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Rewritings for Polarized Multipli
ative andExponential Proof Stru
tures(rapport interne LIPN - Février 2007)Christophe Fouqueré⋆ and Virgile Mogbil⋆LIPN � UMR7030, CNRS � Université Paris 13,99 av. J-B Clément, F�93430 Villetaneuse, Fran
e
hristophe.fouquere�lipn.univ-paris13.frvirgile.mogbil�lipn.univ-paris13.frAbstra
t. We study 
onditions for a 
on
urrent 
onstru
tion of proof-nets in the framework of linear logi
 following Andreoli's works. We de�nespe
i�
 
orre
tness 
riteria for that purpose. We �rst study the multi-pli
ative 
ase and show how the 
orre
tness 
riterion given by Danos andde
idable in linear time, may be extended to 
losed modules (i.e. validityof polarized proof stru
tures). We then study the exponential 
ase. Thishas natural appli
ations in (
on
urrent) logi
 programming as validityof partial proof stru
tures may be interpreted in terms of validity of a
on
urrent exe
ution of 
lauses in an environment.1 Introdu
tionGirard in his seminal paper [9℄ gave a parallel syntax for multipli
ative linearlogi
 (MLL) as oriented graphs 
alled proof-stru
tures. Let us re
all that a MLLformula is either an atomi
 formula A, a negation of an atomi
 formula, or builtwith a binary 
onne
tive ⊗ or P. In the original de�nition, a proof-stru
ture forMLL is 
onstru
ted by means of the following binary links:
⊗-link: A B

A ⊗ B

⊗ P-link: A B

A P B
P axiom-link:

A A⊥where every o

urren
e of formula is a premise of at most one link and is a
on
lusion of exa
tly one link. A 
orre
tness 
riterion enables one to distinguishsequentializable proof-stru
tures (the so 
alled proof-nets) from "bad" stru
tures(that do not 
orrespond to proofs in the sequent 
al
ulus). After Girard's longtrip 
orre
tness 
riterion, numerous equivalent properties were found. In par-ti
ular, Danos and Regnier [7℄ proved that swit
hed proof-stru
tures should betrees, where swit
hing is done by deleting one of the premises of ea
h P-link.Danos [6℄ showed that it is the 
ase i� the proof stru
ture rewrites to • (⊗ is
alled a 
ontra
ted node):
⋆ Partially supported by ACI NIM proje
t Géométrie du Cal
ul (GEOCAL), Fran
e.



(1) ⊗ −→ (2) −→ (3) P −→ (4) P −→While a lot of resear
h has been done on �nding e�
ient 
orre
tness 
riteriafor MLL, it still remains to study 
orre
tness 
riteria in 
ase of polarized proof-stru
tures in MLL, and broaden it to the exponential 
ase. First used by An-dreoli in Logi
 Programming [1℄ and also 
onsidered in Girard's works [10℄ and inLaurent's works about Polarized Linear Logi
 [13℄, this 
on
ept of polarizationallows to 
onsider 
lustered stru
tures. Re
ently, polarized proof stru
tures arisenaturally in logi
 programming models [2�4℄. The basi
 obje
ts we 
onsider arethen proof stru
tures with two strata we 
all elementary bipolar modules, thatmay be 
ombined into modules. We re
all the multipli
ative 
ase in the followingse
tion (the reader may �nd in [8℄ extension to open modules). We de�ne a 
or-re
tness 
riterion that takes 
are of the parallel stru
ture of modules, extendingthe Danos 
riterion. In se
tion 3, we analyze how modules may be generalizedto take 
are of exponentials.2 The multipli
ative 
aseWe 
onsider in this se
tion the extension MLLu of MLL with 1 the unit of ⊗.Formulae are given as:
F := 1 | G
G1, G2 := A | A⊥ atomi
 formula or its negation

| G1 ⊗ 1 | 1 ⊗ G1 | G1 ⊗ G2 | G1 P G2Let PSn be the dire
ted graphs where edges are labelled by formulae of MLLuand built with the following links (n ≥ 1):
⊗-link:

A1 ⊗ · · · ⊗ An

⊗

A1 An P-link:
A1 P . . . P An

PA1 An axiom-link:
A A⊥

1-link:
1

1possibly with edges pending downwards. Elements of PSn are 
alled proof stru
-tures. Formulae labelling pending edges are the 
on
lusions of the proof stru
-ture, nodes with pending edges are 
alled 
on
lusion nodes. Labels on edges areomitted when 
lear from the 
ontext.Proposition 1. Let π be a proof stru
ture of PSn, π is a proofnet (i.e. sequen-tializable) i� π →∗ •:(1) ⊗ −→ (2) −→ (3) 1
−→(4) P −→ (5) P −→ (6) P −→



In 
ase (4), there must exist at least one edge between the two nodes.The proof of the proposition follows from the standard one on binary proofstru
tures for MLL [6℄, and the following remarks: ⊗ and P are asso
iative and
ommutative, the 1-ary P 
onne
tive is by 
onvention the identity, 1 is a unitfor ⊗.We �rst give the de�nition of an elementary bipolar module (EBM) and givethe 
orresponden
e with proof stru
tures. We then de�ne a module as the 
om-position of EBMs. A module is 
orre
t if the 
orresponding proof stru
ture issequentializable.De�nition 1 (EBM). An EBM M is given by a �nite set H(M) of proposi-tional variables (
alled hypotheses) hi and a non empty �nite set C(M) varyingover k of �nite sets Ck(M) of propositional variables (
alled 
on
lusions) cj
k.Variables are supposed pairwise distin
t.1 The set of propositional variables ap-pearing in M is noted v(M). Equivalently, one 
an de�ne it as a dire
ted graphwith labelled pending edges and two kinds of nodes, one positive pole under anon-empty �nite set of negative poles:

cj1
1 cjK

K

hiThe set of pending edges of an EBM M is 
alled the border b(M).The proof stru
ture 
orresponding to an EBM is given by the following trans-formation on poles. The 
onverse transformation requires the de�nition of BMsde�ned later.if Ck(M) = ∅: → 1 , if Ck(M) 6= ∅: cjk

k

→ P︷ ︸︸ ︷

cjk⊥
k

hi

→ ⊗

︷︸︸︷
hi

An EBM M may be equivalently de�ned as a (type) formula t(M) in thedual language of MLLu (re
all that A ⊸ B = A⊥ P B): t(M) = (
⊗

i hi) ⊸

(�k(
⊗

jk
cjk

k )), where we use the 
onvention that�k Fk =
⊗

k Fk = F1 whenthe domain of k is of 
ardinal 1, and if the domain of i is empty, (⊗i hi) ⊸ C = Cand if the domain of jk for some k is empty, (
⊗

jk
cjk

k ) = ⊥. However the readershould 
are that this supposes a bilateral sequent 
al
ulus, although the logi
al1 This restri
tion is taken for simpli
ity. The framework 
an be generalized if we 
on-sider multisets (of hypotheses and 
on
lusions) instead of sets, and add as requireda renaming me
hanism: the results in this paper are still true.



reading of an EBM (or of a proof stru
ture) is unilateral. Three kinds of EBMsare of spe
ial interest: An EBM is initial (resp. �nal) if its set of hypotheses isempty (resp. its set of 
on
lusions is empty). An EBM is transitory if it is neitherinitial nor �nal. Initial EBMs allow to de
lare available resour
es, though �nalEBMs stop part of a 
omputation by withdrawing a whole set of resour
es.Transitory EBMs are 
alled de�nite 
lauses in standard logi
 programming.De�nition 2 (BM). A bipolar module (BM) M is de�ned with hypotheses
H(M), 
on
lusions C(M), and type t(M), indu
tively in the following way:� An EBM is a BM.� Let M be a BM, and N be an EBM, let I = C(M)∩H(N), their 
ompositionwrt the interfa
e I, M ◦I N is a BM with the multiset of hypotheses H(M)∪

(H(N)− I), the multiset of 
on
lusions (C(M)− I)∪C(N), the type t(M)⊗
t(N) and variables v(M) ∪ v(N).The interfa
e will be omitted when it is 
lear from the 
ontext. Note that theinterfa
e may be empty. The translation from proof stru
tures of PSn to BMsis given by the two following rules, plus rules not expli
ited here due to la
k ofspa
e that take 
are of polarity and the 
onstant 1:P ⊗

︷ ︸︸ ︷
α

−→ P p⊥ p

⊗

︷︸︸︷
α where p is a fresh atomi
 formula

⊗

︷︸︸︷
hi

1 1

P︷ ︸︸ ︷

cj1⊥
1 P︷ ︸︸ ︷

cjK⊥
K

−→

cj1
1 cjK

K

hiConsidering BMs in pla
e of proof stru
tures for MLLu has valuable 
onse-quen
es in terms of simpli
ity of 
orre
tness 
riteria as one 
an take 
are of thebipole stru
ture of BMs more dire
tly than it is the 
ase with a binary stru
ture.De�nition 3 (Corre
tness (wrt sequentialization)). Let M be a BM, Mis 
orre
t if the 
orresponding proof stru
ture in PSn is sequentializable.Sequentialization means that there exists a formula C built with the 
onne
-tives ⊗ and P, and the variables C(M) su
h that the sequent H(M), t(M) ⊢ Cis provable in Linear Logi
. Let us brie�y interpret EBMs and BMs in termsof 
omputation. An EBM has the following operational bottom-up reading: be-ing given in some 
ontext a multiset of hypotheses (data for the positive pole),the EBM triggers on
e (linear) ea
h of the negative poles, these last have tobe used in separate 
ontexts. Triggering an EBM, that is 
omposing it with anexisting BM, is nothing else but doing a resolution step in logi
 programming.However, the resulting BM may not 
orrespond to a valid 
omputation. As we



shall fo
us on 
hara
terizing 
orre
tness on 
losed modules, we adjoin to theterm 
orre
t the kind of modules we speak of, e.g. 
-
orre
t when the module is
losed, o-
orre
t in the general setting.A 
losed module is a BM without any pending edges, i.e. with the sets ofhypotheses and 
on
lusions empty. Corre
tness of 
losed modules may be testedeither in terms of provability in a sequent 
al
ulus or by means of 
orre
tness
riteria for proof stru
tures. In the following, we 
onsider the 
orre
tness 
riteriaof Danos [6℄ using a 
ontra
tion relation and explained in the previous se
tion,and also the one given by Danos and Regnier [7℄ that uses swit
hings: let π be aproof stru
ture with binary links and S(π) the set of (swit
hed) graphs obtainedfrom π by removing exa
tly one premise edge for ea
h P link, π is a proof net i�ea
h graph in S(π) is a
y
li
 and 
onne
ted. One generalizes this de�nition to
n-ary 
onne
tives by introdu
ing generalized swit
hes: ea
h n-ary P 
onne
tiveindu
es n swit
hed graphs. One still 
an de�ne swit
hed proof-stru
tures anda 
riterion generalizing Danos-Regnier 
orre
tness 
riterion on PSn: a proofstru
ture π is a proof net i� the graphs in S(π) are a
y
li
 and 
onne
ted. A
losed module M is DR-
orre
t if the proof stru
ture M∗ asso
iated to M is aproof net wrt the previous 
riterion. We abusively refer to the module M insteadof the 
orresponding proof stru
ture M∗ in the following, speaking of for instan
eswit
hed module instead of swit
hed proof stru
ture. We immediately have thefollowing proposition as a 
orollary of the Danos and Regnier 
riterion theorem:Proposition 2. Let M be a 
losed module, M is 
-
orre
t i� M is DR-
orre
t.We give below a (big step) redu
tion relation that takes 
are of the fo
aliza-tion property. Though a Danos-like relation would redu
e ea
h step one variable,our formulation uses as a whole the stru
ture of a module thanks to fo
alization.The fo
alization property states that a sequent is provable i� there exists a proofsu
h that de
omposition of the positive stratum of formulae is done in one step.Considering bipolar modules, it means that one may de�ne a redu
tion relationsu
h that ea
h step redu
es one positive-negative pair of nodes.Proposition 3 (Stability). Let M and N be two 
losed modules su
h that
M ։ N , M is 
-
orre
t i� N is 
-
orre
t (see Fig. 1).Proof. One 
an de�ne a fun
tion from the swit
hed stru
tures of the module onthe left of the relation onto the swit
hed stru
tures asso
iated to the moduleon the right su
h that a swit
hed stru
ture from the left is a
y
li
 (resp. 
on-ne
ted) i� the 
orresponding swit
hed stru
ture from the right is a
y
li
 (resp.
onne
ted).Theorem 1 (
-
orre
tness). A 
losed module M is 
-
orre
t i� M →→∗

∪
⊥
▽.Proof. As the redu
tion rules are stable wrt 
orre
tness, it remains to provethat a 
orre
t non-terminal 
losed module M 
an always be redu
ed. We de�nea partial relation on negative poles: a negative pole is smaller than anotherone if there exists a positive pole su
h that the �rst negative pole is linked to
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γ

δ

−→→

α β z }| {

γ

δFig. 1. Big step redu
tion relation.the bottom of the positive pole and the se
ond negative pole is linked to thetop of the positive pole. We 
onsider the transitive 
losure of this relation. Ifmaximal negative poles do not exist then there exists at least one 
y
le in themodule alternating positive and negative poles. We 
an then de�ne a swit
hingfun
tion on the module (
hoosing the 
orre
t links for negative poles) su
h thatthe swit
hed module has a 
y
le. Hen
e 
ontradi
tion. So let us 
onsider oneof the maximal negative pole, and the 
orresponding positive pole. We remarkthat su
h a negative pole has no out
oming links (the module is 
losed andthe negative pole is maximal). If the positive pole has other negative poles, we
an omit the maximal negative pole by neutrality. Otherwise, let us study thein
oming negative poles. If there is no su
h in
oming link, then M is the terminalmodule. If ea
h in
oming negative pole has at least one link going to anotherpositive pole, then one 
an de�ne a swit
hing fun
tion using for ea
h of thesenegative poles one of the links that does not go to the positive pole we 
onsidered�rst. Hen
e the swit
hed module is not 
onne
ted (there are no outgoing links).Hen
e 
ontradi
tion. So there exists at least one in
oming negative pole withthe whole set of links asso
iated to the positive pole: the �rst rule applies andwe are �nished.Note that this proof extensively uses the bipolar nature of modules. Moreover,the proof may have been given 
onsidering minimal poles in pla
e of maximalpoles, and for ea
h proof only one of the two redu
tion rules is su�
ient andne
essary! Finally, the same te
hnique Guerrini [11℄ used for Danos 
riterion maybe applied here to get a linear algorithm. Studying 
orre
tness of open modulesis a ne
essary step towards the spe
i�
ation of a logi
 programming languagebased on bipolar modules. We detailed in another paper the extension of thete
hnique presented before to open modules [8℄.



3 Dealing with exponentials3.1 Multipli
ative exponential linear logi
 (MELL)Adding exponentials to the language obviously in
reases its expressivity: it allowsfor representing reusable resour
es. In linear logi
, the 'of 
ourse' modality !has this main property: !A ⊸ A ⊗ · · · ⊗ A. Te
hni
ally, three operations arene
essary: 
ontra
tion, dereli
tion and weakening. The �rst operation states that
!A is dupli
able. Dereli
tion allows to 
onsider the 
lassi
al formula !A as thelinear one A. The last operation states that !A may be forgotten. The dualmodality 'why not' ? may be interpreted in the following way: ?A⊥ waits forthe '
lassi
al' resour
e !A. This promotion operation is more 
omplex than theother operations: in terms of proofnets, 
orre
tness is assured if a 'box' in theproof net 
hara
terizes the 
ontext (and this 
ontext has to be 
orre
t by itself).Entries of su
h a box are given by one ! and a set of ?.From MELLu to ?-EBMs. The translation from formulae of MELL to mod-ules is not as easy as it is without exponentials. We 
onsider an extension MELLuof MELL with the neutral element 1 for ⊗, formulae are built from the followinggrammar:

F := 1 | G
G1, G2 := A | A⊥ | G1 ⊗ 1 | 1 ⊗ G1 | G1 ⊗ G2 | G1 P G2 | ?G1 | !G1Converting from formulae to modules requires the use of polarization and fo
al-ization. Fo
alization allows to 
onsider n-ary 
onne
tives. Formulae are polarizednegatively or positively a

ording to their main 
onne
tives, 
onsidering 
onve-niently that variables A, B, . . . are positive whereas their negations A⊥, B⊥, . . .are negative. A pre
ise study of the exponential 
onne
tives leads to the a
-knowledgment that exponential 
onne
tives 
hange the polarity of formulae: if

A is a positive formula, ?A is negative whereas !A⊥ is positive. Hen
e exponen-tial 
onne
tives may be split into two parts: !A⊥ = ↓♯A⊥ and ?A = ↑♭A. Theshift 
onne
tives ↓ and ↑ do the 
hanging of polarities. The introdu
tion of shift
onne
tives may be generalized also to the linear 
ase whenever there is a 
hangeof polarity. The two modalities ♭ and ♯ express exponentiality.We 
onsider a slightly di�erent version of a polarized system as it was de-signed by Boudes [5℄ or Laurent [13℄: the system LLpol given by Laurent takes
are of multipli
ative as well as additive 
onne
tives where atomi
 formulae arealways exponentialized. Following our motivations, our language nMELLpol isrestri
ted to the multipli
ative 
ase for simpli
ity and atomi
 formulae may belinear or exponential. Finally we use n-ary 
onne
tives and the de
ompositionof exponentials is expli
it. The grammar for nMELLpol is given in the follow-ing way where the set of formulae is expli
itly split into positive (P, . . . ) andnegative (N, . . . ) formulae (A is a positive atomi
 formula):
{

P :=
⊗

i∈I ρi | ♭(
⊗

i∈I ρi)
ρ := A | ↓N

{
N := Pk∈K νk | ♯(Pk∈K νk)
ν := A⊥ | ↑P



We keep as 
onvention that a 1-ary tensor is the identity and a 0-ary tensor isthe tensor unit 1. Moreover, one 
an remark that de�ning 1 as ↓♯⊤, where ⊤ isthe neutral for the additive 
onne
tive & , is 
oherent with our setting and maybe useful extending our framework to additives. Nevertheless, in the following,the standard rule for 1 is impli
itly added to the 
al
uli. One 
an de�ne a n-aryfo
alized sequent 
al
ulus (A is an atomi
 formula) as in Fig. 2. Sequents 
ontaina distinguished pla
e between ⊢ and ; , they are in one of the two followingforms: ⊢ ; Γ or ⊢ N ; Γ where N is a negative non atomi
 formula and Γ is amultiset of positive formulae or atomi
 negative formulae. The sequent 
al
ulusis designed su
h that, beginning with the distinguished pla
e empty, sear
h forproofs 
onsists of repeating the de
omposition of a positive formula followed bythe de
omposition of negative formulae (ne
essarily subformulae of the positiveformula just de
omposed), until applying axioms. Note that exponential rulesare as possible integrated to linear rules to quotient the sear
h spa
e (e.g. theaxiom rule in
ludes (♭w), (♭⊗) manages (♭c)). The following translation (−)−from MELLu to nMELLpol is su
h that if F is a MELLu formula, ⊢MELLu F isprovable i� ⊢
nMELLpol F−; is provable:

1
+ = 1 A+ = A (F1 ⊗ F2)

+ = F+
1 ⊗ F+

2 (!F )+ = ↓♯F− F+ = ↓F−otherwise
A⊥− = A⊥ (F1 P F2)

− = F−
1 P F−

2 (?F )− = ↑♭F+ F− = ↑F+otherwise
⊢ ; A⊥, A, ♭Ξ

(axiom)
⊢ 1, ♭Ξ

(1)
⊢ ; Γ, A, ♭Ξ ⊢ ; A⊥, ∆, ♭Ξ

⊢ ; Γ, ∆, ♭Ξ
(cut)

. . . ⊢ Ni ; Γi, ♭Ξ . . . ⊢ ; Aj , ∆j , ♭Ξ . . .

⊢ ; N

i∈I ↓Ni

N

j∈J Aj , Γ1, . . . , Γ|I|, ∆1, . . . , ∆|J|, ♭Ξ
(⊗)

. . . ⊢ Ni ; ♭(
N

i∈I ↓Ni

N

j∈J Aj), Γi, ♭Ξ . . . ⊢ ; ♭(
N

i∈I ↓Ni

N

j∈J Aj), Aj , ∆j , ♭Ξ . . .

⊢ ; ♭(
N

i∈I ↓Ni

N

j∈J Aj), Γ1, . . . , Γ|I|, ∆1, . . . , ∆|J|, ♭Ξ
(♭⊗)

⊢ ; P1, . . . , P|I|, A
⊥
1 , . . . , A⊥

|J|, Γ

⊢Pi∈I ↑Pi Pj∈J A⊥
j ; Γ

(P)
⊢ ; P1, . . . , P|I|, A

⊥
1 , . . . , A⊥

|J|, ♭Γ

⊢ ♯(Pi∈I ↑Pi Pj∈J A⊥
j ) ; ♭Γ

(♯ P)Fig. 2. n-ary sequent 
al
ulus for nMELLpol (0-ary tensor is 1).The �nal step 
onsists in �attening nMELLpol formulae to get modules. Bipo-lar modules were previously obtained by adding atomi
 formulae between twostrata (say from negative to positive): let P1, P2 be positive formulae, N a neg-ative formula, ⊢ P1 ⊗ (N P P2) is provable i� ⊢ P1 ⊗ (N P Z⊥), Z ⊗ P2 isprovable, where Z is a fresh (positive) atomi
 formula. However this prin
iple
annot be fully applied when exponentials o

ur: try to �atten the (provable)sequent ⊢ A⊥ P ↑♭(B ⊗ C), A ⊗ ↓♯(B⊥ P C⊥). This 
an be over
ome by al-lowing exponential atomi
 formulae in the language. These exponential atomi




formulae are noted with ♯ or ♭ supers
ripts: Z♯ and Z♭ are respe
tively de�ned as
↓♯ ↑Z and ↑♭ ↓Z⊥. We then 
onsider the translation (−)◦: let C be a non-empty
ontext (negative or positive), Z is a fresh atomi
 formula

C[ ↑
⊗

i∈I ρi]
◦ = C[Z⊥]◦, [Z

⊗

i∈I ρi]
◦

C[ ↑♭
⊗

i∈I ρi]
◦ = C[Z♭]◦, [♭(Z♯

⊗

i∈I ρi)]
◦otherwise (i.e. empty 
ontext) P ◦ = P, N◦ = ↓N . We still have if F is a MELLuformula, ⊢MELLu F is provable i� ⊢

nMELLpol ; F ◦ is provable. We 
onsider now draw-ings of the following kind we 
all ?-EBM:
∗∗

[♯]

Al,1A′
m,1

∗∗
[♯]

Al,kA′
m,k

[♭]

BiPositive and negative poles may now be labelled: a ?-EBM is reusable when
♭ labels its positive part, ♯ labels a promoted variable, bra
kets mean optional.
∗ labels an exponential atomi
 negative 
on
lusion of a ?-EBM and we refer to
∗-edge in that 
ase. Roughly, the 
orresponden
e between pla
es of exponentialsin formulae and labelled elements is the following one:

!(X ⊸ Y ) is drawn with the positive pole labelled ♭: YX♭
X ⊸!Y is drawn with a ∗-edge: ∗∗

∗YX
X ⊸?Y is drawn with the negative pole labelled ♯: Y

♯XThe type of a ?-EBM generalizes the type given for an EBM (bra
ketsmean optional): C = [!](
⊗

i∈I Bi ⊸Pk∈K [?] (
⊗

l∈L Al,k

⊗

m∈M Z♯
m,k)) . Su
ha type (
lause in logi
 programming terminology) 
ould be interpreted as: C is areusable 
lause i� ! is expli
it. The appli
ation of a 
lause is allowed if the Bi areavailable, then one of the 
on
lusions is �red, a 
on
lusion being a multiset ofatomi
 formulae Al,k or exponential, i.e. reusable, atomi
 formulae Z♯

m,k. If the
? modality is present, the multiset of 
on
lusions is required to be reusable as awhole: not only these 
on
lusions 
annot be used with a linear 
lause but su
ha 
lause 
annot use linear hypotheses. For example, 
onsider the set of 
lauses
{1 ⊸ A⊗B, B ⊸?C, !(A⊗C) ⊸ ⊥}. The 
orresponding module we get is drawnin Fig.3 on the left. The �gure on the right is the 
orresponding proof-stru
ture(see [9, 12℄ for de�nitions of proof stru
tures with boxes, extended here to n-ary
onne
tives). The traversal of the box without the use of a ♭-node shows that thesequent is not provable (a dereli
tion should have been applied), i.e. the ?-EBMon the left is not 
orre
t.
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Fig. 3. ?-EBM and proofnetsFrom ?-EBMs to modules. De�nitions given in se
tion 2 for EBMs, that isto say 
omposition and 
orre
tness of modules, 
annot be straightfully extendedto the exponential 
ase. Obviously, 
omposition should satisfy identi�
ation ofvariables o

urring on links, noti
ing that ∗-edges 
an only be linked to ∗-edges.However, 
ontra
tion needs a spe
ial attention. For the following, we 
onsiderexpli
it 
ontra
tion: ?-EBMs with positive nodes labelled ♭, and ∗-edges aredupli
ated if ne
essary mimi
king the property !A ⊸!A ⊗ A, hen
e the degreeof edges is always 1. The de�nition of 
omposition given in se
tion 2 is thenadapted 
onsequently for ?-EBMs labelled ♭ and ∗-edges. For example, ∗-edgesare dupli
ated as follows:
⋆Z and Z gives ⋆Z

It is then possible to de�ne the type t(M) of a module M as the formulagiven as the Par of the formulae o

urring as ?-EBMs taking 
are of possible
ontra
tions. Moreover, it is possible to re
over a proof-stru
ture M∗ (with, asusual, 
ontra
tion, weakening and dereli
tion nodes) from a given module M .Finally, a module is 
-
orre
t if M∗ is a proofnet.3.2 ?-EBMs and 
orresponding 
orre
tness 
riteriaExtending the language with exponentials yields a major di�
ulty due to thepromotion rule, as it is inherently 
ontextual. Note that allowing ♭ in the lan-guage (and ex
lude ♯) is su�
ient to embed the framework of the previous se
-



tions in a programming language: one 
an 
onsider a program as a set of (ex-ponential, reusable) EBMs along with a multiset of (linear, usable on
e) EBMs.This system already extends 
lassi
al logi
 programming in a straightforwardway and 
orre
tness of modules is tested with the same redu
tion relation givenin previous se
tion, after deleting ∗-edges (appli
ation of the weakening rule)and by 
onsidering that normal forms may 
ontain ?-EBMs. We 
onsider for thefull language the redu
tion system given by the following two rules:
[♯] [♯]

♭
∗∗ ∗∗

♯

[♭]
∗∗

−→ ♯ ♯

[♭]
∗∗ ∗∗

Label ♭ is put on righthand side if option ispresent on left part
[♭]

∗∗ ∗∗

[♭]
∗∗

−→ [♭]
∗∗ ∗∗

Label ♭ is put on righthand side if the two op-tions are present on leftpartPropositions equivalent to the ones given for the multipli
ative 
ase may beproved. Obviously, if M is a 
losed 
orre
t module in this fragment then themodule forget(M) built from M forgetting exponentials (omitting labels andrepla
ing ∗-edges by normal edges) is a 
losed 
orre
t BM. We must also 
har-a
terize normal forms. We add to the redu
tion system two rules 
orrepondingto neutrality of 1 and weakening of ♭:
[♭]

6=∅ [♯]
−→

[♭]

6=∅ and
♭

[♯]
6=∅ −→Proposition 4 (Stability). Let M and N be two 
losed modules su
h that

M −→ N . The module M is 
-
orre
t i� N is 
-
orre
t.Proof. One 
an de�ne a fun
tion from left swit
hed module onto right swit
hedmodule su
h that the relation and its inverse are stable wrt a
y
li
ity, 
onne
t-edness.Theorem 2. A 
losed module M is 
-
orre
t i� M−→∗

∪
⊥
▽ or M−→∗

∪♭
⊥
▽.Proof. The proof used for the linear 
ase is adapted here. As the redu
tion rulesare stable wrt 
orre
tness, it remains to prove that a 
orre
t non-terminal 
losedmodule M 
an always be redu
ed. We de�ne a partial relation on negative poles:a negative pole is smaller than another one if there exists a positive pole su
hthat the �rst negative pole is linked to the bottom of the positive pole and these
ond negative pole is linked to the top of the positive pole. We 
onsider thetransitive 
losure of this relation. If maximal negative poles do not exist then



there exists at least one 
y
le in the forget(M) module alternating positive andnegative poles. We 
an then de�ne a swit
hing fun
tion on this module (
hoosingthe 
orre
t links for negative poles) su
h that this swit
hed module has a 
y
le.Hen
e 
ontradi
tion. So let us 
onsider one of the maximal negative poles, andthe 
orresponding positive pole. We remark that su
h a negative pole has noout
oming links (the module is 
losed and the negative pole is maximal). If thepositive pole has other negative poles, we 
an omit the maximal negative poleby neutrality. Otherwise, let us study the in
oming negative poles: (1) If thereis no su
h in
oming link, then M is the terminal module. (2) If ea
h in
omingnegative pole has at least one link a going to another positive pole as in thefollowing �gure:
♯

[♭]
∗∗ a ∗∗

≥ 0
︷ ︸︸ ︷

[♯]then one 
an de�ne a swit
hing fun
tion using for ea
h of these negative polesone of the link that does not go to the positive pole we 
onsidered �rst. Hen
ethe forget(M) swit
hed module is not 
onne
ted (there are no outgoing links).Hen
e 
ontradi
tion. (3) Else there exists at least one in
oming negative pole αwith the whole set of links asso
iated to the positive pole: the redu
tion rulesapply and we are �nished or this positive pole is linearly linked with b to anegative pole β. Su
h β is not ♯-marked otherwise it 
orresponds to a proof-stru
ture with an exponential box with two prin
ipal ports, hen
e 
ontradi
tion.The redu
tion rules apply to β (and then to α) or these exists a link c from βto another positive pole as in the following �gure:
♯

♭
b ∗∗

♯
c

β






α





then one 
an de�ne a swit
hing fun
tion using the c link but not b: the 
or-responding swit
hed proof-stru
ture 
ontains an un
onne
ted 
omponent in theexponential box indu
ed by the (♯-marked) α negative. Hen
e 
ontradi
tion. Thisholds be
ause the α links are all linear or none are linear. (4) Finally, there existsat least one in
oming negative pole α with the whole set of links asso
iated tothe positive pole itself not linearly linked: the redu
tion rules apply.Corollary 1. If F is a provable formula then there exists a 
-
orre
t (
losed)module M su
h that t(M) = F .4 Con
lusionWe �rst adapt the 
lassi
al rewriting 
riterion of Danos to the n-ary bipolar 
asefor testing the 
orre
tness of 
losed modules. We show in parti
ular that polar-ization greatly simpli�es the rewriting pro
edure. We extend our results to the



exponential 
ase. In parti
ular, we give a lo
al 
riterion for testing 
orre
tnessof modules in presen
e of exponentials. Note that 
urrent 
riteria presupposesthat 'boxes' are already given, although our redu
tion relation helps to dis
overit. These results may be useful in designing 
on
urrent logi
 programming lan-guages, in the style suggested by Andreoli in re
ent papers, as it extends hisworks by removing 
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