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Languages recognized by finite supersoluble groups

In this paper, we give two descriptions of the languages recognized by finite supersoluble groups. We first show that such a language belongs to the Boolean algebra generated by the modular products of elementary commutative languages. An elementary commutative language is defined by a condition specifying the number of occurrences of each letter in its words, modulo some fixed integer. Our second characterization makes use of counting functions computed by transducers in strict triangular form.

Eilenberg's variety theorem [START_REF] Eilenberg | Automata, languages, and machines[END_REF] is a powerful tool for classifying regular languages. It states that, given a variety of finite monoids V, the class of languages V whose syntactic monoid belongs to V is a variety of languages, that is, a class of regular languages closed under finite union, complement, left and right quotients and inverse of morphisms. Further, the correspondence V → V between varieties of finite monoids and varieties of languages is one-to-one and onto.

Eilenberg's theorem can be used in both ways: given a variety of languages, one can look for the corresponding variety of monoids, or, given a variety of monoids, one can seek for a combinatorial description of the corresponding variety of languages. Examples abund in the literature: for instance, aperiodic monoids correspond to star-free languages, J -trivial languages to piecewise testable languages, etc. We refer the reader to [START_REF] Pin | Syntactic semigroups[END_REF] for a survey.

It is therefore natural to ask for a nice characterization of the variety of languages corresponding to the variety of groups. The answer to this frequently asked question is unfortunately negative: there is no known satisfactory answer to this question. The reason is hidden in the complexity of finite groups since a solution would probably require a description of the languages recognized by each finite simple group . . . However, solutions are known for some important subvarieties: commutative groups [START_REF] Eilenberg | Automata, languages, and machines[END_REF], p-groups [START_REF] Eilenberg | Automata, languages, and machines[END_REF][START_REF] Weil | An extension of the Schützenberger product[END_REF][START_REF] Weil | Products of languages with counter[END_REF], nilpotent groups [START_REF] Eilenberg | Automata, languages, and machines[END_REF][START_REF] Thérien | Subword counting and nilpotent groups[END_REF] and soluble groups [START_REF] Straubing | Families of recognizable sets corresponding to certain varieties of finite monoids[END_REF][START_REF] Weil | Products of languages with counter[END_REF]. The aim of this paper is to complete these results by giving a description of the languages corresponding to the variety of supersoluble groups.

We first proceed in Section 1 to an algebraic study of the variety of supersoluble groups. Most of the results of this section were actually known before, but we try to present them in a selfcontained way that suits our needs for the next sections. We show in particular that the variety of supersoluble groups is generated by the Borel groups B n (F p ) for all n > 0 and all primes p.

In Section 2, we first state, in a slightly improved version, the description of the languages recognized by commutative groups. In this new version, these languages are described as a disjoint union of "elementary languages", which have a simple combinatorial description. We also define the modular concatenation product, an operation on languages first introduced by Straubing [START_REF] Straubing | Families of recognizable sets corresponding to certain varieties of finite monoids[END_REF].

Our main result (Corollary 2.10) states that the languages recognized by supersoluble groups can be obtained in two steps: first take the modular products of elementary languages and then take the Boolean algebra generated by these languages.

In the last part of the paper, we give another characterization of the languages recognized by supersoluble groups, which relies on the following idea. Given a function τ from words to numbers and an integer r, consider the language of all words u such that τ (u) = r. One can say that this language is defined by counting modulo τ . This leads to the idea of describing regular languages by suitable counting functions. It turns out that this idea is very successful for describing group languages: for instance, languages of commutative groups can be described by counting letters and languages of p-groups can be described by counting subwords. Our second description of the languages recognized by supersoluble groups (Corollary 2.12) makes use of counting functions computed by transducers in strict triangular form (the precise definition can be found in Section 2.4). It would be nice to have a simple combinatorial description of these transducers, but there is unfortunately no evidence that such a description exists.

The variety of supersoluble groups

Throughout this paper, the term variety will be used to mean a class of finite groups (or monoids) closed under finite direct products, subgroups (submonoids) and morphic images.

The collection of all varieties of groups forms a complete lattice under inclusion. The join H i of a family (H i ) i∈I of varieties of groups, consists of all groups which are quotients of subgroups of direct products

H 1 × • • • × H n with H k ∈ H i k , for some i k ∈ I. If U and V are two varieties of groups, the product variety U * V consists of all groups G having a normal subgroup U ∈ U such that G/U ∈ V.
For a prime p, G p denotes the variety of all p-groups. For any positive integer d, Ab d denotes the variety of all abelian groups of exponent dividing d. A group G is supersoluble if it has a normal series with cyclic factors. The class of all finite supersoluble groups form a variety of groups.

The following decomposition of this variety of groups was given in [START_REF] Auinger | Varieties of finite supersolvable groups with the M. Hall property[END_REF].

Proposition 1.1 The variety of finite supersoluble groups is the join

p prime G p * Ab p-1 ,
As shown in [START_REF] Almeida | The pseudovariety of semigroups of triangular matrices over a finite field[END_REF], the variety G p * Ab p-1 is defined by the identities (x p-1 y p-1 ) p ω = 1 and (x ω-1 y ω-1 xy) 

(F p ) belongs to G p * Ab p-1 , then it is conjugate to a subgroup of T n (F p ).
This means there exists an element g ∈ GL n (F p ) such that the group gGg -1 is a subgroup of T n (F p ). One needs to be careful when using this result since in [START_REF] Almeida | The pseudovariety of semigroups of triangular matrices over a finite field[END_REF], the notion of subgroup is taken in the sense of semigroup theory: the identity of the group is an idempotent which is not necessarily the identity matrix. However, if G is a subgroup of GL n (F p ), then so is gGg -1 and thus G is isomorphic to a subgroup of B n (F p ). It remains to prove that the group B n (F p ) itself belongs to G p * Ab p-1 . Let π the morphism which maps a matrix of B n (F p ) onto its diagonal. The range of this morphism is the group (F * p ) n , which belongs to Ab p-1 , and its kernel is U T n (F p ), which is well-known to be a p-group. Therefore B n (F p ) belongs to G p * Ab p-1 .

Corollary 1.3 The variety of supersoluble groups is generated by the Borel groups B n (F p ) for all n > 0 and all primes p.

Languages

We shall denote by U p the variety of languages associated with the variety of groups G p * Ab p-1 and by U the variety of languages associated with the variety of supersoluble groups. Proposition 1.1 shows that U is the join of the varieties of languages U p , for any prime p. These varieties of languages will be described in Section 2.3. Before that, we need a precise description of the varieties of languages corresponding to Ab n and to G p .

Languages recognized by Abelian groups

A description of the variety of languages Ab n associated with Ab n was given in [START_REF] Eilenberg | Automata, languages, and machines[END_REF]. It relies on the fact that this variety is generated by the cyclic groups of order n. Proposition 2.1 For each alphabet A, Ab n (A * ) is the Boolean algebra generated by the languages of the form

F (a, k, n) = {u ∈ A * | |u| a ≡ k mod n} = ((B * a) n ) * (B * a) k B * ,
where a ∈ A, B = A \ {a} and 0 k < n.

We shall need an improved version of this result, which avoids using complementation. Let A = {a 1 , . . . , a s } be an alphabet. Let us call n-elementary commutative a language of the form

F (r 1 , . . . , r s , n) = {u ∈ A * | |u| a1 ≡ r 1 , . . . , |u| as ≡ r s mod n}
where r 1 , . . . , r s ∈ {0, . . . , n -1}. Thus, with the notation of Proposition 2.1,

F (r 1 , . . . , r s , n) = F (a 1 , r 1 , n) ∩ . . . ∩ F (a s , r s , n) Proposition 2.2 A language
is recognized by a group in Ab n if and only if it is a disjoint union of n-elementary commutative languages.

Proof. Let A = {a 1 , . . . , a s }, let G be a group in Ab n and let ϕ : A * → G be a morphism. If L is recognized by ϕ, then L = ϕ -1 (P ) for some subset P of G. Put ϕ(a 1 ) = g 1 , . . . , ϕ(a s ) = g s . Let u ∈ A * and, for 1 i s, let |u| ai ≡ r i mod n. Adopting an additive notation for G, we get

ϕ(u) = 1 i s |u| ai g i = 1 i s r i g i
Therefore u ∈ L if and only if 1 i s r i g i ∈ P and hence L = (r1,...,rs)∈E F (r 1 , . . . , r s , n)

where E = {(r 1 , . . . , r s ) | 1 i s r i g i ∈ P }. This concludes the proof, since the languages F (r 1 , . . . , r s , n) are clearly pairwise disjoint.

Languages recognized by p-groups

A few auxiliary definitions are required to describe the variety of languages G p associated with G p , for a given prime p.

A word

u = a 1 a 2 • • • a n (where a 1 , . . . , a n are letters) is a subword of a word v if v can be factored as v = v 0 a 1 v 1 • • • a n v n .
For instance, ab is a subword of cacbc. Given two words u and v, we denote by v u the number of distinct ways to write u as a subword of v.

More formally

, if u = a 1 a 2 • • • a n , then v u = Card{(v 0 , v 1 , . . . , v n ) | v 0 a 1 v 1 • • • a n v n = v}
Observe that if u is a letter a, then v a is simply the number of occurrences of the letter a in v, also denoted by |v| a .

The following result is credited to Eilenberg and Schützenberger in [START_REF] Eilenberg | Automata, languages, and machines[END_REF]. Another characterization, given in [START_REF] Weil | An extension of the Schützenberger product[END_REF][START_REF] Weil | Products of languages with counter[END_REF], relies on a variation of the concatenation product, called the modular concatenation product and first introduced in [START_REF] Straubing | Families of recognizable sets corresponding to certain varieties of finite monoids[END_REF]. Let L 0 , . . . , L k be languages of A * , let a 1 , . . . , a k be letters of A and let r and p be integers such that 0 r < p. We define (L

0 a 1 L 1 • • • a k L k ) r,p
as the set of all words u in A * such that the number of factorizations of u in the form

u = u 0 a 1 u 1 • • • a k u k , with u i ∈ L i for 0 i k, is congruent to r modulo p.
Proposition 2.4 A language of A * is recognized by a p-group if and only if it is a Boolean combination of languages of the form

(A * a 1 A * • • • a k A * ) r,p
, where 0 r < p, k 0 and a 1 , . . . , a k ∈ A.

Contrary to the concatenation product, the modular concatenation product does not distribute over union. For instance, if A = {a, b}, 1). However, a weaker property holds. Proposition 2.5 Let L 0 , . . . , L k be languages of A * and let i ∈ {0, . . . , k}. Suppose that L i is the disjoint union of the languages L i,1 , . . . , L i,ℓ . Then each modular product

({b}a{1, ba}) 1,2 = {ba, baba}, ({bab}a{1, ba}) 1,2 = {baba, bababa} but ({b, bab}a{1, ba}) 1,2 = {ba, babab} since baba = (b)a(ba) = (bab)a(
(L 0 a 1 L 1 • • • a k L k ) r,p is a union of intersections of languages of the form (L 0 a 1 L 1 • • • L i-1 a i L i,j a i+1 L i+1 • • • a k L k ) s,p , with 1 j ℓ and 0 s < p. Proof. We claim that (L 0 a 1 L 1 • • • a k L k ) r,p is equal to r1+...+r ℓ ≡r mod p 0 r1,...,r ℓ <p 1 j l (L 0 a 1 L 1 • • • L i-1 a i L i,j a i+1 L i+1 • • • a k L k ) rj ,p
For a given word u, consider the set

F (u) of all k-uples (u 0 , u 1 , . . . , u k ) such that u = u 0 a 1 u 1 • • • a k u k , with u 0 ∈ L 0 , . . . , u k ∈ L k . The set F (u)
is the disjoint union of the sets F j (u) defined by 

F j (u) = {(u 0 , u 1 , . . . , u k ) ∈ F (u) | u i ∈ L i,

Languages recognized by supersoluble groups

We shall need two auxiliary tools to characterize the languages of U p . The first one is an operation on groups introduced in [START_REF] Weil | An extension of the Schützenberger product[END_REF][START_REF] Weil | Products of languages with counter[END_REF] to study the modular concatenation product. Let G 1 , . . . , G r be groups. Denote by

K = F p [G 1 × • • • × G r ] the group algebra of G 1 × • • • × G r over F p .
The Schützenberger product over F p of the groups G 1 , . . . , G r , denoted by F p ♦(G 1 , . . . , G r ), is the subgroup of GL r (K) made up of matrices m = (m i,j ) such that (1) m i,j = 0, for i > j,

(2) m i,i = (1, . . . , 1, g i , 1, . . . , 1) for some

g i ∈ G i , ( 3 
) m i,j ∈ F p [1 × • • • × 1 × G i × • • • × G j × 1 × • • • × 1],
for i < j. The following result was first proved in [START_REF] Weil | An extension of the Schützenberger product[END_REF][START_REF] Weil | Products of languages with counter[END_REF].

Proposition 2.6 Let, for 0 i k, L i be a language of A * recognized by a group G i . Then the language (L 0 a

1 L 1 • • • a k L k ) r,p is recognized by the group F p ♦(G 0 , . . . , G k ).
Our second tool, the sequential transducer of a morphism, is required to characterize the languages recognized by the wreath product of two monoids.

Let G be a group and let ϕ : A * → G be a monoid morphism. Set B G = G × A. The sequential function associated with ϕ is the function σ

ϕ : A * → B * G defined by σ ϕ (a 1 a 2 • • • a n ) = (1, a 1 )(ϕ(a 1 ), a 2 ) • • • (ϕ(a 1 • • • a n-1 ), a n )
Straubing's wreath product principle [START_REF] Straubing | Families of recognizable sets corresponding to certain varieties of finite monoids[END_REF][START_REF] Straubing | The wreath product and its applications[END_REF][START_REF] Pin | The wreath product principle for ordered semigroups[END_REF] leads immediately to the following result.

Proposition 2.7 For every alphabet A, U p (A * ) is the smallest Boolean algebra containing Ab p-1 (A * ) and the languages of the form σ -1 ϕ (V ), where σ ϕ is the sequential function associated with a morphism ϕ : A * → G, with G ∈ Ab p-1 , and V is a language of B * G recognized by a p-group. We are now ready to state our main theorem, which gives a more explicit form of the languages of U p . Theorem 2.8 Let L be a language of A * . The following conditions are equivalent:

(1) L is recognized by a group in G p * Ab p-1 , (2) L is a Boolean combination of languages of the form

(L 0 a 1 L 1 • • • a k L k ) r,p ,
where each L i is a (p -1)-elementary commutative language,

(3) L is a Boolean combination of languages of the form

(L 0 a 1 L 1 • • • a k L k ) r,p ,
where each L i is a Boolean combination of (p-1)-elementary commutative languages.

Proof.

(2) implies ( 3) is trivial.

(3) implies [START_REF] Almeida | The pseudovariety of semigroups of triangular matrices over a finite field[END_REF]. By Proposition 2.1, any Boolean combination of (p -1)elementary commutative languages is recognized by a group in Ab p-1 . Further, Proposition 2.6 shows that, if each language L i is recognized by a group G i , then the language (L 0 a

1 L 1 • • • a k L k ) r,p is recognized by the group G = F p ♦(G 0 , . . . , G k ). Consequently, it just remains to showing that if the groups G i are all in Ab p-1 , then G is an element of G p * Ab p-1 . Let π : G → G 0 ו • •×G k be the surjective morphism which maps each matrix onto the product of its diag- onal elements. Thus if m ∈ G, π(m) = m 0,0 • • • m k,k . We claim that Ker(π) is a p-group. Indeed, if m belongs to Ker(π), then m i,j = 0 if i > j, m i,i = (1, . . . , 1) for i = 0, . . . , k and m i,j ∈ F p [1ו • •×1×G i ו • •×G j ×1ו • •×1], for i < j.
Notice that, for i < j, the (i, j)-th entry of m can be written as h∈Giו••×Gj α h h for some α h ∈ F p . Since there are exactly p |Gi|•••|Gj| elements of this form, the order of Ker(π) is a power of p (more precisely, i<j p |Gi|•••|Gj| ) and Ker(π) is a p-group. Therefore, G ∈ G p * Ab p-1 .

(1) implies [START_REF] Auinger | Varieties of finite supersolvable groups with the M. Hall property[END_REF]. With the notation of Proposition 2.7, it suffices to show that the languages of Ab p-1 (A * ) and the languages σ -1 ϕ (V ) are of the form described in [START_REF] Auinger | Varieties of finite supersolvable groups with the M. Hall property[END_REF]. For the languages of Ab p-1 (A * ), this follows directly from Proposition 2.1. Consider now a language σ -1 ϕ (V ), where σ ϕ is the sequential function associated with a morphism ϕ : A * → G, with G ∈ Ab p-1 , and V is a language of B * G recognized by a p-group. Since σ -1 ϕ commutes with Boolean operations, we may assume by Proposition 2.3, that V = S(u, r, p) with 0 r < p and

u ∈ B * G . Since B G = G × A, u is a word of the form (g 1 , c 1 ) • • • (g k , c k ), where g 1 , . . . , g k ∈ G and c 1 , . . . , c k ∈ A. Thus V is the set of words v ∈ B * G such that Card {(v 0 , v 1 , . . . , v k ) | v 0 (g 1 , c 1 )v 1 • • • v k-1 (g k , c k )v k = v} ≡ r mod p Let us now compute σ -1 ϕ (V ). If u = a 1 • • • a n , then σ ϕ (a 1 • • • a n ) = (1, a 1 )(ϕ(a 1 ), a 2 ) • • • (ϕ(a 1 • • • a n-1 ), a n ) Therefore u belongs to σ -1 ϕ (V ) if and only if it belongs to ϕ -1 (h 1 )c 1 ϕ -1 (h 2 )c 2 • • • ϕ -1 (h k )c k A * r,p
where

h 1 = g 1 , h 2 = (g 1 ϕ(c 1 )) -1 g 2 , . . . , h k = (g k-1 ϕ(c k-1 )) -1 g k . Since G is in Ab p-1
, the languages ϕ -1 (h 1 ), . . . ϕ -1 (h k ) are, by Proposition 2.2, a disjoint union of (p -1)-elementary commutative languages. To conclude the proof, it remains to use Proposition 2.5 to "distribute" the modular product

(L 0 a 1 L 1 • • • a k L k ) r,p over this disjoint union.
We can now formulate our result in terms of varieties of languages.

Corollary 2.9 For every alphabet A, U p (A * ) is the Boolean algebra generated by the languages of the form (L 0 a 1 L 1 • • • a k L k ) r,p , where each L i is a (p -1)elementary commutative language of A * . Corollary 2.10 For every alphabet A, U(A * ) is the Boolean algebra generated by the languages of the form (L 0 a 1 L 1 • • • a k L k ) r,p , where each L i is a (p -1)elementary commutative language of A * , for any prime p.

Transducers and languages recognized by supersoluble groups

We now give another description of the variety of languages associated with the variety of supersoluble groups.

A transducer with output in F p is a 5-tuple T = (Q, A, I, F, E) where Q is a finite set of states, A is the input alphabet, I ⊆ Q is the set of initial and F ⊆ Q the set of final states. The set of transitions E is a finite subset of

Q × A × F * p × Q.
Intuitively, a transition (p, a, r, q) is interpreted as follows: if a is an input letter, the automaton moves from state p to state q and produces the output r.

It is convenient to represent a transition (p, a, r, q) as an edge p a|r -→ q. Initial (resp. final) outputs are represented by incoming (resp. outgoing) arrows. A successful path is a sequence of consecutive transitions:

q 0 a1|r1 -→ q 1 a2|r2 -→ q 2 • • • q n-1 an|rn -→ q n
starting in some initial state and ending in some final state. The label of the path is the word a 1 a 2 • • • a n . Its output is the product r 1 r 2 • • • r n . The function realized by T maps each word u of A * onto the sum of the outputs of all successful paths of label u. For instance, if τ is the transduction realised by the transducer of Figure 2.1, there are five successful paths of input label abab.

(1)

1 a|2 -→ 1 b|1 -→ 1 a|-1 -→ 2 b|2 -→ 3 (2) 1 a|2 -→ 1 b|1 -→ 1 a|1 -→ 3 b|2 -→ 3 (3) 1 a|-1 -→ 2 b|2 -→ 2 a|1 -→ 2 b|2 -→ 3 (4) 1 a|-1 -→ 2 b|2 -→ 3 a|-1 -→ 3 b|2 -→ 3 (5) 1 a|1 -→ 3 b|2 -→ 3 a|-1 -→ 3 b|2 -→ 3 
The output of the first path is 2 × 1 × (-1) × 2 = 1 mod 5, the output of the other paths are respectively -1, 1, -1 and 1. It follows that τ

(abab) = 1 -1 + 1 -1 + 1 = 1.
A transducer is in strict triangular form if Q = {1, . . . , n}, 1 is the unique initial state, n is the unique final state, and its transitions satisfy the two following conditions:

(1) there is no transition from p to q such that p > q, (2) for p < q and for each letter a ∈ A, there is at most one transition from p to q with label a, (3) for each letter a ∈ A and every state q ∈ Q there is exactly one transition of the form q a|r -→ q, for some r ∈ F * p . For instance, the transducer in Figure 2.1 is in strict triangular form. To each such transducer is associated a morphism µ : A * → B n (F p ), called its linear representation, and defined as follows. For each letter a ∈ A, µ(a) p,q = 0 if there is no transition of label a from p to q r if p a|r -→ q is the unique transition of label a from p to q

On our example, we obtain

µ(a) =   2 -1 1 0 1 0 0 0 -1   µ(b) =   1 0 0 0 2 2 0 0 2   µ(abab) =   -1 2 1 0 -1 0 0 0 -1  
The linear presentation gives an easy way to compute the function realised by the transducer, since τ (u) = µ(u) 1,n (see [START_REF] Berstel | Transductions and Context-Free Languages[END_REF] for details). For instance, on our example, µ(abab) 1,3 = 1.

We can now state our last characterisation of the variety of languages U p .

Theorem 2.11 A language belongs to U p (A * ) if and only if is a Boolean combination of languages of the form τ -1 (r), where r ∈ F p and τ : A * → F p is a function realised by some transducer in strict triangular form.

Proof. Let B be the Boolean algebra described in the statement of the theorem. We want to show that B = U p (A * ). Consider a function τ : A * → F p realised by a transducer in strict triangular form and let µ : A * → B n (F p ) be its linear representation. Let r ∈ F p . We claim that the language τ -1 (r) is recognized by B n (F p ). Indeed, since τ -1 (r) = {u ∈ A * | µ(u) 1,n = r}, one has τ -1 (r) = µ -1 (R) where R is the set of all matrices m of B n (F p ) such that m 1,n = r. This proves the claim and shows that the languages of the form τ -1 (r) are in U p (A * ). The inclusion B ⊆ U p (A * ) follows, since both B and U p (A * ) are Boolean algebras.

Conversely, since by Theorem 1.2, the variety G p * Ab p-1 is generated by the groups B n (F p ), the Boolean algebra U p (A * ) is generated by the languages recognized by B n (F p ), for some n > 0. Consider a language L of A * recognized by B n (F p ). By definition, there exists a morphism η : A * → B n (F p ) and a subset P of B n (F p ) such that L = η -1 (P ). We claim that L belongs to B. Since η -1 (P ) = m∈P η -1 (m), it suffices to establish the result when P contains a single matrix m. Observe that η -1 (m) = 1 i,j n L i,j where L i,j = {u ∈ A * | η(u) i,j = m i,j } Put t = j -i + 1 and let µ : A * → B t (F p ) be the morphism defined, for all a ∈ A, by µ(a) k,ℓ = η(a) i+k-1,i+ℓ-1 for 1 k, ℓ t Thus µ(a) is the submatrix of η(a) whose right top element is η(u) i,j and bottom left element is η(u) j,i . It follows that, for all u ∈ A * , µ(u) 1,t = η(u) i,j . Setting m i,j = r, one sees that u ∈ L i,j if and only if µ(u) 1,t = r. Therefore L is of the form τ -1 (r), where τ is the function realised by the transducer in strict triangular form defined by µ.

Corollary 2.12 A language belongs to U(A * ) if and only if it is a Boolean combination of languages of the form τ -1 (r), where r ∈ F p , p is a prime number and τ : A * → F p is a function realised by some transducer in strict triangular form.
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