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Rewritings for Polarized Multipliative andExponential Proof Strutures(rapport interne LIPN - Février 2007)Christophe Fouqueré⋆ and Virgile Mogbil⋆LIPN � UMR7030, CNRS � Université Paris 13,99 av. J-B Clément, F�93430 Villetaneuse, Franehristophe.fouquere�lipn.univ-paris13.frvirgile.mogbil�lipn.univ-paris13.frAbstrat. We study onditions for a onurrent onstrution of proof-nets in the framework of linear logi following Andreoli's works. We de�nespei� orretness riteria for that purpose. We �rst study the multi-pliative ase and show how the orretness riterion given by Danos anddeidable in linear time, may be extended to losed modules (i.e. validityof polarized proof strutures). We then study the exponential ase. Thishas natural appliations in (onurrent) logi programming as validityof partial proof strutures may be interpreted in terms of validity of aonurrent exeution of lauses in an environment.1 IntrodutionGirard in his seminal paper [9℄ gave a parallel syntax for multipliative linearlogi (MLL) as oriented graphs alled proof-strutures. Let us reall that a MLLformula is either an atomi formula A, a negation of an atomi formula, or builtwith a binary onnetive ⊗ or P. In the original de�nition, a proof-struture forMLL is onstruted by means of the following binary links:
⊗-link: A B

A ⊗ B

⊗ P-link: A B

A P B
P axiom-link:

A A⊥where every ourrene of formula is a premise of at most one link and is aonlusion of exatly one link. A orretness riterion enables one to distinguishsequentializable proof-strutures (the so alled proof-nets) from "bad" strutures(that do not orrespond to proofs in the sequent alulus). After Girard's longtrip orretness riterion, numerous equivalent properties were found. In par-tiular, Danos and Regnier [7℄ proved that swithed proof-strutures should betrees, where swithing is done by deleting one of the premises of eah P-link.Danos [6℄ showed that it is the ase i� the proof struture rewrites to • (⊗ isalled a ontrated node):
⋆ Partially supported by ACI NIM projet Géométrie du Calul (GEOCAL), Frane.



(1) ⊗ −→ (2) −→ (3) P −→ (4) P −→While a lot of researh has been done on �nding e�ient orretness riteriafor MLL, it still remains to study orretness riteria in ase of polarized proof-strutures in MLL, and broaden it to the exponential ase. First used by An-dreoli in Logi Programming [1℄ and also onsidered in Girard's works [10℄ and inLaurent's works about Polarized Linear Logi [13℄, this onept of polarizationallows to onsider lustered strutures. Reently, polarized proof strutures arisenaturally in logi programming models [2�4℄. The basi objets we onsider arethen proof strutures with two strata we all elementary bipolar modules, thatmay be ombined into modules. We reall the multipliative ase in the followingsetion (the reader may �nd in [8℄ extension to open modules). We de�ne a or-retness riterion that takes are of the parallel struture of modules, extendingthe Danos riterion. In setion 3, we analyze how modules may be generalizedto take are of exponentials.2 The multipliative aseWe onsider in this setion the extension MLLu of MLL with 1 the unit of ⊗.Formulae are given as:
F := 1 | G
G1, G2 := A | A⊥ atomi formula or its negation

| G1 ⊗ 1 | 1 ⊗ G1 | G1 ⊗ G2 | G1 P G2Let PSn be the direted graphs where edges are labelled by formulae of MLLuand built with the following links (n ≥ 1):
⊗-link:

A1 ⊗ · · · ⊗ An

⊗

A1 An P-link:
A1 P . . . P An

PA1 An axiom-link:
A A⊥

1-link:
1

1possibly with edges pending downwards. Elements of PSn are alled proof stru-tures. Formulae labelling pending edges are the onlusions of the proof stru-ture, nodes with pending edges are alled onlusion nodes. Labels on edges areomitted when lear from the ontext.Proposition 1. Let π be a proof struture of PSn, π is a proofnet (i.e. sequen-tializable) i� π →∗ •:(1) ⊗ −→ (2) −→ (3) 1
−→(4) P −→ (5) P −→ (6) P −→



In ase (4), there must exist at least one edge between the two nodes.The proof of the proposition follows from the standard one on binary proofstrutures for MLL [6℄, and the following remarks: ⊗ and P are assoiative andommutative, the 1-ary P onnetive is by onvention the identity, 1 is a unitfor ⊗.We �rst give the de�nition of an elementary bipolar module (EBM) and givethe orrespondene with proof strutures. We then de�ne a module as the om-position of EBMs. A module is orret if the orresponding proof struture issequentializable.De�nition 1 (EBM). An EBM M is given by a �nite set H(M) of proposi-tional variables (alled hypotheses) hi and a non empty �nite set C(M) varyingover k of �nite sets Ck(M) of propositional variables (alled onlusions) cj
k.Variables are supposed pairwise distint.1 The set of propositional variables ap-pearing in M is noted v(M). Equivalently, one an de�ne it as a direted graphwith labelled pending edges and two kinds of nodes, one positive pole under anon-empty �nite set of negative poles:

cj1
1 cjK

K

hiThe set of pending edges of an EBM M is alled the border b(M).The proof struture orresponding to an EBM is given by the following trans-formation on poles. The onverse transformation requires the de�nition of BMsde�ned later.if Ck(M) = ∅: → 1 , if Ck(M) 6= ∅: cjk

k

→ P︷ ︸︸ ︷

cjk⊥
k

hi

→ ⊗

︷︸︸︷
hi

An EBM M may be equivalently de�ned as a (type) formula t(M) in thedual language of MLLu (reall that A ⊸ B = A⊥ P B): t(M) = (
⊗

i hi) ⊸

(�k(
⊗

jk
cjk

k )), where we use the onvention that�k Fk =
⊗

k Fk = F1 whenthe domain of k is of ardinal 1, and if the domain of i is empty, (⊗i hi) ⊸ C = Cand if the domain of jk for some k is empty, (
⊗

jk
cjk

k ) = ⊥. However the readershould are that this supposes a bilateral sequent alulus, although the logial1 This restrition is taken for simpliity. The framework an be generalized if we on-sider multisets (of hypotheses and onlusions) instead of sets, and add as requireda renaming mehanism: the results in this paper are still true.



reading of an EBM (or of a proof struture) is unilateral. Three kinds of EBMsare of speial interest: An EBM is initial (resp. �nal) if its set of hypotheses isempty (resp. its set of onlusions is empty). An EBM is transitory if it is neitherinitial nor �nal. Initial EBMs allow to delare available resoures, though �nalEBMs stop part of a omputation by withdrawing a whole set of resoures.Transitory EBMs are alled de�nite lauses in standard logi programming.De�nition 2 (BM). A bipolar module (BM) M is de�ned with hypotheses
H(M), onlusions C(M), and type t(M), indutively in the following way:� An EBM is a BM.� Let M be a BM, and N be an EBM, let I = C(M)∩H(N), their ompositionwrt the interfae I, M ◦I N is a BM with the multiset of hypotheses H(M)∪

(H(N)− I), the multiset of onlusions (C(M)− I)∪C(N), the type t(M)⊗
t(N) and variables v(M) ∪ v(N).The interfae will be omitted when it is lear from the ontext. Note that theinterfae may be empty. The translation from proof strutures of PSn to BMsis given by the two following rules, plus rules not expliited here due to lak ofspae that take are of polarity and the onstant 1:P ⊗

︷ ︸︸ ︷
α

−→ P p⊥ p

⊗

︷︸︸︷
α where p is a fresh atomi formula

⊗

︷︸︸︷
hi

1 1

P︷ ︸︸ ︷

cj1⊥
1 P︷ ︸︸ ︷

cjK⊥
K

−→

cj1
1 cjK

K

hiConsidering BMs in plae of proof strutures for MLLu has valuable onse-quenes in terms of simpliity of orretness riteria as one an take are of thebipole struture of BMs more diretly than it is the ase with a binary struture.De�nition 3 (Corretness (wrt sequentialization)). Let M be a BM, Mis orret if the orresponding proof struture in PSn is sequentializable.Sequentialization means that there exists a formula C built with the onne-tives ⊗ and P, and the variables C(M) suh that the sequent H(M), t(M) ⊢ Cis provable in Linear Logi. Let us brie�y interpret EBMs and BMs in termsof omputation. An EBM has the following operational bottom-up reading: be-ing given in some ontext a multiset of hypotheses (data for the positive pole),the EBM triggers one (linear) eah of the negative poles, these last have tobe used in separate ontexts. Triggering an EBM, that is omposing it with anexisting BM, is nothing else but doing a resolution step in logi programming.However, the resulting BM may not orrespond to a valid omputation. As we



shall fous on haraterizing orretness on losed modules, we adjoin to theterm orret the kind of modules we speak of, e.g. -orret when the module islosed, o-orret in the general setting.A losed module is a BM without any pending edges, i.e. with the sets ofhypotheses and onlusions empty. Corretness of losed modules may be testedeither in terms of provability in a sequent alulus or by means of orretnessriteria for proof strutures. In the following, we onsider the orretness riteriaof Danos [6℄ using a ontration relation and explained in the previous setion,and also the one given by Danos and Regnier [7℄ that uses swithings: let π be aproof struture with binary links and S(π) the set of (swithed) graphs obtainedfrom π by removing exatly one premise edge for eah P link, π is a proof net i�eah graph in S(π) is ayli and onneted. One generalizes this de�nition to
n-ary onnetives by introduing generalized swithes: eah n-ary P onnetiveindues n swithed graphs. One still an de�ne swithed proof-strutures anda riterion generalizing Danos-Regnier orretness riterion on PSn: a proofstruture π is a proof net i� the graphs in S(π) are ayli and onneted. Alosed module M is DR-orret if the proof struture M∗ assoiated to M is aproof net wrt the previous riterion. We abusively refer to the module M insteadof the orresponding proof struture M∗ in the following, speaking of for instaneswithed module instead of swithed proof struture. We immediately have thefollowing proposition as a orollary of the Danos and Regnier riterion theorem:Proposition 2. Let M be a losed module, M is -orret i� M is DR-orret.We give below a (big step) redution relation that takes are of the foaliza-tion property. Though a Danos-like relation would redue eah step one variable,our formulation uses as a whole the struture of a module thanks to foalization.The foalization property states that a sequent is provable i� there exists a proofsuh that deomposition of the positive stratum of formulae is done in one step.Considering bipolar modules, it means that one may de�ne a redution relationsuh that eah step redues one positive-negative pair of nodes.Proposition 3 (Stability). Let M and N be two losed modules suh that
M ։ N , M is -orret i� N is -orret (see Fig. 1).Proof. One an de�ne a funtion from the swithed strutures of the module onthe left of the relation onto the swithed strutures assoiated to the moduleon the right suh that a swithed struture from the left is ayli (resp. on-neted) i� the orresponding swithed struture from the right is ayli (resp.onneted).Theorem 1 (-orretness). A losed module M is -orret i� M →→∗

∪
⊥
▽.Proof. As the redution rules are stable wrt orretness, it remains to provethat a orret non-terminal losed module M an always be redued. We de�nea partial relation on negative poles: a negative pole is smaller than anotherone if there exists a positive pole suh that the �rst negative pole is linked to
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β z }| {

γ

δ

−→→

α β z }| {

γ

δFig. 1. Big step redution relation.the bottom of the positive pole and the seond negative pole is linked to thetop of the positive pole. We onsider the transitive losure of this relation. Ifmaximal negative poles do not exist then there exists at least one yle in themodule alternating positive and negative poles. We an then de�ne a swithingfuntion on the module (hoosing the orret links for negative poles) suh thatthe swithed module has a yle. Hene ontradition. So let us onsider oneof the maximal negative pole, and the orresponding positive pole. We remarkthat suh a negative pole has no outoming links (the module is losed andthe negative pole is maximal). If the positive pole has other negative poles, wean omit the maximal negative pole by neutrality. Otherwise, let us study theinoming negative poles. If there is no suh inoming link, then M is the terminalmodule. If eah inoming negative pole has at least one link going to anotherpositive pole, then one an de�ne a swithing funtion using for eah of thesenegative poles one of the links that does not go to the positive pole we onsidered�rst. Hene the swithed module is not onneted (there are no outgoing links).Hene ontradition. So there exists at least one inoming negative pole withthe whole set of links assoiated to the positive pole: the �rst rule applies andwe are �nished.Note that this proof extensively uses the bipolar nature of modules. Moreover,the proof may have been given onsidering minimal poles in plae of maximalpoles, and for eah proof only one of the two redution rules is su�ient andneessary! Finally, the same tehnique Guerrini [11℄ used for Danos riterion maybe applied here to get a linear algorithm. Studying orretness of open modulesis a neessary step towards the spei�ation of a logi programming languagebased on bipolar modules. We detailed in another paper the extension of thetehnique presented before to open modules [8℄.



3 Dealing with exponentials3.1 Multipliative exponential linear logi (MELL)Adding exponentials to the language obviously inreases its expressivity: it allowsfor representing reusable resoures. In linear logi, the 'of ourse' modality !has this main property: !A ⊸ A ⊗ · · · ⊗ A. Tehnially, three operations areneessary: ontration, derelition and weakening. The �rst operation states that
!A is dupliable. Derelition allows to onsider the lassial formula !A as thelinear one A. The last operation states that !A may be forgotten. The dualmodality 'why not' ? may be interpreted in the following way: ?A⊥ waits forthe 'lassial' resoure !A. This promotion operation is more omplex than theother operations: in terms of proofnets, orretness is assured if a 'box' in theproof net haraterizes the ontext (and this ontext has to be orret by itself).Entries of suh a box are given by one ! and a set of ?.From MELLu to ?-EBMs. The translation from formulae of MELL to mod-ules is not as easy as it is without exponentials. We onsider an extension MELLuof MELL with the neutral element 1 for ⊗, formulae are built from the followinggrammar:

F := 1 | G
G1, G2 := A | A⊥ | G1 ⊗ 1 | 1 ⊗ G1 | G1 ⊗ G2 | G1 P G2 | ?G1 | !G1Converting from formulae to modules requires the use of polarization and foal-ization. Foalization allows to onsider n-ary onnetives. Formulae are polarizednegatively or positively aording to their main onnetives, onsidering onve-niently that variables A, B, . . . are positive whereas their negations A⊥, B⊥, . . .are negative. A preise study of the exponential onnetives leads to the a-knowledgment that exponential onnetives hange the polarity of formulae: if

A is a positive formula, ?A is negative whereas !A⊥ is positive. Hene exponen-tial onnetives may be split into two parts: !A⊥ = ↓♯A⊥ and ?A = ↑♭A. Theshift onnetives ↓ and ↑ do the hanging of polarities. The introdution of shiftonnetives may be generalized also to the linear ase whenever there is a hangeof polarity. The two modalities ♭ and ♯ express exponentiality.We onsider a slightly di�erent version of a polarized system as it was de-signed by Boudes [5℄ or Laurent [13℄: the system LLpol given by Laurent takesare of multipliative as well as additive onnetives where atomi formulae arealways exponentialized. Following our motivations, our language nMELLpol isrestrited to the multipliative ase for simpliity and atomi formulae may belinear or exponential. Finally we use n-ary onnetives and the deompositionof exponentials is expliit. The grammar for nMELLpol is given in the follow-ing way where the set of formulae is expliitly split into positive (P, . . . ) andnegative (N, . . . ) formulae (A is a positive atomi formula):
{

P :=
⊗

i∈I ρi | ♭(
⊗

i∈I ρi)
ρ := A | ↓N

{
N := Pk∈K νk | ♯(Pk∈K νk)
ν := A⊥ | ↑P



We keep as onvention that a 1-ary tensor is the identity and a 0-ary tensor isthe tensor unit 1. Moreover, one an remark that de�ning 1 as ↓♯⊤, where ⊤ isthe neutral for the additive onnetive & , is oherent with our setting and maybe useful extending our framework to additives. Nevertheless, in the following,the standard rule for 1 is impliitly added to the aluli. One an de�ne a n-aryfoalized sequent alulus (A is an atomi formula) as in Fig. 2. Sequents ontaina distinguished plae between ⊢ and ; , they are in one of the two followingforms: ⊢ ; Γ or ⊢ N ; Γ where N is a negative non atomi formula and Γ is amultiset of positive formulae or atomi negative formulae. The sequent alulusis designed suh that, beginning with the distinguished plae empty, searh forproofs onsists of repeating the deomposition of a positive formula followed bythe deomposition of negative formulae (neessarily subformulae of the positiveformula just deomposed), until applying axioms. Note that exponential rulesare as possible integrated to linear rules to quotient the searh spae (e.g. theaxiom rule inludes (♭w), (♭⊗) manages (♭c)). The following translation (−)−from MELLu to nMELLpol is suh that if F is a MELLu formula, ⊢MELLu F isprovable i� ⊢
nMELLpol F−; is provable:

1
+ = 1 A+ = A (F1 ⊗ F2)

+ = F+
1 ⊗ F+

2 (!F )+ = ↓♯F− F+ = ↓F−otherwise
A⊥− = A⊥ (F1 P F2)

− = F−
1 P F−

2 (?F )− = ↑♭F+ F− = ↑F+otherwise
⊢ ; A⊥, A, ♭Ξ

(axiom)
⊢ 1, ♭Ξ

(1)
⊢ ; Γ, A, ♭Ξ ⊢ ; A⊥, ∆, ♭Ξ

⊢ ; Γ, ∆, ♭Ξ
(cut)

. . . ⊢ Ni ; Γi, ♭Ξ . . . ⊢ ; Aj , ∆j , ♭Ξ . . .

⊢ ; N

i∈I ↓Ni

N

j∈J Aj , Γ1, . . . , Γ|I|, ∆1, . . . , ∆|J|, ♭Ξ
(⊗)

. . . ⊢ Ni ; ♭(
N

i∈I ↓Ni

N

j∈J Aj), Γi, ♭Ξ . . . ⊢ ; ♭(
N

i∈I ↓Ni

N

j∈J Aj), Aj , ∆j , ♭Ξ . . .

⊢ ; ♭(
N

i∈I ↓Ni

N

j∈J Aj), Γ1, . . . , Γ|I|, ∆1, . . . , ∆|J|, ♭Ξ
(♭⊗)

⊢ ; P1, . . . , P|I|, A
⊥
1 , . . . , A⊥

|J|, Γ

⊢Pi∈I ↑Pi Pj∈J A⊥
j ; Γ

(P)
⊢ ; P1, . . . , P|I|, A

⊥
1 , . . . , A⊥

|J|, ♭Γ

⊢ ♯(Pi∈I ↑Pi Pj∈J A⊥
j ) ; ♭Γ

(♯ P)Fig. 2. n-ary sequent alulus for nMELLpol (0-ary tensor is 1).The �nal step onsists in �attening nMELLpol formulae to get modules. Bipo-lar modules were previously obtained by adding atomi formulae between twostrata (say from negative to positive): let P1, P2 be positive formulae, N a neg-ative formula, ⊢ P1 ⊗ (N P P2) is provable i� ⊢ P1 ⊗ (N P Z⊥), Z ⊗ P2 isprovable, where Z is a fresh (positive) atomi formula. However this prinipleannot be fully applied when exponentials our: try to �atten the (provable)sequent ⊢ A⊥ P ↑♭(B ⊗ C), A ⊗ ↓♯(B⊥ P C⊥). This an be overome by al-lowing exponential atomi formulae in the language. These exponential atomi



formulae are noted with ♯ or ♭ supersripts: Z♯ and Z♭ are respetively de�ned as
↓♯ ↑Z and ↑♭ ↓Z⊥. We then onsider the translation (−)◦: let C be a non-emptyontext (negative or positive), Z is a fresh atomi formula

C[ ↑
⊗

i∈I ρi]
◦ = C[Z⊥]◦, [Z

⊗

i∈I ρi]
◦

C[ ↑♭
⊗

i∈I ρi]
◦ = C[Z♭]◦, [♭(Z♯

⊗

i∈I ρi)]
◦otherwise (i.e. empty ontext) P ◦ = P, N◦ = ↓N . We still have if F is a MELLuformula, ⊢MELLu F is provable i� ⊢

nMELLpol ; F ◦ is provable. We onsider now draw-ings of the following kind we all ?-EBM:
∗∗

[♯]

Al,1A′
m,1

∗∗
[♯]

Al,kA′
m,k

[♭]

BiPositive and negative poles may now be labelled: a ?-EBM is reusable when
♭ labels its positive part, ♯ labels a promoted variable, brakets mean optional.
∗ labels an exponential atomi negative onlusion of a ?-EBM and we refer to
∗-edge in that ase. Roughly, the orrespondene between plaes of exponentialsin formulae and labelled elements is the following one:

!(X ⊸ Y ) is drawn with the positive pole labelled ♭: YX♭
X ⊸!Y is drawn with a ∗-edge: ∗∗

∗YX
X ⊸?Y is drawn with the negative pole labelled ♯: Y

♯XThe type of a ?-EBM generalizes the type given for an EBM (braketsmean optional): C = [!](
⊗

i∈I Bi ⊸Pk∈K [?] (
⊗

l∈L Al,k

⊗

m∈M Z♯
m,k)) . Suha type (lause in logi programming terminology) ould be interpreted as: C is areusable lause i� ! is expliit. The appliation of a lause is allowed if the Bi areavailable, then one of the onlusions is �red, a onlusion being a multiset ofatomi formulae Al,k or exponential, i.e. reusable, atomi formulae Z♯

m,k. If the
? modality is present, the multiset of onlusions is required to be reusable as awhole: not only these onlusions annot be used with a linear lause but suha lause annot use linear hypotheses. For example, onsider the set of lauses
{1 ⊸ A⊗B, B ⊸?C, !(A⊗C) ⊸ ⊥}. The orresponding module we get is drawnin Fig.3 on the left. The �gure on the right is the orresponding proof-struture(see [9, 12℄ for de�nitions of proof strutures with boxes, extended here to n-aryonnetives). The traversal of the box without the use of a ♭-node shows that thesequent is not provable (a derelition should have been applied), i.e. the ?-EBMon the left is not orret.



♯

♭

♯

?

d

⊗

1P
! P

!

⊗ ⊗

P
Fig. 3. ?-EBM and proofnetsFrom ?-EBMs to modules. De�nitions given in setion 2 for EBMs, that isto say omposition and orretness of modules, annot be straightfully extendedto the exponential ase. Obviously, omposition should satisfy identi�ation ofvariables ourring on links, notiing that ∗-edges an only be linked to ∗-edges.However, ontration needs a speial attention. For the following, we onsiderexpliit ontration: ?-EBMs with positive nodes labelled ♭, and ∗-edges aredupliated if neessary mimiking the property !A ⊸!A ⊗ A, hene the degreeof edges is always 1. The de�nition of omposition given in setion 2 is thenadapted onsequently for ?-EBMs labelled ♭ and ∗-edges. For example, ∗-edgesare dupliated as follows:
⋆Z and Z gives ⋆Z

It is then possible to de�ne the type t(M) of a module M as the formulagiven as the Par of the formulae ourring as ?-EBMs taking are of possibleontrations. Moreover, it is possible to reover a proof-struture M∗ (with, asusual, ontration, weakening and derelition nodes) from a given module M .Finally, a module is -orret if M∗ is a proofnet.3.2 ?-EBMs and orresponding orretness riteriaExtending the language with exponentials yields a major di�ulty due to thepromotion rule, as it is inherently ontextual. Note that allowing ♭ in the lan-guage (and exlude ♯) is su�ient to embed the framework of the previous se-



tions in a programming language: one an onsider a program as a set of (ex-ponential, reusable) EBMs along with a multiset of (linear, usable one) EBMs.This system already extends lassial logi programming in a straightforwardway and orretness of modules is tested with the same redution relation givenin previous setion, after deleting ∗-edges (appliation of the weakening rule)and by onsidering that normal forms may ontain ?-EBMs. We onsider for thefull language the redution system given by the following two rules:
[♯] [♯]

♭
∗∗ ∗∗

♯

[♭]
∗∗

−→ ♯ ♯

[♭]
∗∗ ∗∗

Label ♭ is put on righthand side if option ispresent on left part
[♭]

∗∗ ∗∗

[♭]
∗∗

−→ [♭]
∗∗ ∗∗

Label ♭ is put on righthand side if the two op-tions are present on leftpartPropositions equivalent to the ones given for the multipliative ase may beproved. Obviously, if M is a losed orret module in this fragment then themodule forget(M) built from M forgetting exponentials (omitting labels andreplaing ∗-edges by normal edges) is a losed orret BM. We must also har-aterize normal forms. We add to the redution system two rules orrepondingto neutrality of 1 and weakening of ♭:
[♭]

6=∅ [♯]
−→

[♭]

6=∅ and
♭

[♯]
6=∅ −→Proposition 4 (Stability). Let M and N be two losed modules suh that

M −→ N . The module M is -orret i� N is -orret.Proof. One an de�ne a funtion from left swithed module onto right swithedmodule suh that the relation and its inverse are stable wrt ayliity, onnet-edness.Theorem 2. A losed module M is -orret i� M−→∗

∪
⊥
▽ or M−→∗

∪♭
⊥
▽.Proof. The proof used for the linear ase is adapted here. As the redution rulesare stable wrt orretness, it remains to prove that a orret non-terminal losedmodule M an always be redued. We de�ne a partial relation on negative poles:a negative pole is smaller than another one if there exists a positive pole suhthat the �rst negative pole is linked to the bottom of the positive pole and theseond negative pole is linked to the top of the positive pole. We onsider thetransitive losure of this relation. If maximal negative poles do not exist then



there exists at least one yle in the forget(M) module alternating positive andnegative poles. We an then de�ne a swithing funtion on this module (hoosingthe orret links for negative poles) suh that this swithed module has a yle.Hene ontradition. So let us onsider one of the maximal negative poles, andthe orresponding positive pole. We remark that suh a negative pole has nooutoming links (the module is losed and the negative pole is maximal). If thepositive pole has other negative poles, we an omit the maximal negative poleby neutrality. Otherwise, let us study the inoming negative poles: (1) If thereis no suh inoming link, then M is the terminal module. (2) If eah inomingnegative pole has at least one link a going to another positive pole as in thefollowing �gure:
♯

[♭]
∗∗ a ∗∗

≥ 0
︷ ︸︸ ︷

[♯]then one an de�ne a swithing funtion using for eah of these negative polesone of the link that does not go to the positive pole we onsidered �rst. Henethe forget(M) swithed module is not onneted (there are no outgoing links).Hene ontradition. (3) Else there exists at least one inoming negative pole αwith the whole set of links assoiated to the positive pole: the redution rulesapply and we are �nished or this positive pole is linearly linked with b to anegative pole β. Suh β is not ♯-marked otherwise it orresponds to a proof-struture with an exponential box with two prinipal ports, hene ontradition.The redution rules apply to β (and then to α) or these exists a link c from βto another positive pole as in the following �gure:
♯

♭
b ∗∗

♯
c

β






α





then one an de�ne a swithing funtion using the c link but not b: the or-responding swithed proof-struture ontains an unonneted omponent in theexponential box indued by the (♯-marked) α negative. Hene ontradition. Thisholds beause the α links are all linear or none are linear. (4) Finally, there existsat least one inoming negative pole α with the whole set of links assoiated tothe positive pole itself not linearly linked: the redution rules apply.Corollary 1. If F is a provable formula then there exists a -orret (losed)module M suh that t(M) = F .4 ConlusionWe �rst adapt the lassial rewriting riterion of Danos to the n-ary bipolar asefor testing the orretness of losed modules. We show in partiular that polar-ization greatly simpli�es the rewriting proedure. We extend our results to the



exponential ase. In partiular, we give a loal riterion for testing orretnessof modules in presene of exponentials. Note that urrent riteria presupposesthat 'boxes' are already given, although our redution relation helps to disoverit. These results may be useful in designing onurrent logi programming lan-guages, in the style suggested by Andreoli in reent papers, as it extends hisworks by removing onstraints on programming objets.Referenes1. Andreoli, J.-M., Logi programming with fousing proofs in linear logi., J. Log.Comput. 2 (1992), pp. 297�347.2. Andreoli, J.-M., Foussing and proof onstrution, Annals of Pure and AppliedLogi 107 (2001), pp. 131�163.3. Andreoli, J.-M., Foussing proof-net onstrution as a middleware paradigm, in:A. Voronkov, editor, CADE, Leture Notes in Computer Siene 2392 (2002), pp.501�516.4. Andreoli, J.-M. and L. Mazaré, Conurrent onstrution of proof-nets, in: M. Baazand J. A. Makowsky, editors, CSL, Leture Notes in Computer Siene 2803(2003), pp. 29�42.5. Boudes, P., Projeting games on hyperoherenes., in: J. Díaz, J. Karhumäki,A. Lepistö and D. Sannella, editors, ICALP, Leture Notes in Computer Siene3142 (2004), pp. 257�268.6. Danos, V., �Une appliation de la logique linéaire à l'étude des proessus de nor-malisation (prinipalement de λ-alul),� Ph.D. thesis, Université Denis Diderot,Paris 7 (1990).7. Danos, V. and L. Regnier, The struture of multipliatives, Arhive for Mathemat-ial Logi 28 (1989), pp. 181�203.8. Fouqueré, C. and V. Mogbil, Rewritings in polarized (partial) proof strutures,in: F. L. Paola Brusoli and J. Stewart, editors, 1st Workshop on Strutures andDedutions, Tehnial Report ISSN 1430-211X (2005), pp. 95�109.9. Girard, J.-Y., Linear logi, Theoretial Computer Siene 50 (1987), pp. 1�102.10. Girard, J.-Y., On the unity of logi., Ann. Pure Appl. Logi 59 (1993), pp. 201�217.11. Guerrini, S., Corretness of multipliative proof nets is linear, in: Logi in ComputerSiene, 1999, pp. 454�463.URL iteseer.ist.psu.edu/guerrini99orretness.html12. Lafont, Y., From proof-nets to interation nets, in: J.-Y. Girard, Y. Lafont andL. Regnier, editors, Advanes in Linear Logi, London Mathematial Soiety Le-ture Note 222, Cambridge University Press, 1995 pp. 225�247, proeedings of theWorkshop on Linear Logi, Ithaa, NewYork, June 1993.13. Laurent, O., Syntax vs. semantis: a polarized approah, Theoretial ComputerSiene 343 (2005), pp. 177�206.


