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186, rue de Lorraine, 54400 Cosnes et Romain, FRANCE
Tel : +33 +3 82 39 62 22 − Fax : +33 +3 82 39 62 91

E-mail : Mohamed.Darouach@iut-longwy.uhp-nancy.fr, Michel.Zasadzinskizasad@iut-longwy.uhp-nancy.fr

Abstract

In this paper, we present necessary and sufficient conditions of convergence of the Generalized Riccati
equation and stability for the state estimator developped in [1].
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1 Introduction

In a recent paper, [1], we have developed a simple algorithm for the state estimation of stochastic
singular linear systems based on the least squares method. In this paper, we shall consider the problem of
convergence and stability of the obtained generalized Riccati equation and the associated state estimator.
The approach is based on the orthogonal transformation and leads to a standard Riccati equation. The
organization of this paper is as follows : section 2 contains a summary of main results, section 3 develops
the method for the convergence and stability study, section 4 presents a numerical example and section
5 contains conclusion and remarks.

2 Summary of the results

Consider the stochastic singular linear system of the form

Exk+1 = Axk + wk (1)

zk = Hxk + vk (2)

where xk ∈ IRn is the state vector and zk ∈ IRm is the output vector. E ∈ IRp×n, A ∈ IRp×n and
H ∈ IRm×n are constant matrices (if n = p, E may be singular). wk and vk are zero mean white
sequences with

E

{[
wk

vk

] [
wT

j vT
j

]}
=

[
W 0

0 V

]
δkj > 0

where δkj is the Kronecker delta.
In [1], we introduced the notion of estimability for system (1)-(2) and proved the following theorem.

Theorem 1. System (1)-(2) is estimable if and only if matrix
[

ET HT
]T

is of full column rank.



In what follows, we assum that

rank

[
E

H

]
= n

In this case, if the initial state x0 is assumed to be gaussian with mean x0 and covariance P0 > 0,
uncorrelated with wk and vk, then the recursive state estimator in the least squares sense is given by [1]

x̂k/k = Pk/kE
T (W + APk−1/k−1A

T )−1Ax̂k−1/k−1 + Pk/kH
T V −1zk (3)

where
Pk/k =

(
ET (W + APk−1/k−1A

T )−1E + HT V −1H
)−1

(4)

is the estimation error covariance matrix, with P0/0 = P0 and x̂0/0 = x0. Equation (4) represents a
generalized Riccati difference equation (GRDE).

Now we can give the following results which play the key roles in the proof of the convergence of (4)
and the stability of filter (3).

Theorem 2. Let [
E

H

]

be a (p + m) × n matrix of rank n. There exists a (p + m) × (p + m) orthogonal matrix T such that

T

[
E

H

]
=

[
E1

0

]

where E1 ∈ IRn×n is a non-singular upper triangular matrix.

The proof of this theorem in given in [2].

Lemma 1. If

rank

[
E

H

]
= n

then

rank

[
sE − A

H

]
= n ∀s ∈ C, |s| > 1 if rank

[
sI − E−1

1
A1

A2

]
= n ∀s ∈ C, |s| > 1

where [
A1

A2

]
= T

[
A

0

]

Proof. If

rank

[
E

H

]
= n

then, from Theorem 2, there exists an orthogonal matrix T such that

T

[
E

H

]
=

[
E1

0

]

where E1 ∈ IRn×n is a non-singular matrix. Then we have

rank

[
sE − A

H

]
= rank

[
sE − A

sH

]
= rank

[
E−1

1
0

0 −I

]
T

[
sE − A

sH

]

= rank

[
E−1

1
0

0 −I

][
sE1 − A1

−A2

]
= rank

[
sI − E−1

1
A1

A2

]
∀s ∈ C, |s| > 1

•
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3 Convergence and stability analysis

In this section, we shall be interested in the question of the convergence of the filter (3)-(4), that is
in the existence of the limiting solution P of the GRDE (4). If this solution exists, then it satisfies the
following generalized algebraic Riccati equation (GARE)

P =
(
ET (W + APAT )−1E + HT V −1H

)−1

and the asymptotic filter equation is

x̂k/k = PET (W + APAT )−1Ax̂k−1/k−1 + PHT V −1zk

From the previous results and from [3], we can give the following theorem for the existence and
uniquiness of the strong and the stabilizing solutions of the GARE. These solutions are defined as follows.

Definition 1. [Strong and stabilizing solutions] A strong solution of the GARE is a real symmetric
non-negative definite solution for which the corresponding steady-state filter transition matrix has all its
eigenvalues inside or on the unit circle. If all eigenvalues are inside the unit circle, the solution is called
the stabilizing solution. �

Theorem 3. If

rank

[
E

H

]
= n

then the GARE has a unique strong solution if and only if

rank

[
sE − A

H

]
= n ∀s ∈ C, |s| > 1

Proof. Since

rank

[
E

H

]
= n

by assumption, we have, from Theorem 2,

T

[
E

H

]
=

[
E1

0

]

where T T T = I and E1 ∈ IRn×n with detE1 6= 0. The GARE can then be written

P−1 =
[
ET HT

]([W 0

0 V

]
+

[
A

0

]
P
[
AT 0

])−1 [
E

H

]

=
[
ET HT

]([Q1 S1

ST
1 R1

]
+

[
A1

A2

]
P
[
AT

1 AT
2

])−1 [
E1

0

]
(5)

where [
A1

A2

]
= T

[
A

0

]
and

[
Q1 S1

ST
1 R1

]
= T

[
W 0

0 V

]
T T

The inverse of partitioned matrices applied to (5) gives

P−1 = ET
1

(
Q1 + A1PAT

1 − (S1 + A1PAT
2 )(R1 + A2PAT

2 )−1(S1 + A1PAT
2 )T

)−1
E1

or equivalently, since E1 is non-singular

P = Q + FPF T − (S + FPCT )(R + CPCT )−1(S + FPCT )T (6)
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with Q = E−1

1
Q1E

−T
1

, F = E−1

1
A1, S = E−1

1
S1, C = A2 and R = R1.

Equation (6) is the algebraic Riccati equation of the standard Kalman filter where the measurement
erros and the model errors are correlated [4, 5]. This case can be handled like the uncorrelated case by
defining

Fs = F − SR−1C

Qs = Q − SR−1ST

so that (6) becomes
P = Qs + FsPF T

s − FsPCT (R + CPCT )−1CPF T
s (7)

From Theorem 3.2 in [3], the strong solution of (7) exists and is unique if and only if (C,Fs) is
detectable. This is equivalent to

rank

[
sI − Fs

C

]
= rank

[
sI − E−1

1
A1

A2

]
= n ∀s ∈ C, |s| > 1

and from Lemma 1, we have

rank

[
sE − A

H

]
= n ∀s ∈ C, |s| > 1

•

The same orthogonal transformation applied to the filter (3) and the GRDE (4) gives

x̂k/k = Pk/k

[
ET HT

]([W 0

0 V

]
+

[
A

0

]
Pk−1/k−1

[
AT 0

])−1([
A

0

]
x̂k−1/k−1 +

[
0

I

]
zk

)

=
(
F − (S + FPk−1/k−1C

T )(R + CPk−1/k−1C
T )−1C

)
x̂k−1/k−1

+
(
E−1

1
B1 − (S + FPk−1/k−1C

T )(R + CPk−1/k−1C
T )−1B2

)
zk (8)

and
Pk/k = Qs + FsPk−1/k−1F

T
s − FsPk−1/k−1C

T (R + CPk−1/k−1C
T )−1CPk−1/k−1F

T
s (9)

with [
B1

B2

]
= T

[
0

I

]

The convergence conditions of the GRDE (4) and the stability of filter (3) are given by the following
theorem.

Theorem 4. Subject to P0 > 0, then the detectability of (C,F ), or equivalently

rank

[
sE − A

H

]
= n ∀s ∈ C, |s| > 1

and the non-existence of unreachable mode of (Fs, D) (where D is any square-root of Qs) on the unit
circle are the necessary and sufficient conditions for

lim
k→∞

Pk/k = P (exponentially fast)

where P is the unique solution of the GARE.

Proof. Since (3) and (4) are equivalent to (8) and (9), the proof is given by [3]. •
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4 Numerical example

As an numerical example, we consider the singular discrete-time system used in [1], described by

Exk+1 = Axk + wk

zk = Hxk + vk

where

E =





1 1 1 0

2 0 −1 0

0 1 0 1



 , A =





1 1 0 0.59

0 −1 0 0.50

1 0 1 0.09



 ,H =





1 0 0 1

0 1 −0.5 0

0 0 0 1



 ,

W =





0.6 0 0

0 0.8 0

0 0 0.7



 , V =





0.3 0 0

0 0.3 0

0 0 0.6





It is easy to verify that

rank

[
E

H

]
= 4 and rank

[
sE − A

H

]
= 4 ∀s ∈ C, |s| > 1

From theorem 3, the GARE has a unique strong solution P .
We used the QR factorization to determine the orthogonal transformation T

T =





−0.408 −0.816 0 −0.408 0 0

0.495 −0.198 0.594 −0.099 0.594 0

0.699 −0.424 −0.169 0.148 −0.530 0

0.247 0.151 −0.437 −0.550 0.190 −0.621

0.042 −0.245 −0.616 0.449 0.574 0.167

0.191 0.177 −0.220 −0.545 0.029 0.765





By using the same notations as in the above study, we have

A1 =





−0.408 0.408 0 −0.649

1.089 0.693 0.594 0.246

0.530 1.123 −0.169 0.185

−0.190 0.095 −0.437 0.182




, A2 =

[
−0.574 0.287 −0.616 −0.153

−0.029 0.014 −0.220 0.181

]
,

F =





0.123 0.062 −0.115 0.281

0.522 0.239 0.301 0.149

0.383 0.808 −0.118 0.132

0.118 −0.059 0.271 −0.113




, Q =





0.129 −0.020 0.027 −0.056

−0.020 0.180 −0.016 −0.024

0.027 −0.016 0.284 −0.019

−0.056 −0.024 −0.019 0.202




,

R =

[
0.491 0.073

0.073 0.522

]
, S =





−0.008 0.040

−0.075 −0.042

0.073 0.013

−0.038 0.048




, Qs =





0.126 −0.019 0.028 0.061

−0.019 0.166 0.004 −0.027

0.028 −0.004 0.273 −0.014

−0.061 −0.027 −0.014 0.193




,
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Fs =





0.110 −0.055 0.114 0.262

0.438 0.281 0.199 0.138

0.469 0.765 −0.025 0.154

0.068 −0.034 0.237 −0.146




, D =





0.343 −0.029 0.031 −0.080

−0.029 0.405 −0.004 −0.035

0.031 −0.004 0.521 −0.012

−0.080 −0.035 −0.012 0.431





The non-existence of unreacheable mode of (Fs, D) is verified since the rank of the contrallability
matrix

[
D (FsD) (F 2

s D) (F 3
s D)

]
is 4.

With P0 = I > 0, we conclude, from Therem 4, that P is the unique stabilizing solution of the GARE.
For this initialization, the trace of Pk/k is plotted in figure 1. The obtained value for P is

P =





0.141 −0.028 0.017 −0.077

−0.028 0.216 0.059 −0.008

0.017 0.059 0.400 −0.005

−0.077 −0.008 −0.005 0.216





The spectral radius of the filter state transition matrix is

ρ
(
PET

(
W + APAT

)−1
A
)

= 0.4446

which shows that the filter is stable.

5 Conclusion

In this paper, a new approach for studying the convergence and stability of the generalized filter devel-
oped for stochastic singular linear systems is proposed. The method uses an orthogonal transformation
of the pair (E,H) and leads to the standard algebraic Riccati equation. The necessary and sufficient
conditions of convergence and stability are derived.
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Figure 1: Convergence of the filter.
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