Languages recognized by finite supersoluble groups
Olivier Carton, Jean-Eric Pin, Xaro Soler-Escrivà

To cite this version:
Olivier Carton, Jean-Eric Pin, Xaro Soler-Escrivà. Languages recognized by finite supersoluble groups. 2007. hal-00143945

HAL Id: hal-00143945
https://hal.science/hal-00143945
Preprint submitted on 28 Apr 2007

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Languages recognized by finite supersoluble groups

Olivier Carton∗ Jean-Eric Pin∗ Xaro Soler-Escrivà†

April 1, 2007

Abstract

In this paper, we give two descriptions of the languages recognized by finite supersoluble groups. We first show that such a language belongs to the Boolean algebra generated by the modular products of elementary commutative languages. An elementary commutative language is defined by a condition specifying the number of occurrences of each letter in its words, modulo some fixed integer. Our second characterization makes use of counting functions computed by transducers in strict triangular form.

Eilenberg’s variety theorem [4] is a powerful tool for classifying regular languages. It states that, given a variety of finite monoids \mathcal{V}, the class of languages \mathcal{V} whose syntactic monoid belongs to \mathcal{V} is a variety of languages, that is, a class of regular languages closed under finite union, complement, left and right quotients and inverse of morphisms. Further, the correspondence $\mathcal{V} \rightarrow \mathcal{V}$ between varieties of finite monoids and varieties of languages is one-to-one and onto.

Eilenberg’s theorem can be used in both ways: given a variety of languages, one can look for the corresponding variety of monoids, or, given a variety of monoids, one can seek for a combinatorial description of the corresponding variety of languages. Examples abound in the literature: for instance, aperiodic monoids correspond to star-free languages, J-trivial languages to piecewise testable languages, etc. We refer the reader to [5] for a survey.

It is therefore natural to ask for a nice characterization of the variety of languages corresponding to the variety of groups. The answer to this frequently asked question is unfortunately negative: there is no known satisfactory answer to this question. The reason is hidden in the complexity of finite groups since a solution would probably require a description of the languages recognized by each finite simple group …

However, solutions are known for some important subvarieties: commutative groups [4], p-groups [4, 10, 11], nilpotent groups [4, 9] and soluble groups [7, 11]. The aim of this paper is to complete these results by giving a description of the languages corresponding to the variety of supersoluble groups.

∗LIAFA, Université Paris VII and CNRS, Case 7014, 2 Place Jussieu, 75251 Paris Cedex 05, France.
We first proceed in Section 1 to an algebraic study of the variety of supersoluble groups. Most of the results of this section were actually known before, but we try to present them in a self-contained way that suits our needs for the next sections. We show in particular that the variety of supersoluble groups is generated by the Borel groups $B_n(F_p)$ for all $n > 0$ and all primes p.

In Section 2, we first state, in a slightly improved version, the description of the languages recognized by commutative groups. In this new version, these languages are described as a disjoint union of “elementary languages”, which have a simple combinatorial description. We also define the modular concatenation product, an operation on languages first introduced by Straubing [7].

Our main result (Corollary 2.10) states that the languages recognized by supersoluble groups can be obtained in two steps: first take the modular products of elementary languages and then take the Boolean algebra generated by these languages.

In the last part of the paper, we give another characterization of the languages recognized by supersoluble groups, which relies on the following idea. Given a function τ from words to numbers and an integer r, consider the language of all words u such that $\tau(u) = r$. One can say that this language is defined by counting modulo τ. This leads to the idea of describing regular languages by suitable counting functions. It turns out that this idea is very successful for describing group languages: for instance, languages of commutative groups can be described by counting letters and languages of p-groups can be described by counting subwords. Our second description of the languages recognized by supersoluble groups (Corollary 2.12) makes use of counting functions computed by transducers in strict triangular form (the precise definition can be found in Section 2.4). It would be nice to have a simple combinatorial description of these transducers, but there is unfortunately no evidence that such a description exists.

1 The variety of supersoluble groups

Throughout this paper, the term variety will be used to mean a class of finite groups (or monoids) closed under finite direct products, subgroups (submonoids) and morphic images.

The collection of all varieties of groups forms a complete lattice under inclusion. The join $\bigvee H_i$ of a family $(H_i)_{i \in I}$ of varieties of groups, consists of all groups which are quotients of subgroups of direct products $H_1 \times \cdots \times H_n$ with $H_k \in H_{i_k}$, for some $i_k \in I$. If U and V are two varieties of groups, the product variety $U \ast V$ consists of all groups G having a normal subgroup $U \leq G$ such that $G/U \in V$.

For a prime p, G_p denotes the variety of all p-groups. For any positive integer d, Ab^d denotes the variety of all abelian groups of exponent dividing d. A group G is supersoluble if it has a normal series with cyclic factors. The class of all finite supersoluble groups form a variety of groups.

The following decomposition of this variety of groups was given in [2].

Proposition 1.1 The variety of finite supersoluble groups is the join $\bigvee_{p \text{ prime}} (G_p \ast \text{Ab}^{p-1})$,
As shown in [1], the variety $G_p \ast \text{Ab}^{p-1}$ is defined by the identities

$$(x^{p-1}y^{p-1})^{p^x} = 1 \text{ and } (x^{\omega^{-1}}y^{\omega^{-1}}xy)^{p^\omega} = 1$$

There is another interesting characterization of this variety. For any commutative ring K, let us denote by $M_n(K)$ be the monoid of $n \times n$ matrices with entries in k and by $T_n(K)$ the submonoid of upper triangular matrices. We also denote by $GL_n(K)$ (respectively $B_n(K)$) the group of invertible matrices of $M_n(K)$ (respectively $T_n(K)$). The group $B_n(K)$ is known as the Borel subgroup of $GL_n(K)$. Finally, we denote by $U T_n(K)$ the group of unitriangular matrices of $GL_n(K)$ (upper triangular matrices with ones on the diagonal) and by $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ the field with p elements.

Theorem 1.2 A group belongs to the variety $G_p \ast \text{Ab}^{p-1}$ if and only if it is isomorphic to a subgroup of $B_n(\mathbb{F}_p)$ for some $n > 0$.

Proof. Let G be a group of order n of $G_p \ast \text{Ab}^{p-1}$. As any finite group, G can be faithfully represented as a subgroup of $GL_n(\mathbb{F}_p)$. Now, it follows from [1, Prop. 3.6] that if a subgroup of $M_n(\mathbb{F}_p)$ belongs to $G_p \ast \text{Ab}^{p-1}$, then it is conjugate to a subgroup of $T_n(\mathbb{F}_p)$. This means there exists an element $g \in GL_n(\mathbb{F}_p)$ such that the group gGg^{-1} is a subgroup of $T_n(\mathbb{F}_p)$. One needs to be careful when using this result since in [1], the notion of subgroup is taken in the sense of semigroup theory: the identity of the group is an idempotent which is not necessarily the identity matrix. However, if G is a subgroup of $GL_n(\mathbb{F}_p)$, then so is gGg^{-1} and thus G is isomorphic to a subgroup of $B_n(\mathbb{F}_p)$.

It remains to prove that the group $B_n(\mathbb{F}_p)$ itself belongs to $G_p \ast \text{Ab}^{p-1}$. Let π the morphism which maps a matrix of $B_n(\mathbb{F}_p)$ onto its diagonal. The range of this morphism is the group $(\mathbb{F}_p^n)^n$, which belongs to Ab^{p-1}, and its kernel is $UT_n(\mathbb{F}_p)$, which is well-known to be a p-group. Therefore $B_n(\mathbb{F}_p)$ belongs to $G_p \ast \text{Ab}^{p-1}$. \[\Box\]

Corollary 1.3 The variety of supersoluble groups is generated by the Borel groups $B_n(\mathbb{F}_p)$ for all $n > 0$ and all primes p.

2 Languages

We shall denote by U_p the variety of languages associated with the variety of groups $G_p \ast \text{Ab}^{p-1}$ and by U the variety of languages associated with the variety of supersoluble groups. Proposition 1.1 shows that U is the join of the varieties of languages U_p, for any prime p. These varieties of languages will be described in Section 2.3. Before that, we need a precise description of the varieties of languages corresponding to Ab^n and to G_p.

2.1 Languages recognized by Abelian groups

A description of the variety of languages Ab^n associated with Ab^n was given in [4]. It relies on the fact that this variety is generated by the cyclic groups of order n.

3
Proposition 2.1 For each alphabet A, $Ab^n(A^*)$ is the Boolean algebra generated by the languages of the form

$$F(a, k, n) = \{ u \in A^* \mid |u|_a \equiv k \mod n \} = ((B^*a)^n)(B^*a)^k B^*,$$

where $a \in A$, $B = A \setminus \{a\}$ and $0 \leq k < n$.

We shall need an improved version of this result, which avoids using complementation. Let $A = \{a_1, \ldots, a_s\}$ be an alphabet. Let us call n-elementary commutative a language of the form

$$F(r_1, \ldots, r_s, n) = \{ u \in A^* \mid |u|_{a_i} \equiv r_i, \ldots, |u|_{a_s} \equiv r_s \mod n \}$$

where $r_1, \ldots, r_s \in \{0, \ldots, n-1\}$. Thus, with the notation of Proposition 2.1,

$$F(r_1, \ldots, r_s, n) = F(a_1, r_1, n) \cap \ldots \cap F(a_s, r_s, n)$$

Proposition 2.2 A language is recognized by a group in Ab^n if and only if it is a disjoint union of n-elementary commutative languages.

Proof. Let $A = \{a_1, \ldots, a_s\}$, let G be a group in Ab^n and let $\varphi: A^* \to G$ be a morphism. If L is recognized by φ, then $L = \varphi^{-1}(P)$ for some subset P of G. Put $\varphi(a_1) = g_1, \ldots, \varphi(a_s) = g_s$. Let $u \in A^*$ and, for $1 \leq i \leq s$, let $|u|_{a_i} \equiv r_i \mod n$. Adopting an additive notation for G, we get

$$\varphi(u) = \sum_{1 \leq i \leq s} |u|_{a_i} g_i = \sum_{1 \leq i \leq s} r_i g_i$$

Therefore $u \in L$ if and only if $\sum_{1 \leq i \leq s} r_i g_i \in P$ and hence

$$L = \bigcup_{(r_1, \ldots, r_s) \in E} F(r_1, \ldots, r_s, n)$$

where $E = \{(r_1, \ldots, r_s) \mid \sum_{1 \leq i \leq s} r_i g_i \in P\}$. This concludes the proof, since the languages $F(r_1, \ldots, r_s, n)$ are clearly pairwise disjoint. \(\square\)

2.2 Languages recognized by p-groups

A few auxiliary definitions are required to describe the variety of languages G_p associated with G_p, for a given prime p.

A word $u = a_1 a_2 \cdots a_n$ (where a_1, \ldots, a_n are letters) is a subword of a word v if v can be factored as $v = v_0 a_1 v_1 \cdots a_n v_n$. For instance, ab is a subword of $cabc$. Given two words u and v, we denote by $\binom{v}{u}$ the number of distinct ways to write u as a subword of v.

More formally, if $u = a_1 a_2 \cdots a_n$, then

$$\binom{v}{u} = \text{Card}\{ (v_0, v_1, \ldots, v_n) \mid v_0 a_1 v_1 \cdots a_n v_n = v \}$$

Observe that if u is a letter a, then $\binom{v}{a}$ is simply the number of occurrences of the letter a in v, also denoted by $|v|_a$.

The following result is credited to Eilenberg and Schützenberger in [4].
Proposition 2.3 A language of A^* is recognized by a p-group if and only if it is a Boolean combination of the languages

$$S(u,r,p) = \{v \in A^* \mid (v)_u \equiv r \text{ mod } p\},$$

for $0 \leq r < p$ and $u \in A^*$.

Another characterization, given in [10, 11], relies on a variation of the concatenation product, called the modular concatenation product and first introduced in [7]. Let L_0, \ldots , L_k be languages of A^*, let a_1, \ldots , a_k be letters of A and let r and p be integers such that $0 \leq r < p$. We define $(L_0a_1L_1 \cdots a_kL_k)_{r,p}$ as the set of all words u in A^* such that the number of factorizations of u in the form $u = u_0a_1u_1 \cdots a_ku_k$, with $u_i \in L_i$ for $0 \leq i \leq k$, is congruent to r modulo p.

Proposition 2.4 A language of A^* is recognized by a p-group if and only if it is a Boolean combination of languages of the form $(A^*a_1A^* \cdots a_kA^*)_{r,p}$, where $0 \leq r < p$, $k \geq 0$ and $a_1, \ldots , a_k \in A$.

Contrary to the concatenation product, the modular concatenation product does not distribute over union. For instance, if $A = \{a, b\}$,

$$(\{b\}a\{1, ba\})_{1,2} = \{ba, bab\}, \quad (\{bab\}a\{1, ba\})_{1,2} = \{baba, bababa\}$$

but $((b, bab)a\{1, ba\})_{1,2} = \{ba, babab\}$

since $baba = (b)a(ba) = (bab)a(1)$. However, a weaker property holds.

Proposition 2.5 Let L_0, \ldots , L_k be languages of A^* and let $i \in \{0, \ldots , k\}$. Suppose that L_i is the disjoint union of the languages $L_{i,1}, \ldots , L_{i,\ell}$. Then each modular product $(L_0a_1L_1 \cdots a_kL_k)_{r,p}$ is a union of intersections of languages of the form $(L_0a_1L_1 \cdots L_{i-1}a_iL_{i,j}a_{i+1}L_{i+1} \cdots a_kL_k)_{s,p}$, with $1 \leq j \leq \ell$ and $0 \leq s < p$.

Proof. We claim that $(L_0a_1L_1 \cdots a_kL_k)_{r,p}$ is equal to

$$\bigcup_{r_1 + \cdots + r_j \equiv r \text{ mod } p} \bigcap_{1 \leq j \leq \ell} (L_0a_1L_1 \cdots L_{i-1}a_iL_{i,j}a_{i+1}L_{i+1} \cdots a_kL_k)_{r_j,p}$$

For a given word u, consider the set $F(u)$ of all k-uples (u_0, u_1, \ldots , u_k) such that $u = u_0a_1u_1 \cdots a_ku_k$, with $u_0 \in L_0, \ldots , u_k \in L_k$. The set $F(u)$ is the disjoint union of the sets $F_j(u)$ defined by

$$F_j(u) = \{(u_0, u_1, \ldots , u_k) \in F(u) \mid u_i \in L_{i,j}\}$$

It follows that $|F(u)| = \sum_{1 \leq j \leq \ell} |F_j(u)|$ and hence $|F(u)| \equiv r \text{ mod } p$ if and only if there exist r_1, \ldots , r_ℓ such that $r_1 + \cdots + r_\ell \equiv r \text{ mod } p$ and $|F_1(u)| \equiv r_1 \text{ mod } p$, \ldots , $|F_\ell(u)| \equiv r_\ell \text{ mod } p$. This proves the claim and the proposition. □

Coming back to the previous example, one has

$$(\{b\}a\{1, ba\})_{0,2} = A^* \setminus \{ba, bab\}, \quad (\{bab\}a\{1, ba\})_{0,2} = A^* \setminus \{baba, bababa\}$$
Therefore

\[
\{(b)a\{1,ba\}\}_0 \cap \{(bab)a\{1,ba\}\}_1 = \{bababa\}
\]

\[
\{(b)a\{1,ba\}\}_1 \cap \{(bab)a\{1,ba\}\}_0 = \{ba\}
\]

and the union of these two languages is exactly \(\{(b,bab)a\{1,ba\}\}_1\).

2.3 Languages recognized by supersoluble groups

We shall need two auxiliary tools to characterize the languages of \(U_p\). The first one is an operation on groups introduced in [10, 11] to study the modular concatenation product.

Let \(G_1, \ldots, G_r\) be groups. Denote by \(K = \mathbb{F}_p[G_1 \times \cdots \times G_r]\) the group algebra of \(G_1 \times \cdots \times G_r\) over \(\mathbb{F}_p\). The Schützenberger product over \(\mathbb{F}_p\) of the groups \(G_1, \ldots, G_r\), denoted by \(\mathbb{F}_p \diamond(G_1, \ldots, G_r)\), is the subgroup of \(GL_r(K)\) made up of matrices \(m = (m_{i,j})\) such that

1. \(m_{i,i} = 0\), for \(i > j\),
2. \(m_{i,i} = (1, \ldots, 1, g_i, 1, \ldots, 1)\) for some \(g_i \in G_i\),
3. \(m_{i,j} \in \mathbb{F}_p[1 \times \cdots \times G_i \times \cdots \times G_j \times 1 \times \cdots \times 1]\), for \(i < j\).

The following result was first proved in [10, 11].

Proposition 2.6 Let, for \(0 \leq i \leq k\), \(L_i\) be a language of \(A^*\) recognized by a group \(G_i\). Then the language \((L_0a_1L_1 \cdots a_kL_k)_r.p\) is recognized by the group \(\mathbb{F}_p \diamond (G_0, \ldots, G_k)\).

Our second tool, the sequential transducer of a morphism, is required to characterize the languages recognized by the wreath product of two monoids.

Let \(G\) be a group and let \(\varphi: A^* \to G\) be a monoid morphism. Set \(B_G = G \times A\). The sequential function associated with \(\varphi\) is the function \(\sigma_\varphi: A^* \to B_G^*\) defined by

\[
\sigma_\varphi(a_1a_2 \cdots a_n) = (1, a_1)(\varphi(a_1), a_2) \cdots (\varphi(a_1 \cdots a_{n-1}), a_n)
\]

Straubing’s wreath product principle [7, 8, 6] leads immediately to the following result.

Proposition 2.7 For every alphabet \(A\), \(U_p(A^*)\) is the smallest Boolean algebra containing \(\text{Ab}^{p-1}(A^*)\) and the languages of the form \(\sigma_\varphi^{-1}(V)\), where \(\sigma_\varphi\) is the sequential function associated with a morphism \(\varphi: A^* \to G\), with \(G \in \text{Ab}^{p-1}\), and \(V\) is a language of \(B_G^*\) recognized by a \(p\)-group.

We are now ready to state our main theorem, which gives a more explicit form of the languages of \(U_p\).

Theorem 2.8 Let \(L\) be a language of \(A^*\). The following conditions are equivalent:

1. \(L\) is recognized by a group in \(G_p \ast \text{Ab}^{p-1}\),
2. \(L\) is a Boolean combination of languages of the form \((L_0a_1L_1 \cdots a_kL_k)_r.p\),

where each \(L_i\) is a \((p-1)\)-elementary commutative language.
(3) \(L \) is a Boolean combination of languages of the form \((L_0 a_1 L_1 \cdots a_k L_k)_{r,p}\), where each \(L_i \) is a Boolean combination of \((p-1)\)-elementary commutative languages.

Proof. (2) implies (3) is trivial.

(3) implies (1). By Proposition 2.1, any Boolean combination of \((p-1)\)-elementary commutative languages is recognized by a group in \(\text{Ab}^{p-1} \). Further, Proposition 2.6 shows that, if each language \(L_i \) is recognized by a group \(G_i \), then the language \((L_0 a_1 L_1 \cdots a_k L_k)_{r,p}\) is recognized by the group \(G = \text{Ker}(G_0) \times \cdots \times \text{Ker}(G_k) \). Consequently, it just remains to showing that if the groups \(G_i \) are all in \(\text{Ab}^{p-1} \), then \(G \) is an element of \(G_p * \text{Ab}^{p-1} \). Let \(\pi : G \to G_0 \times \cdots \times G_k \)

be the surjective morphism which maps each matrix onto the product of its diagonal elements. Thus if \(m \in G \), \(\pi(m) = m_{0,0} \cdots m_{k,k} \). We claim that \(\text{Ker}(\pi) \) is a \(p \)-group. Indeed, if \(m \) belongs to \(\text{Ker}(\pi) \), then \(m_{i,j} = 0 \) if \(i > j \), \(m_{i,i} = (1, \ldots, 1) \) for \(i = 0, \ldots, k \) and \(m_{i,j} \in \mathbb{F}_p[1 \times \cdots \times 1 \times G_i \times \cdots \times G_j \times 1 \times \cdots \times 1] \), for \(i < j \). Notice that, for \(i < j \), the \((i,j)\)-th entry of \(m \) can be written as \(\sum_{h \in G_i \times \cdots \times G_j} a_{i,j}h \) for some \(a_{i,j} \in \mathbb{F}_p \). Since there are exactly \(p^{|G_i| \cdot |G_j|} \) elements of this form, the order of \(\text{Ker}(\pi) \) is a power of \(p \) (more precisely, \(\prod_{i,j} p^{|G_i| \cdot |G_j|} \)) and \(\text{Ker}(\pi) \) is a \(p \)-group. Therefore, \(G \in G_p * \text{Ab}^{p-1} \).

(1) implies (2). With the notation of Proposition 2.7, it suffices to show that the languages of \(\text{Ab}^{p-1}(A^*) \) and the languages \(\sigma_{\varphi}^{-1}(V) \) are of the form described in (2). For the languages of \(\text{Ab}^{p-1}(A^*) \), this follows directly from Proposition 2.1. Consider now a language \(\sigma_{\varphi}^{-1}(V) \), where \(\sigma_{\varphi} \) is the sequential function associated with a morphism \(\varphi : A^* \to G \), with \(G \in \text{Ab}^{p-1} \), and \(V \) is a language of \(B_G^r \) recognized by a \(p \)-group. Since \(\sigma_{\varphi}^{-1} \) commutes with Boolean operations, we may assume by Proposition 2.3, that \(V = S(u,r,p) \) with \(0 \leq r < p \) and \(u \in B_G^r \). Since \(B_G = G \times A \), \(u \) is a word of the form \((g_1,c_1) \cdots (g_k,c_k)\), where \(g_1, \ldots, g_k \in G \) and \(c_1, \ldots, c_k \in A \). Thus \(V \) is the set of words \(v \in B_G^r \) such that

\[
\text{Card} \{ (v_0,v_1,\ldots,v_k) \mid v_0(g_1,c_1)v_1 \cdots v_{k-1}(g_k,c_k)v_k = v \} \equiv r \mod p
\]

Let us now compute \(\sigma_{\varphi}^{-1}(V) \). If \(u = a_1 \cdots a_n \), then

\[
\sigma_{\varphi}(a_1 \cdots a_n) = (a_1)(\varphi(a_1),a_2) \cdots (\varphi(a_1 \cdots a_{n-1}),a_n)
\]

Therefore \(u \) belongs to \(\sigma_{\varphi}^{-1}(V) \) if and only if it belongs to

\[
(\varphi^{-1}(h_1)c_1 \varphi^{-1}(h_2)c_2 \cdots \varphi^{-1}(h_k)c_k A^*)_{r,p}
\]

where \(h_1 = g_1, h_2 = (g_1 \varphi(c_1))^{-1} g_2, \ldots, h_k = (g_k-1 \varphi(c_k-1))^{-1} g_k \). Since \(G \) is in \(\text{Ab}^{p-1} \), the languages \(\varphi^{-1}(h_1), \ldots, \varphi^{-1}(h_k) \) are, by Proposition 2.2, a disjoint union of \((p-1)\)-elementary commutative languages. To conclude the proof, it remains to use Proposition 2.5 to “distribute” the modular product \((L_0 a_1 L_1 \cdots a_k L_k)_{r,p}\) over this disjoint union. \(\square \)

We can now formulate our result in terms of varieties of languages.

Corollary 2.9 For every alphabet \(A \), \(U_p(A^*) \) is the Boolean algebra generated by the languages of the form \((L_0 a_1 L_1 \cdots a_k L_k)_{r,p}\), where each \(L_i \) is a \((p-1)\)-elementary commutative language of \(A^* \).
Corollary 2.10 For every alphabet A, $U(A^\ast)$ is the Boolean algebra generated by the languages of the form $(L_0a_1L_1\cdots a_kL_k)_{r,p}$, where each L_i is a $(p-1)$-elementary commutative language of A^\ast, for any prime p.

2.4 Transducers and languages recognized by supersoluble groups

We now give another description of the variety of languages associated with the variety of supersoluble groups.

A transducer with output in \mathbb{F}_p is a 5-tuple $T = \langle Q, A, I, F, E \rangle$ where Q is a finite set of states, A is the input alphabet, $I \subseteq Q$ is the set of initial and $F \subseteq Q$ the set of final states. The set of transitions E is a finite subset of $Q \times A \times \mathbb{F}_p^* \times Q$. Intuitively, a transition (p, a, r, q) is interpreted as follows: if a is an input letter, the automaton moves from state p to state q and produces the output r.

It is convenient to represent a transition (p, a, r, q) as an edge $p \xrightarrow{a} r \rightarrow q$. Initial (resp. final) outputs are represented by incoming (resp. outgoing) arrows. A successful path is a sequence of consecutive transitions: $q_0 \xrightarrow{a_1} r_1 \rightarrow q_1 \xrightarrow{a_2} r_2 \rightarrow q_2 \cdots q_{n-1} \xrightarrow{a_n} r_n \rightarrow q_n$ starting in some initial state and ending in some final state. The label of the path is the word $a_1a_2\cdots a_n$. Its output is the product $r_1r_2\cdots r_n$. The function realized by T maps each word u of A^\ast onto the sum of the outputs of all successful paths of label u.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{transducer.png}
\caption{A transducer with output in \mathbb{F}_5.}
\end{figure}

For instance, if τ is the transduction realised by the transducer of Figure 2.1, there are five successful paths of input label $abab$.

\begin{align*}
&\text{(1)} \quad 1 \xrightarrow{a} 1 \xrightarrow{b} 1 \xrightarrow{a^{-1}} 2 \xrightarrow{b} 3 & \text{(2)} \quad 1 \xrightarrow{a} 1 \xrightarrow{b} 1 \xrightarrow{a} 3 \xrightarrow{b} 3 \\
&\text{(3)} \quad 1 \xrightarrow{a^{-1}} 2 \xrightarrow{b} 2 \xrightarrow{a} 2 \xrightarrow{b} 3 & \text{(4)} \quad 1 \xrightarrow{a^{-1}} 2 \xrightarrow{b} 2 \xrightarrow{a^{-1}} 3 \xrightarrow{b} 3 \\
&\text{(5)} \quad 1 \xrightarrow{a} 3 \xrightarrow{b} 3 \xrightarrow{a^{-1}} 3 \xrightarrow{b} 3
\end{align*}

The output of the first path is $2 \times 1 \times (-1) \times 2 = 1 \mod 5$, the output of the other paths are respectively -1, 1, -1 and 1. It follows that $\tau(abab) = 1 - 1 + 1 - 1 + 1 = 1$.

A transducer is in strict triangular form if $Q = \{1, \ldots, n\}$, 1 is the unique initial state, n is the unique final state, and its transitions satisfy the two following conditions:
(1) there is no transition from p to q such that $p > q$.

(2) for $p < q$ and for each letter $a \in A$, there is at most one transition from p to q with label a,

(3) for each letter $a \in A$ and every state $q \in Q$ there is exactly one transition of the form $q \overset{air}{\rightarrow} q$, for some $r \in F_p$.

For instance, the transducer in Figure 2.1 is in strict triangular form. To each combination of languages of the form τ, Theorem 2.11 function realised by some transducer in strict triangular form.

Proof. On our example, we obtain

$$
\mu(a)_{p,q} = \begin{cases}
0 & \text{if there is no transition of label } a \text{ from } p \text{ to } q \\
r & \text{if } p \overset{ar}{\rightarrow} q \text{ is the unique transition of label } a \text{ from } p \text{ to } q
\end{cases}
$$

On our example, we obtain

$$
\begin{align*}
\mu(a) &= \begin{pmatrix} 2 & -1 & 1 \\
0 & 1 & 0 \\
0 & 0 & -1 \end{pmatrix} \\
\mu(b) &= \begin{pmatrix} 1 & 0 & 0 \\
0 & 2 & 2 \\
0 & 0 & 2 \end{pmatrix} \\
\mu(abab) &= \begin{pmatrix} -1 & 2 & 1 \\
0 & -1 & 0 \\
0 & 0 & -1 \end{pmatrix}
\end{align*}
$$

The linear presentation gives an easy way to compute the function realised by the transducer, since $\tau(u) = \mu(u)_{1,n}$ (see [3] for details). For instance, on our example, $\mu(abab)_{1,3} = 1$.

We can now state our last characterisation of the variety of languages U_p.

Theorem 2.11 A language belongs to $U_p(A^*)$ if and only if is a Boolean combination of languages of the form $\tau^{-1}(r)$, where $r \in F_p$ and $\tau : A^* \rightarrow F_p$ is a function realised by some transducer in strict triangular form.

Proof. Let B be the Boolean algebra described in the statement of the theorem. We want to show that $B = U_p(A^*)$.

Consider a function $\tau : A^* \rightarrow F_p$ realised by a transducer in strict triangular form and let $\mu : A^* \rightarrow B_n(F_p)$ be its linear representation. Let $r \in F_p$. We claim that the language $\tau^{-1}(r)$ is recognized by $B_n(F_p)$. Indeed, since $\tau^{-1}(r) = \{ u \in A^* \mid \mu(u)_{1,n} = r \}$, one has $\tau^{-1}(r) = \mu^{-1}(R)$ where R is the set of all matrices m of $B_n(F_p)$ such that $m_{1,n} = r$. This proves the claim and shows that the languages of the form $\tau^{-1}(r)$ are in $U_p(A^*)$. The inclusion $B \subseteq U_p(A^*)$ follows, since both B and $U_p(A^*)$ are Boolean algebras.

Conversely, since by Theorem 1.2, the variety $G_p * \text{Ab}^{p-1}$ is generated by the groups $B_n(F_p)$, the Boolean algebra $U_p(A^*)$ is generated by the languages recognized by $B_n(F_p)$, for some $n > 0$. Consider a language L of A^* recognized by $B_n(F_p)$. By definition, there exists a morphism $\eta : A^* \rightarrow B_n(F_p)$ and a subset P of $B_n(F_p)$ such that $L = \eta^{-1}(P)$. We claim that L belongs to B. Since $\eta^{-1}(P) = \bigcup_{m \in P} \eta^{-1}(m)$, it suffices to establish the result when P contains a single matrix m. Observe that

$$
\eta^{-1}(m) = \bigcap_{1 \leq i,j \leq n} L_{i,j} \quad \text{where} \quad L_{i,j} = \{ u \in A^* \mid \eta(u)_{i,j} = m_{i,j} \}
$$

Put $t = j - i + 1$ and let $\mu : A^* \rightarrow B_t(F_p)$ be the morphism defined, for all $a \in A$, by

$$
\mu(a)_{k,\ell} = \eta(a)_{i+k-1,i+\ell-1} \quad \text{for } 1 \leq k, \ell \leq t
$$

9
Thus $\mu(a)$ is the submatrix of $\eta(a)$ whose right top element is $\eta(u)_{i,j}$ and bottom left element is $\eta(u)_{j,i}$. It follows that, for all $u \in A^*$, $\mu(u)_{1,t} = \eta(u)_{1,t}$. Setting $m_{i,j} = r$, one sees that $u \in L_{i,j}$ if and only if $\mu(u)_{1,t} = r$. Therefore L is of the form $\tau^{-1}(r)$, where τ is the function realised by the transducer in strict triangular form defined by μ. □

Corollary 2.12 A language belongs to $U(A^*)$ if and only if it is a Boolean combination of languages of the form $\tau^{-1}(r)$, where $r \in \mathbb{F}_p$, p is a prime number and $\tau : A^* \to \mathbb{F}_p$ is a function realised by some transducer in strict triangular form.

References

