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Abstract. We study conditions for a concurrent construction of proof-
nets in the framework of linear logic following Andreoli’s works. We define
specific correctness criteria for that purpose. We first study the multi-
plicative case and show how the correctness criterion given by Danos and
decidable in linear time, may be extended to closed modules (i.e. validity
of polarized proof structures). We then study the exponential case. This
has natural applications in (concurrent) logic programming as validity
of partial proof structures may be interpreted in terms of validity of a
concurrent execution of clauses in an environment.

1 Introduction

Girard in his seminal paper [9] gave a parallel syntax for multiplicative linear
logic (MLL) as oriented graphs called proof-structures. Let us recall that a MLL
formula is either an atomic formula A, a negation of an atomic formula, or built
with a binary connective ® or %. In the original definition, a proof-structure for
MLL is constructed by means of the following binary links:

l‘k-A b 75’1‘k-A b i link: 7~
®-link: -link: axiom-link: M L
A®B AXB

where every occurrence of formula is a premise of at most one link and is a
conclusion of exactly one link. A correctness criterion enables one to distinguish
sequentializable proof-structures (the so called proof-nets) from "bad" structures
(that do not correspond to proofs in the sequent calculus). After Girard’s long
trip correctness criterion, numerous equivalent properties were found. In par-
ticular, Danos and Regnier [7] proved that switched proof-structures should be
trees, where switching is done by deleting one of the premises of each %-link.
Danos [6] showed that it is the case iff the proof structure rewrites to e (® is
called a contracted node):
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While a lot of research has been done on finding efficient correctness criteria
for MLL, it still remains to study correctness criteria in case of polarized proof-
structures in MLL, and broaden it to the exponential case. First used by An-
dreoli in Logic Programming [1] and also considered in Girard’s works [10] and in
Laurent’s works about Polarized Linear Logic [13], this concept of polarization
allows to consider clustered structures. Recently, polarized proof structures arise
naturally in logic programming models [2-4]. The basic objects we consider are
then proof structures with two strata we call elementary bipolar modules, that
may be combined into modules. We recall the multiplicative case in the following
section (the reader may find in [8] extension to open modules). We define a cor-
rectness criterion that takes care of the parallel structure of modules, extending
the Danos criterion. In section 3, we analyze how modules may be generalized
to take care of exponentials.

2 The multiplicative case

We consider in this section the extension MLLu of MLL with 1 the unit of ®.
Formulae are given as:

F =1|G
G1,Gy .= A| At atomic formula or its negation
|Gi@1|10G [Gi®Ge |G T G

Let PS™ be the directed graphs where edges are labelled by formulae of MLLu
and built with the following links (n > 1):

Al An Al An

®-link: 2¥-link: axiom-link: 7 1-link: (P
@ @ A Al 1
A®- @A, AX ... RA,

possibly with edges pending downwards. Elements of PS™ are called proof struc-
tures. Formulae labelling pending edges are the conclusions of the proof struc-
ture, nodes with pending edges are called conclusion nodes. Labels on edges are
omitted when clear from the context.

Proposition 1. Let 7 be a proof structure of PS™, m is a proofnet (i.e. sequen-
tializable) iff 1 —* o:

(1) HY (2) yyﬁw (3) ?~ '
(4)~Y (5) — (6)%3 — |



In case (4), there must exist at least one edge between the two nodes.

The proof of the proposition follows from the standard one on binary proof
structures for MLL [6], and the following remarks: ® and % are associative and
commutative, the l-ary % connective is by convention the identity, 1 is a unit
for ®.

We first give the definition of an elementary bipolar module (EBM) and give
the correspondence with proof structures. We then define a module as the com-
position of EBMs. A module is correct if the corresponding proof structure is
sequentializable.

Definition 1 (EBM). An EBM M is given by a finite set H(M) of proposi-
tional variables (called hypotheses) h; and a non empty finite set C(M) varying
over k of finite sets Cr(M) of propositional variables (called conclusions) cj,.
Variables are supposed pairwise distinct." The set of propositional variables ap-
pearing in M is noted v(M). Equivalently, one can define it as a directed graph
with labelled pending edges and two kinds of nodes, one positive pole under a
non-empty finite set of negative poles:

The set of pending edges of an EBM M is called the border b(M).

The proof structure corresponding to an EBM is given by the following trans-
formation on poles. The converse transformation requires the definition of BMs
defined later. v

e

I;k ——

if Cp,(M) = 0: v — (P,ifck(M);é@: ﬁ — }75

An EBM M may be equivalently defined as a (type) formula ¢(M) in the
dual language of MLLu (recall that A — B = At & B): t(M) = (Q, h;) —o
(78:(®, ")), where we use the convention that 7, F, = @, Fx = Fy when
the domain of & is of cardinal 1, and if the domain of ¢ is empty, (), ki) — C = C
and if the domain of j; for some k is empty, (®Jk c}c’“) = 1. However the reader
should care that this supposes a bilateral sequent calculus, although the logical

! This restriction is taken for simplicity. The framework can be generalized if we con-
sider multisets (of hypotheses and conclusions) instead of sets, and add as required
a renaming mechanism: the results in this paper are still true.



reading of an EBM (or of a proof structure) is unilateral. Three kinds of EBMs
are of special interest: An EBM is initial (resp. final) if its set of hypotheses is
empty (resp. its set of conclusions is empty). An EBM is ¢ransitory if it is neither
initial nor final. Initial EBMs allow to declare available resources, though final
EBMs stop part of a computation by withdrawing a whole set of resources.
Transitory EBMs are called definite clauses in standard logic programming,.

Definition 2 (BM). A bipolar module (BM) M is defined with hypotheses
H(M), conclusions C(M), and type t(M), inductively in the following way:

— An EBM is a BM.

— Let M be a BM, and N be an EBM, let [ = C(M)NH(N), their composition
wrt the interface I, M oy N is a BM with the multiset of hypotheses H(M)U
(H(N) —1I), the multiset of conclusions (C(M)—I)UC(N), the type t(M)®
t(N) and variables v(M) U v(N).

The interface will be omitted when it is clear from the context. Note that the
interface may be empty. The translation from proof structures of PS™ to BMs
is given by the two following rules, plus rules not explicited here due to lack of
space that take care of polarity and the constant 1:

«

| «
p P~ . .
— . .~ where p is a fresh atomic formula

—

Considering BMs in place of proof structures for MLLu has valuable conse-
quences in terms of simplicity of correctness criteria as one can take care of the
bipole structure of BMs more directly than it is the case with a binary structure.

Definition 3 (Correctness (wrt sequentialization)). Let M be a BM, M
is correct if the corresponding proof structure in PS™ is sequentializable.

Sequentialization means that there exists a formula C built with the connec-
tives ® and %, and the variables C(M) such that the sequent H(M),t(M) + C
is provable in Linear Logic. Let us briefly interpret EBMs and BMs in terms
of computation. An EBM has the following operational bottom-up reading: be-
ing given in some context a multiset of hypotheses (data for the positive pole),
the EBM triggers once (linear) each of the negative poles, these last have to
be used in separate contexts. Triggering an EBM, that is composing it with an
existing BM, is nothing else but doing a resolution step in logic programming.
However, the resulting BM may not correspond to a valid computation. As we



shall focus on characterizing correctness on closed modules, we adjoin to the
term correct the kind of modules we speak of, e.g. c-correct when the module is
closed, o-correct in the general setting.

A closed module is a BM without any pending edges, i.e. with the sets of
hypotheses and conclusions empty. Correctness of closed modules may be tested
either in terms of provability in a sequent calculus or by means of correctness
criteria for proof structures. In the following, we consider the correctness criteria
of Danos [6] using a contraction relation and explained in the previous section,
and also the one given by Danos and Regnier [7] that uses switchings: let = be a
proof structure with binary links and S() the set of (switched) graphs obtained
from 7 by removing exactly one premise edge for each % link, 7 is a proof net iff
each graph in S(m) is acyclic and connected. One generalizes this definition to
n-ary connectives by introducing generalized switches: each n-ary % connective
induces n switched graphs. One still can define switched proof-structures and
a criterion generalizing Danos-Regnier correctness criterion on PS™: a proof
structure 7 is a proof net iff the graphs in S(7) are acyclic and connected. A
closed module M is DR-correct if the proof structure M* associated to M is a
proof net wrt the previous criterion. We abusively refer to the module M instead
of the corresponding proof structure M* in the following, speaking of for instance
switched module instead of switched proof structure. We immediately have the
following proposition as a corollary of the Danos and Regnier criterion theorem:

Proposition 2. Let M be a closed module, M is c-correct iff M is DR-correct.

We give below a (big step) reduction relation that takes care of the focaliza-
tion property. Though a Danos-like relation would reduce each step one variable,
our formulation uses as a whole the structure of a module thanks to focalization.
The focalization property states that a sequent is provable iff there exists a proof
such that decomposition of the positive stratum of formulae is done in one step.
Considering bipolar modules, it means that one may define a reduction relation
such that each step reduces one positive-negative pair of nodes.

Proposition 3 (Stability). Let M and N be two closed modules such that
M — N, M is c-correct iff N is c-correct (see Fig. 1).

Proof. One can define a function from the switched structures of the module on
the left of the relation onto the switched structures associated to the module
on the right such that a switched structure from the left is acyclic (resp. con-
nected) iff the corresponding switched structure from the right is acyclic (resp.
connected).

Theorem 1 (c-correctness). A closed module M is c-correct iff M —»*g

Proof. As the reduction rules are stable wrt correctness, it remains to prove
that a correct non-terminal closed module M can always be reduced. We define
a partial relation on negative poles: a negative pole is smaller than another
one if there exists a positive pole such that the first negative pole is linked to



Fig. 1. Big step reduction relation.

the bottom of the positive pole and the second negative pole is linked to the
top of the positive pole. We consider the transitive closure of this relation. If
maximal negative poles do not exist then there exists at least one cycle in the
module alternating positive and negative poles. We can then define a switching
function on the module (choosing the correct links for negative poles) such that
the switched module has a cycle. Hence contradiction. So let us consider one
of the maximal negative pole, and the corresponding positive pole. We remark
that such a negative pole has no outcoming links (the module is closed and
the negative pole is maximal). If the positive pole has other negative poles, we
can omit the maximal negative pole by neutrality. Otherwise, let us study the
incoming negative poles. If there is no such incoming link, then M is the terminal
module. If each incoming negative pole has at least one link going to another
positive pole, then one can define a switching function using for each of these
negative poles one of the links that does not go to the positive pole we considered
first. Hence the switched module is not connected (there are no outgoing links).
Hence contradiction. So there exists at least one incoming negative pole with
the whole set of links associated to the positive pole: the first rule applies and
we are finished.

Note that this proof extensively uses the bipolar nature of modules. Moreover,
the proof may have been given considering minimal poles in place of maximal
poles, and for each proof only one of the two reduction rules is sufficient and
necessary! Finally, the same technique Guerrini [11] used for Danos criterion may
be applied here to get a linear algorithm. Studying correctness of open modules
is a necessary step towards the specification of a logic programming language
based on bipolar modules. We detailed in another paper the extension of the
technique presented before to open modules [8].



3 Dealing with exponentials

3.1 Multiplicative exponential linear logic (MELL)

Adding exponentials to the language obviously increases its expressivity: it allows
for representing reusable resources. In linear logic, the ’of course’ modality !
has this main property: !A — A ® -+ ® A. Technically, three operations are
necessary: contraction, dereliction and weakening. The first operation states that
1A is duplicable. Dereliction allows to consider the classical formula !A as the
linear one A. The last operation states that !A may be forgotten. The dual
modality ’why not’ ? may be interpreted in the following way: ?A+ waits for
the ’classical’ resource !A. This promotion operation is more complex than the
other operations: in terms of proofnets, correctness is assured if a ’box’ in the
proof net characterizes the context (and this context has to be correct by itself).
Entries of such a box are given by one ! and a set of 7.

From MELLu to ?-EBMs. The translation from formulae of MELL to mod-
ules is not as easy as it is without exponentials. We consider an extension MELLu
of MELL with the neutral element 1 for ®, formulae are built from the following
grammar:

F =1|G
Gl,G23:A|AL|G1®1|1®G1|G1®G2|G17§)G2|?G1|!G1

Converting from formulae to modules requires the use of polarization and focal-
ization. Focalization allows to consider n-ary connectives. Formulae are polarized
negatively or positively according to their main connectives, considering conve-
niently that variables A, B, ... are positive whereas their negations A+, B+, ...
are negative. A precise study of the exponential connectives leads to the ac-
knowledgment that exponential connectives change the polarity of formulae: if
A is a positive formula, ?A is negative whereas !A+ is positive. Hence exponen-
tial connectives may be split into two parts: !A+ = |#A+ and ?A4 = ThA. The
shift connectives | and T do the changing of polarities. The introduction of shift
connectives may be generalized also to the linear case whenever there is a change
of polarity. The two modalities b and { express exponentiality.

We consider a slightly different version of a polarized system as it was de-
signed by Boudes [5] or Laurent [13]: the system LLyo1 given by Laurent takes
care of multiplicative as well as additive connectives where atomic formulae are
always exponentialized. Following our motivations, our language ,MELLp is
restricted to the multiplicative case for simplicity and atomic formulae may be
linear or exponential. Finally we use n-ary connectives and the decomposition
of exponentials is explicit. The grammar for ,MELLp. is given in the follow-
ing way where the set of formulae is explicitly split into positive (P,...) and
negative (N, ...) formulae (A is a positive atomic formula):

{P = Qicr i | (Rcr pi) {N = Brer vk | §(Brer vk)
p=A | IN : |



We keep as convention that a 1-ary tensor is the identity and a O-ary tensor is
the tensor unit 1. Moreover, one can remark that defining 1 as [T, where T is
the neutral for the additive connective &, is coherent with our setting and may
be useful extending our framework to additives. Nevertheless, in the following,
the standard rule for 1 is implicitly added to the calculi. One can define a n-ary
focalized sequent calculus (A is an atomic formula) as in Fig. 2. Sequents contain
a distinguished place between - and ; , they are in one of the two following
forms: = ; I'or = N ; I where N is a negative non atomic formula and I is a
multiset of positive formulae or atomic negative formulae. The sequent calculus
is designed such that, beginning with the distinguished place empty, search for
proofs consists of repeating the decomposition of a positive formula followed by
the decomposition of negative formulae (necessarily subformulae of the positive
formula just decomposed), until applying axioms. Note that exponential rules
are as possible integrated to linear rules to quotient the search space (e.g. the
axiom rule includes (bw), (b®) manages (bc)). The following translation (=)~
from MELLu to ,MELLy,; is such that if F' is a MELLu formula, Fugiy F' is
provable iff = wgrr,, £'7; is provable:

pol

1+:1| AT =A | F1®F2+*F+®F+| F)t = [{F~ |FJr |F~otherwise

|AJ‘_ | (X Fy)~ =F ®Fy |( )_ = TbF+|F_ 1FTotherwise

F i ILADE F ; AL ADE

T AL Aps e s (1) . LAE (cut)
EN;; IhE ... B Ay A bE
F o ®ier INi®jes A5, L1, L, Ay Ay, DE (®)
F N5 6(®ier N ®jes A, LibE Lo 5 6(®icr INi®jcy Ap), Aj, A bE

[ ;b ®ier 1N-®j€JAj),F1,...,F‘I‘,Al,...,A‘J‘,bE
F o P,...,Pp, AL, .. A F s Pi,..., Py, AT, ..., A5, 0T
11| a4 5 11| 1]
FRier 1P Bjeq AF 5 T FH(Bier TP Bjes Aj) 5 b

Fig. 2. n-ary sequent calculus for ,MELLg.; (0-ary tensor is 1).

The final step consists in flattening , MELLp,; formulae to get modules. Bipo-
lar modules were previously obtained by adding atomic formulae between two
strata (say from negative to positive): let Py, P> be positive formulae, N a neg-
ative formula, - Py ® (N % P) is provable iff - P, @ (N ¥ Z1),Z ®@ P, is
provable, where Z is a fresh (positive) atomic formula. However this principle
cannot be fully applied when exponentials occur: try to flatten the (provable)
sequent - A+ X (B ® C),A® [§(B+ % C+). This can be overcome by al-
lowing exponential atomic formulae in the language. These exponential atomic



formulae are noted with # or b superscripts: Z# and Z° are respectively defined as
1877 and 1b | Z+. We then consider the translation (—)°: let C be a non-empty
context (negative or positive), Z is a fresh atomic formula

C[T@ie] pil° = C[ZL]Oa [Z ®i€] pil°
Cl ®icr pil° = CIZ°1°, (ZF @icr p)]°

otherwise (i.e. empty context) P° = P, N° = | N. We still have if F' is a MELLu
formula, Fygrru £ is provable iff F wgrr ., ; F'© is provable. We consider now draw-

pol )

ings of the following kind we call ?-EBM:

Ain A Ak A,
UL per ] (e

Positive and negative poles may now be labelled: a ?-EBM is reusable when
b labels its positive part, ff labels a promoted variable, brackets mean optional.
x labels an exponential atomic negative conclusion of a 7-EBM and we refer to
x-edge in that case. Roughly, the correspondence between places of exponentials

in formulae and labelled elements is the following one:
Y

(X —Y) is drawn with the positive pole labelled b: %
i X
X —lY is drawn with a x-edge: g
X Y
X 7Y is drawn with the negative pole labelled f: %
X

The type of a 7-EBM generalizes the type given for an EBM (brackets
mean optional): C = [[[(®;c; Bi —Fkex 7] (Rer Atk mens 2l 1)) - Such
a type (clause in logic programming terminology) could be interpreted as: C is a
reusable clause iff ! is explicit. The application of a clause is allowed if the B; are
available, then one of the conclusions is fired, a conclusion being a multiset of
atomic formulae A; ;, or exponential, i.e. reusable, atomic formulae mek. If the
? modality is present, the multiset of conclusions is required to be reusable as a
whole: not only these conclusions cannot be used with a linear clause but such
a clause cannot use linear hypotheses. For example, consider the set of clauses
{1 - A®B, B —?C,|(A®C) —o L}. The corresponding module we get is drawn
in Fig.3 on the left. The figure on the right is the corresponding proof-structure
(see [9,12] for definitions of proof structures with boxes, extended here to n-ary
connectives). The traversal of the box without the use of a b-node shows that the
sequent is not provable (a dereliction should have been applied), i.e. the 7-EBM
on the left is not correct.
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Fig. 3. 7-EBM and proofnets

From ?-EBMs to modules. Definitions given in section 2 for EBMs, that is
to say composition and correctness of modules, cannot be straightfully extended
to the exponential case. Obviously, composition should satisfy identification of
variables occurring on links, noticing that x-edges can only be linked to *-edges.
However, contraction needs a special attention. For the following, we consider
explicit contraction: ?-EBMs with positive nodes labelled b, and *-edges are
duplicated if necessary mimicking the property !A —!A ® A, hence the degree
of edges is always 1. The definition of composition given in section 2 is then
adapted consequently for >-EBMs labelled b and *-edges. For example, *-edges
are duplicated as follows:

It is then possible to define the type ¢(M) of a module M as the formula
given as the Par of the formulae occurring as 7-EBMs taking care of possible
contractions. Moreover, it is possible to recover a proof-structure M* (with, as
usual, contraction, weakening and dereliction nodes) from a given module M.
Finally, a module is ¢-correct if M* is a proofnet.

3.2 ?-EBMs and corresponding correctness criteria

Extending the language with exponentials yields a major difficulty due to the
promotion rule, as it is inherently contextual. Note that allowing b in the lan-
guage (and exclude ) is sufficient to embed the framework of the previous sec-



tions in a programming language: one can consider a program as a set of (ex-
ponential, reusable) EBMs along with a multiset of (linear, usable once) EBMs.
This system already extends classical logic programming in a straightforward
way and correctness of modules is tested with the same reduction relation given
in previous section, after deleting x-edges (application of the weakening rule)
and by considering that normal forms may contain ?-EBMs. We consider for the
full language the reduction system given by the following two rules:

Label b is put on right

— hand side if option is
present on left part
Label b is put on right
[ N e hand side if the two op-
D — b

tions are present on left
part

okl 1., X ...

Propositions equivalent to the ones given for the multiplicative case may be
proved. Obviously, if M is a closed correct module in this fragment then the
module forget(M) built from M forgetting exponentials (omitting labels and
replacing x-edges by normal edges) is a closed correct BM. We must also char-
acterize normal forms. We add to the reduction system two rules correponding
to neutrality of 1 and weakening of b:

#0 #0
..... SN csene and ;f@. "i" SN L
Qﬁé N Y,

Proposition 4 (Stability). Let M and N be two closed modules such that
M — N. The module M 1is c-correct iff N is c-correct.

Proof. One can define a function from left switched module onto right switched
module such that the relation and its inverse are stable wrt acyclicity, connect-
edness.

Theorem 2. A closed module M is c-correct iff M—>*g or M—»*%

Proof. The proof used for the linear case is adapted here. As the reduction rules
are stable wrt correctness, it remains to prove that a correct non-terminal closed
module M can always be reduced. We define a partial relation on negative poles:
a negative pole is smaller than another one if there exists a positive pole such
that the first negative pole is linked to the bottom of the positive pole and the
second negative pole is linked to the top of the positive pole. We consider the
transitive closure of this relation. If maximal negative poles do not exist then



there exists at least one cycle in the forget(M) module alternating positive and
negative poles. We can then define a switching function on this module (choosing
the correct links for negative poles) such that this switched module has a cycle.
Hence contradiction. So let us consider one of the maximal negative poles, and
the corresponding positive pole. We remark that such a negative pole has no
outcoming links (the module is closed and the negative pole is maximal). If the
positive pole has other negative poles, we can omit the maximal negative pole
by neutrality. Otherwise, let us study the incoming negative poles: (1) If there
is no such incoming link, then M is the terminal module. (2) If each incoming
negative pole has at least one link a going to another positive pole as in the
following figure:

then one can define a switching function using for each of these negative poles
one of the link that does not go to the positive pole we considered first. Hence
the forget(M) switched module is not connected (there are no outgoing links).
Hence contradiction. (3) Else there exists at least one incoming negative pole «
with the whole set of links associated to the positive pole: the reduction rules
apply and we are finished or this positive pole is linearly linked with b to a
negative pole 5. Such ( is not f-marked otherwise it corresponds to a proof-
structure with an exponential box with two principal ports, hence contradiction.
The reduction rules apply to 8 (and then to «) or these exists a link ¢ from 3
to another positive pole as in the following figure:

then one can define a switching function using the c¢ link but not b: the cor-
responding switched proof-structure contains an unconnected component in the
exponential box induced by the (§-marked) « negative. Hence contradiction. This
holds because the « links are all linear or none are linear. (4) Finally, there exists
at least one incoming negative pole o with the whole set of links associated to
the positive pole itself not linearly linked: the reduction rules apply.

Corollary 1. If F is a provable formula then there exists a c-correct (closed)
module M such that t(M) = F.

4 Conclusion

We first adapt the classical rewriting criterion of Danos to the n-ary bipolar case
for testing the correctness of closed modules. We show in particular that polar-
ization greatly simplifies the rewriting procedure. We extend our results to the



exponential case. In particular, we give a local criterion for testing correctness
of modules in presence of exponentials. Note that current criteria presupposes
that 'boxes’ are already given, although our reduction relation helps to discover
it. These results may be useful in designing concurrent logic programming lan-
guages, in the style suggested by Andreoli in recent papers, as it extends his
works by removing constraints on programming objects.
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