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On two combinatorial problems arising from automata theory

We present some partial results on the following conjectures arising from automata theory. The first conjecture is the triangle conjecture due to Perrin and Schützenberger. Let A = {a, b} be a two-letter alphabet, d a positive integer and let

The second conjecture is due to Černý and the author. Let A be an automaton with n states. If there exists a word of rank nk in A, there exists such a word of length k 2 .

Introduction

The theory of automata and formal langauges provides many beautiful combinatorial results and problems which, I feel, ought to be known. The book recently published: Combinatorics on words, by Lothaire [START_REF] Lothaire | Combinatorics on Words[END_REF], gives many examples of this.

In this paper, I present two elegant combinatorial conjectures which are of some importance in automata theory. The first one, recently proposed by Perrin and Schützenberger [START_REF] Perrin | A conjecture on sets of differences of integer pairs[END_REF], was originally stated in terms of coding theory. Let A = {a, b} be a two-letter alphabet and let A * be the free monoid generated by A. Recall that a subset C of A * is a code whenever the submonoid of A * generated by C is free with base C; i.e., if the relation

c 1 • • • c p = c ′ 1 • • • c ′ q
, where c 1 , . . . , c p , c ′ 1 , . . . , c ′ q are elements of C implies p = q and c i = c ′ i for 1 i p. Set, for any d > 0, B d = {a i ba j | 0 i + j d}. One can now state the following conjecture:

The triangle conjecture. Let d > 0 and X ⊂ B d . If X is a code, then |X| d + 1.

The term "The triangle conjecture" originates from the following construction: if one represents every word of the form a i ba j by a point (i, j) ∈ N 2 , the set B d is represented by the triangle {(i, j) ∈ N 2 | 0 i + j d}. The second conjecture was originally stated by Černý (for k = n-1) [START_REF] Černý | Communication[END_REF] and extended by the author. Recall that a finite automaton A is a triple (Q, A, δ), where Q is a finite set (called the set of states), A is a finite set (called the alphabet) and δ : Q × A → Q is a map. Thus δ defines an action of each letter of A on Q. For simplicity, the action of the letter a on the state q is usually denoted by qa. This action can be extended to A * (the free monoid on A) by the associativity rule (qw)a = q(wa) for all q ∈ Q, w ∈ A * , a ∈ A Thus each word w ∈ A * defines a map from Q to Q and the rank of w in A is the integer Card{qw | q ∈ Q}.

One can now state the following

Conjecture (C).

Let A be an automaton with n states and let 0 k n -1. If there exists a word of rank nk in A, there exists such a word of length k 2 .

2 The triangle conjecture I shall refer to the representation of X as a subset of the triangle {(i, j) ∈ N 2 | 0 i + j d} to describe some properties of X. For example, "X has at most two columns occupied" means that there exist two integers 0 i 1 < i 2 such that X is contained in a i1 ba * ∪ a i2 ba * . Only a few partial results are known on the triangle conjecture. First of all the conjecture is true for d 9; this result has been obtained by a computer, somewhere in Italy.

In [START_REF] Hansel | Baionnettes et cardinaux[END_REF], Hansel computed the number t n of words obtained by concatenation of n words of B d . He deduced from this the following upper bound for |X|.

Theorem 2.1 Let X ⊂ B d . If X is a code, then |X| (1 + (1/ √ 2))(d + 1).
Perrin and Schützenberger proved the following theorem in [START_REF] Perrin | A conjecture on sets of differences of integer pairs[END_REF].

Theorem 2.2 Assume that the projections of X on the two components are both equal to the set {0, 1, . . . , r} for some r d. If X is a code, then |X| r + 1. Of course statements 2.3, 2.4, 2.5 are also true if one switches "row" and "column".

A conjecture on finite automata

We first review some results obtained for Conjecture (C) in the particular case k = n-1: "Let A be an automaton with n states containing a word of rank 1. Then there exists such a word of length (n -1) 2 ." First of all the bound (n -1) 2 is sharp. In fact, let A n = (Q, {a, b}, δ), where Q = {0, 1, . . . , n -1}, ia = i and ib = i + 1 for i = n -1, and (n -1)a = (n -1)b = 0.

Then the word (ab n-1 ) n-2 a has rank 1 and length (n -1) 2 and this is the shortest word of rank 1 (see [START_REF] Černý | Communication[END_REF] or [START_REF] Pin | Le problème de la synchronisation. Contribution à l'étude de la conjecture de Černý[END_REF] for a proof). Moreover, the conjecture has been proved for n = 1, 2, 3, 4 and the following upper bounds have been obtained [START_REF] Starke | Eine Bemerkung über homogene Experimente[END_REF]17], 1966) For the general case, the bound k 2 is also the best possible (see [START_REF] Pin | Le problème de la synchronisation. Contribution à l'étude de la conjecture de Černý[END_REF]) and the conjecture has been proved for k = 0, 1, 2, 3 [START_REF] Pin | Le problème de la synchronisation. Contribution à l'étude de la conjecture de Černý[END_REF]. The best known upper bound was

2 n -n -1 ( Černý [2], 1964) 1 2 n 3 - 3 2 n 2 + n + 1 (Starke
1 2 n 3 -n 2 + n 2 (Kohavi [6],
1 3 k 3 - 1 3 k 2 + 13 6 k -1[11]
We prove here some improvements of these results. We first sketch the idea of the proof. Let A = (Q, A, δ) be an automaton with n states. For K ⊂ Q and w ∈ A * , we shall denote by Kw the set {qw | q ∈ K}. Assume there exists a word of rank nk in A. Since the conjecture is true for k 3, one can assume that k 4. Certainly there exists a letter a of rank = n. (If not, all words define a permutation on Q and therefore have rank n).Set K 1 = Qa. Next look for a word m 1 (of minimal length) such that

K 2 = K 1 m 1 satisfies |K 2 | < |K 1 |. Then apply the same procedure to K 2 , etc. until one of the |K i 's satisfies |K i | n -k: Q a -→ K 1 m1 -→ K 2 m2 -→ • • • K r-1 mr-1 -→ K r |K r | n -k Then am 1 • • • m r-1 has rank n -k.
The crucial step of the procedure consists in solving the following problem:

Problem P. Let A = (Q, A, δ) be an automaton with n states, let 2 m n and let K be an m-subset of Q. Give an upper bound of the length of the shortest word w (if it exists) such that |Kw| < |K|.

There exist some connections between Problem P and a purely combinatorial Problem P'.

Problem P'. Let Q be an n-set and let s and t be two integers such that s + t n.

Let (S i ) 1 i p and (T i ) 1 i p be subsets of Q such that (1) For 1 i p, |S i | = s and |T i | = t. (2) For 1 i p, S i ∩ T i = ∅. (3) For 1 j < i p, S j ∩ T i = ∅. Find the maximum value p(s, t) of p. We conjecture that p(s, t) = s+t s = s+t t . Note that if (3) is replaced by (3 ′ ) For 1 i = j p, S i ∩ T j = ∅.
then the conjecture is true (see Berge [1, p. 406]).

We now state the promised connection between Problems P and P'.

Proposition 3.1 Let A = (Q, A, δ) be an automaton with n states, let 0 s n -2 and let K be an (ns)-subset of Q. If there exists a word w such that |Kw| < |K|, one can choose w with length p(s, 2).

Proof. Let w = a 1 • • • a p be a shortest word such that |Kw| < |K| = n -s and define K 1 = K, K 2 = K 1 a 1 , . . . , K p = K p-1 a p-1 .
Clearly, an equality of the form

|K i | = |Ka 1 • • • a i | < |K| for some i < p is inconsistent with the definition of w. Therefore |K 1 | = |K 2 | = • • • = |K p | = (n -s). Moreover, since |K p a p | < |K p |, K p
contains two elements x p and y p such that x p a p = y p a p . Define 2-sets T i = {x i , y i } ⊂ K i such that x i a i = x i+1 and y i a i = y i+1 for 1 i p -1 (the T i are defined from T p = {x p , y p }). Finally, set

S i = Q \ K i . Thus we have (1) For 1 i p, |S i | = s and |T i | = 2.
(2) For 1 i p, S i ∩ T i = ∅. Finally assume that for some 1 j < i p, S i ∩ T i = ∅, i.e., {x i , y i } ⊂ K i . Since

x i a i • • • a p = y i a i • • • a p , it follows that |Ka 1 • • • a j-1 a i • • • a p | = |K j a i • • • a p | < n -s But the word a 1 • • • a j-1 a i • • • a p is shorter that w, a contradiction.
Thus the condition (3), for 1 j < i p, S j ∩T i = ∅, is satisfied, and this concludes the proof. I shall give two different upper bounds for p(s) = p(2, s).

Proposition 3.2 (1) p(0) = 1, (2) p(1) = 3, (3) p(s) s 2 -s + 4 for s 2.
Proof. First note that the S i 's (T i 's) are all distinct, because if S i = S j for some j < i, then S i ∩ T i = ∅ and S i ∩ T j = ∅, a contradiction. Assertion (1) is clear.

To prove (2) assumet that p(1) > 3. Then, since T 4 ∩S 1 = ∅, T 4 ∩S 2 = ∅, T 4 ∩S 3 = ∅, two of the three 1-sets S 1 , S 2 , S 3 are equal, a contradiction.

On the other hand, the sequence

S 1 = {x 1 }, S 2 = {x 2 }, S 3 = {x 3 }, T 1 = {x 2 , x 3 }, T 2 = {x 1 , x 3 }, T 3 = {x 1 , x 2 }
satisfies the conditions of Problem P'. Thus p(1) = 3.

To prove (3) assume at first that S 1 ∩ S 2 = ∅ and consider a 2-set T i with i 4. Such a set meets S 1 , S 2 and S 3 . Since S 1 and S 2 are disjoint sets, T i is composed as follows:

• either an element of S 1 ∩ S 3 with an element of S 2 ∩ S 3 ,

• or an element of S 1 ∩ S 3 with an element of S 2 \ S 3 ,

• or an element of S 1 \ S 3 with an element of S 2 ∩ S 3 . Therefore

p(s) -3 |S 1 ∩ S 3 ||S 2 ∩ S 3 | + |S 1 ∩ S 3 ||S 2 \ S 3 | + |S 1 \ S 3 ||S 2 ∩ S 3 | = |S 1 ∩ S 3 ||S 2 | + |S 1 ||S 2 ∩ S 3 | -|S 1 ∩ S 3 ||S 2 ∩ S 3 | = s(|S 1 ∩ S 3 | + |S 2 ∩ S 3 |) -|S 1 ∩ S 3 ||S 2 ∩ S 3 | Since S 1 , S 2 , S 3 are all distinct, |S 1 ∩ S 3 | s -1. Thus if |S 1 ∩ S 3 | = 0 or |S 2 ∩ S 3 | = 0 it follows that p(s) s(s -1) + 3 = s 2 -s + 3 If |S 1 ∩ S 3 | = 0 and S 2 ∩ S 3 | = 0, one has |S 1 ∩ S 3 ||S 2 ∩ S 3 | |S 1 ∩ S 3 ||S 2 ∩ S 3 | -1,
and therefore:

p(s) 3 + (s -1)(|S 1 ∩ S 3 | + |S 2 ∩ S 3 |) + 1 s 2 -s + 4, since |S 1 ∩ S 3 | + |S 2 ∩ S 3 | |S 3 | = s.
We now assume that a = |S 1 ∩ S 2 | > 0, and we need some lemmata.

Lemma 3.3 Let x be an element of Q. Then x is contained in at most (s + 1) T i 's.

Proof. If not there exist (s + 2) indices i 1 < . . . < i s+2 such that T ij = {x, x ij } for 1 j s + 2. Since S i1 ∩ T i1 = ∅, x / ∈ S i1 . On the other hand, S i1 meets all T ij for 2 j s + 2 and thus the s-set S i1 has to contain the s + 1 elements x i2 , . . . , x is+2 , a contradiction. Lemma 3.4 Let R be an r-subset of Q. Then R meets at most (rs + 1) T i 's.

Proof. The case r = 1 follows from Lemma 3.3. Assume r 2 and let x be an element of R contained in a maximal number N x of T i 's. Note that N x s + 1 by Lemma 3.3. If N x s for all x ∈ R, then R meets at most rs T i 's. Assume there exists an x ∈ R such that N x = s + 1. Then x meets (s + 1) T i 's, say T i1 = {x, x i1 }, . . . , T is+1 = {x, x is+1 } with i 1 < . . . < i s+1 .

We claim that every y = x meets at most s T i 's such that i = i 1 , . . . , i s+1 . If not, there exist s + 1 sets T j1 = {y, y j1 }, . . . , T js+1 = {y, y js+1 } with j 1 < . . . < j s+1 containing y. Assume i 1 < j 1 (a dual argument works if j 1 < i 1 ). Since S i1 ∩ T i1 = ∅, x / ∈ T i1 and since S i1 meets all other T i k , S i1 = {x i2 , . . . , x is+1 }. If y ∈ T i1 , y belongs to (s + 2) T i 's in contradiction to Lemma 3.3. Thus |S i1 | > s, a contradiction. This proves the claim and the lemma follows easily.

We can now conclude the proof of (3) in the case |S 1 ∩ S 2 | = a > 0. Consider a 2-set T i with i 3. Since T i meets S 1 and S 2 , either T i meets S 1 ∩ S 2 , or T i meets S 1 \ S 2 and S 2 \ S 1 . By Lemma 3.4, there are at most (as + 1) T i 's of the first type and at most (sa) 2 T i 's of the second type. It follows that p(s) -2 (sa) 2 + as + 1 and hence p(s) s 2 + a 2as + 3 s 2s + 4, since 1 a s -1.

Two different upper bounds were promised for p(s). Here is the second one, which seems to be rather unsatisfying, since it depends on n = |Q|. In fact, as will be shown later, this new bound is better than the first one for s > ⌊n/2⌋.

Proposition 3.5 Let a = ⌊n/(n -s)⌋. Then p(s) 1 2 ns + a = a + 1 2 s 2 + (1 -a 2 )ns + a 2 n 2 + a if n -s divides n, and 
p(s) a + 1 2 s 2 + (1 -a 2 )ns + a 2 n 2 + a + 1 if n -s does not divide n.
Proof. Denote by N i the number of 2-sets meeting S j for j < i but not meeting S i . Note that the conditions of Problem P' just say that N i > 0 for all i p(s). The idea of the proof is contained in the following formula

1 i p(s) N i n 2 (1) 
This is clear since the number of 2-subsets of Q is n 2 . The next lemma provides a lower bound for N i .

Lemma 3.6 Let Z i = j<i S j \ S i and |Z i | = z i . Then N i zi 2 + z i (n -s -z i ).
Proof. Indeed, any 2-set contained in Z i and any 2-set consisting of an element of Z i and of an element of Q \ (S i ∪ Z i ) meets all S j for j < i but does not meet S i .

We now prove the proposition. First of all we claim that

1 i p(s) Z i = Q If not, Q \ (∪ Z i ) = 1 i s(p) S i
is nonempty, and one can select an element x in this set. Let T be a 2-set containing x and S be an s-set such that S ∩ T = ∅. Then the two sequences S 1 , . . . , S p(s) , S and T 1 , . . . , T p(s) , T satisfy the conditions of Problem P' in contradiction to the definition of p(s). Thus the claim holds and since all Z i 's are pairwise disjoint:

z i = n (2) 
It now follows from (1) that p(s) n 2 -

1 i p(s) (N i -1) (3) 
Since N i > 0 for all i, Lemma 3.6 provides the following inequality:

p(s) n 2 - zi>0 f (z i ) (4) 
where f (z) = z 2 + z(nsz) -1. Thus, it remains to find the minimum of the expression f (z i ) when the z i 's are submitted to the two conditions (a)

z i = n (see (2)) and (b) 0 < z i n -s (because Z i ⊂ Q \ S i ).
Consider a family (z i ) reaching this minimum and which furthermore contains a minimal number α of z i 's different from (ns).

We claim that α 1. Assume to the contrary that there exist two elements different from ns, say z 1 and z 2 . Then an easy calculation shows that

f (z 1 + z 2 ) f (z 1 ) + f (z 2 ) if z 1 + z 2 n -s, f (n -s) + f (z 1 + z 2 -(n -s)) f (z 1 ) + f (z 2 ) if z 1 + z 2 > n -s.
Thus replacing z 1 and z 2 by z 1 + z 2 -in the case z 1 + z 2 ns -or by (ns) and

z 1 + z 2 -(n -s) -in the case z 1 + z 2 > n -s -leads to a family (z ′ i ) such that f (z ′ i ) f (z i
) and containing at most (α -1) elements z ′ i different from ns, in contradiction to the definition of the family (z i ). Therefore α = 1 and the minimum of f (z i ) is obtained for

z 1 = • • • = z α = n -s if n = a(n -s),
and for

z 1 = • • • = z α = n -s, z α+1 = r if n = a(n -s) + r with 0 < r < n -s.
It follows from inequality (4) that

p(s) n 2 -af (n -s) if n = a(n -s), p(s) n 2 -af (n -s) -f (r) if n = a(n -s) + r with 0 < r < n -s.
where f (z) = n 2 + z(nz) -1. Proposition 3.5 follows by a routine calculation.

We now compare the two upper bound for p(s) obtained in Propositions 3.2 and 3.5 for 2 s n -2. Case 1. 2 s (n/2) -1.

Then a = 1 and Proposition 3.5 gives p(s) s 2 + 2. Clearly s 2s + 4 is a better upper bound. 

p(s) a + 1 2 s 2 + (1 -a 2 )ns + a 2 n 2 + a + 1 s 2 -s + 1 2 a(a -1)(n -s) 2 -((a -1)(n -s) -1)s + a + 1 Since s (1 -a)(n -s), a short calculation shows that p(s) s 2 -s + 4 - 1 2 (a -1)(a -2)(n -s) 2 + (a -1)(n -s) + (a -3) Since a 3, -1 2 (a -1) -1 and thus p(s) s 2 -s + 4 -(a -2)(n -s) 2 + (a -1)(n -s) + (a -3),
and it is not difficult to see that for ns 2,

-(a -2)(n -s) 2 + (a -1)(n -s) + (a -3) 0
Therefore Proposition 3.5 gives a better bound in this case. The next theorem summarizes the previous results.

Theorem 3.7 Let A = (Q, A, δ) be an automaton with n states, let 0 s n -2 and let K be an (ns)-subset of Q. If there exists a word w such that |Kw| < |K|, one can choose w with length ϕ(n, s) where a = ⌊n/(ns)⌋ and

ϕ(n, s) =      1 if s = 0, 3 if s = 3, s 2 -s + 4 if 3 s n/2, ϕ(n, s) = a + 1 2 s 2 + (1 -a 2 )ns + a 2 n 2 + a = 1 2 ns + a if n = a(n -s) and s > n/2, ϕ(n, s) = a + 1 2 s 2 + (1 -a 2 )ns + a 2 n 2 + a + 1 if n -s does not divide n and s > n/2.
We can now prove the main results of this paper.

Theorem 3.8 Let A be an automaton with n states and let 0 k n -1. If there exists a word of rank nk in A, there exists such a word of length G(n, k) where

G(n, k) =      k 2
for k = 0, 1, 2, 3,

1 3 k 3 -k 2 + 14 3 k -5 for 4 k (n -2) + 1, 9 + 3 s k-1 ϕ(n, s) for k (n + 3)/2.
Observe that in any case Proof. Assume that there exists a word w of rank nk in A. Since Conjecture (C) has been proved for k 3, we may assume k 4 and there exists a word w 1 of length 9 such that Qw 1 = K 1 satisfies |K 1 | n -3. It suffices now to apply the method decribed at the beginning of this section which consists of using Theorem 3.7 repetitively. This method shows that one can find a word of rank n-k in A of length 9 + 3 s k-1 ϕ(n, s) = G(n, k). In particular, ϕ(n, s) = s 2s + 4 for s n/2 and thus

G(n, k) 1 3 k 3 -k 2 + 14 3 k -5
G(n, k) = 1 3 k 3 -k 2 + 14 3 k -5 for 4 k (n -2) + 1
It is interesting to have an estimate of G(n, k) for k = n -1.

Theorem 3.9 Let A be an automaton with n states. If there exists a word of rank 1 in A, there exists such a word of length F (n) where

F (n) = ( 1 2 - π 2 36 )n 3 + o(n 3 ).
Note that this bound is better than the bound in Finally we have

F (n) = n 3 1 + 1 6 (2ζ(2) -ζ(3)) + 1 6 ζ(3) - 1 2 ζ(2) - 1 2 + o(n 3 ) = 1 2 - 1 6 ζ(2) n 3 + o(n 3 ) = 1 2 - π 2 36 n 3 + o(n 3 )
which concludes the proof of Theorem 3.9.

Note added in proof

(1) P. Shor has recently found a counterexample to the triangle conjecture.

(2) Problem P' has been solved by P. Frankl. The conjectured estimate p(s, t) = s+t s is correct. It follows that Theorem 3.8 can be sharpened as follows: if there exists a word of rank n-k in A there exists such a word of length 1 6 k(k+1)(k+2)-1 (for 3 k n -1).

s 2 -s + 4 Case 4 .

 244 Case 2. s = n/2. Then a = 2 and Proposition 3.5 gives p(s) s 2 + 2. Again s 2s + 4 is better. Case 3. (n + 1)/2 s (2n -1)/3. Then a = 2 and Proposition 3.5 gives p(s) 3s 2 -3ns + n 2 + 3 = s 2s + 4 + (ns -1)(n -2s + 1) 2n/3 s. Then a 3 and Proposition 3.5 gives

F0 s n- 1 hF (n) = 1 i 6 T

 16 (n) = G(n, n -1) = 0 s n-2 h(n, s) + o(n 3 ) = (n, s) + o(n 3 ) A new calculation shows that h(n, ns) = n 2 + (⌊n/s⌋ + 1)( 1 2 ⌊n/s⌋s 2sn + 1)ε(ns) Therefore i (n) + o(n 3 + 1ε(ns).Clearly T 5 = -1 2 n 3 + o(n 3 ) and T 6 = o(n 3 ). The terms T 2 , T 3 and T 4 need a separate study.It follows that for all n 0 ∈ N

Table 1

 1 

	k\n 1 2 3 4 5	6	7	8	9	10	11	12
	1	0 1 4 9 19 34 56 85 125 173 235 310
	2	0 1 4 9 19 35 57 89 128 180 244
	3	0 1 4	9 19 35 59	90 133 186
	4	0 1	4	9 19 35	59	93 135
	5	0	1	4	9	19	35	59	93
	6		0	1	4	9	19	35	59
	7			0	1	4	9	19	35
	8				0	1	4	9	19
	9					0	1	4	9
	10						0	1	4
	11							0	1
	12								0
		Figure 1: Values of G(n, k) for 0 k n 12.	

gives values of G(n, k) for 0 k n 12.

(⌊n/s⌋ 2 + ⌊n/s⌋)