−1 for 1 6 k, ℓ 6 t

9



Thus µ(a) is the submatrix of η(a) whose right top element is η(u)i,j and bottom
left element is η(u)j,i. It follows that, for all u ∈ A∗, µ(u)1,t = η(u)i,j . Setting
mi,j = r, one sees that u ∈ Li,j if and only if µ(u)1,t = r. Therefore L is of
the form τ−1(r), where τ is the function realised by the transducer in strict
triangular form defined by µ.

Corollary 2.12 A language belongs to U(A∗) if and only if it is a Boolean
combination of languages of the form τ−1(r), where r ∈ Fp, p is a prime number
and τ : A∗ → Fp is a function realised by some transducer in strict triangular
form.
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