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The topology of cellular circuits (the who-interacts-with-whom) is key to understand their robustness to both
mutations and noise. The reason is that many biochemical parameters driving circuit behavior vary extensively and are
thus not fine-tuned. Existing work in this area asks to what extent the function of any one given circuit is robust. But is
high robustness truly remarkable, or would it be expected for many circuits of similar topology? And how can high
robustness come about through gradual Darwinian evolution that changes circuit topology gradually, one interaction
at a time? We here ask these questions for a model of transcriptional regulation networks, in which we explore millions
of different network topologies. Robustness to mutations and noise are correlated in these networks. They show a
skewed distribution, with a very small number of networks being vastly more robust than the rest. All networks that
attain a given gene expression state can be organized into a graph whose nodes are networks that differ in their
topology. Remarkably, this graph is connected and can be easily traversed by gradual changes of network topologies.
Thus, robustness is an evolvable property. This connectedness and evolvability of robust networks may be a general
organizational principle of biological networks. In addition, it exists also for RNA and protein structures, and may thus
be a general organizational principle of all biological systems.
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Introduction

The biochemical parameters that determine the behavior
of cellular systems—from proteins to genome-scale regula-
tory networks—change continually. Such change has two
principal sources. One of them is genetic and consists of
mutations. The other is nongenetic; it is exemplified by noise
internal to the organism and by environmental change. In
contrast to mutations, which are relatively rare, internal noise
is ubiquitous and substantial. Much of it consists of stochastic
variation in gene expression and expression regulation [1–6].
Such noise makes all biochemical parameters affecting a
circuit’s behavior appear to fluctuate randomly. Environ-
mental change, such as a change in temperature, salinity, or
nutrient availability, can similarly affect many parameters at
once. These observations suggest that biological circuits are
not fine-tuned to exercise their functions only for precise
values of their biochemical parameters. Instead, they must be
able to function under a range of different parameters. In
other words, they must be robust to parameter change. These
insights have lead to explorations of circuit robustness in
processes ranging from bacterial chemotaxis to embryonic
development [7–16].

Quantitative models of cellular circuits help us to under-
stand processes as different as circadian rhythms [17–25], the
cell cycle [26], organismal development [7,9,10,16,27–31],
bacterial chemotaxis [8], and the behavior of synthetic
circuitry [32–36]. Several classes of models are used to
represent such biological networks. The first class comprises
differential equation models. The continuous state variables

in these equations correspond to the concentrations or
activities of gene products. The interactions of these gene
products are represented through biochemical parameters
such as binding affinities of transcriptional regulators to
DNA, dissociation constants of ligand-receptor complexes, or
kinetic rate constants of enzymes. A nearly universal problem
is that quantitative information about these biochemical
parameters is absent, even for experimentally well-studied
systems. In other words, some knowledge of the topology of a
circuit—who interacts with whom—may exist, but the
strengths of the interactions are usually unknown. Even
where measurements of biochemical parameters are avail-
able, they are often order-of-magnitude estimates rather than
quantitative measurements with known precision. This
difficulty leads one naturally to a second class of models in
which only the qualitative nature of the state variables (on–
off, or low–high) is considered.
Our focus here is not to consider any one circuit but many

circuit architectures or topologies. Because of the incessant
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changes of biochemical parameters and the lack of quanti-
tative information about their values, such an approach is
appropriate for studying fundamental properties of cellular
circuits; in particular, one may ask what features are
responsible for the robustness of a circuit architecture or
topology [7,9,29,37,38]. In this work, we carry out an analysis
for a model of transcriptional regulation networks with
important functions in developmental processes. Despite its
level of abstraction, this model has proven highly successful in
explaining the regulatory dynamics of early developmental
genes in the fruit fly Drosophila as well as in predicting mutant
phenotypes [27,39–41]. It has also helped to elucidate why
mutants often show a release of genetic variation that is
cryptic in the wild-type, and how adaptive evolution of
robustness occurs in genetic networks of a given topology
[42–45]. Most recently, it has helped explain how sexual
reproduction can enhance robustness to recombination [46].

The model [42] is concerned with a regulatory network of N
transcriptional regulators, which are represented by their
expression patterns S(t)¼ (S1(t), S2(t), . . ., SN(t)) at some time t
during a developmental or cell-biological process and in one
cell or domain of an embryo. The time scale of the model’s
expression dynamics is the time scale characteristic for
transcriptional regulation, which is on the order of minutes,
and not on the order of days, weeks, or months, as for
complete development from zygote to adult. The model’s
transcriptional regulators can influence each other’s expres-
sion through cross-regulatory and autoregulatory interac-
tions, which are encapsulated in a matrix w ¼ (wij). The
elements wij of this matrix indicate the strength of the
regulatory influence that gene j has on gene i (Figure 1A).
This influence can be either activating (wij . 0), repressing
(wij , 0), or absent. Put differently, the matrix w represents
the (regulatory) genotype of this system, while the expression
state is its phenotype. We model the change in the expression

state S(t) of the network (hereafter also referred to as a
circuit) as time t progresses according to the difference
equation Siðtþ sÞ ¼ r½

PN
j¼1wijSjðtÞ�; where s is a constant,

and r(.) is a sigmoidal function whose values lie in the interval
(�1, þ1). This equation reflects the regulation of gene i’s
expression by other genes. We are here concerned with
networks whose expression dynamics start from a prespeci-
fied initial state S(0) at some time t¼ 0 during development,
and arrive at a prespecified stable equilibrium or ‘‘target’’
expression state S‘. We will call such networks viable
networks. The initial state is determined by regulatory factors
upstream of the network, which may represent signals from
the cell’s environment or from other domains of an embryo.
Transcriptional regulators that are expressed in the stable
equilibrium state S‘ affect the expression of genes down-
stream of the network. As a modeling assumption, we think of
their expression as critical for the course of development.
Thus, deviations from S‘ are highly deleterious. It is because
our work starts from such a developmental framework that
S(0) and S‘ play a central role; this is in contrast with most
studies determining the generic properties of random
Boolean networks [30,31,37,38,47–50].
We here examine the relationship between robustness and

network topology for millions of networks with different
topologies. Topology is synonymous with the ‘‘structure’’ of
the matrix w, because each of w’s nonzero entries corresponds
to one regulatory interaction among the circuit’s genes
(Figure 1A). Changes in topology correspond to the loss of
a regulatory interaction (wij ! 0), or to the appearance of a
new regulatory interaction that was previously absent. Such
topological changes can occur on very short evolutionary
time scales, in particular in higher eukaryotes with large
regulatory regions [51]. This underscores the need to study
their effects on network robustness. In our analysis, we first
ask how robustness to mutations and noise varies within an
ensemble of networks with different topologies. Subse-
quently, and more importantly, we also ask whether highly
robust topologies can evolve from topologies with low
robustness through gradual topological changes.

Results

Robustness to Noise and Robustness to Mutations Are
Highly Correlated
Robustness to mutations on one hand, and to environ-

mental change and internal noise on the other hand,
correspond to two different measures of robustness in the
circuits we study. In both cases, the robust feature is the
network’s equilibrium gene expression pattern S‘. Robust-
ness to mutations corresponds to robustness of S‘ to changes
in regulatory interactions, either as a change in network
topology, or as a change in the strength of regulatory
interaction. Specifically, for a given viable network, we define
mutational robustness Rl as the fraction of its one-mutant
neighbors that are also viable. Robustness to noise corre-
sponds to robustness of S‘ to changes in gene expression
patterns. We use three complementary measures of robust-
ness to noise. The first of them is the probability Rm,1 that a
change in one gene’s expression state in the initial expression
pattern S(0) leaves the network’s equilibrium expression
pattern S‘ unchanged. The second measure is the fraction Rm*

of genes whose expression needs to change in S(0), such that
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Author Summary

Living things are astonishingly complex, yet unlike houses of cards
they are also highly robust. That is, they have persisted for billions of
years, despite being exposed to an endless stream of environmental
stressors and random mutations. Is this robustness an evolvable
property? Do different biological systems vary in their robustness? Has
natural selection shaped this robustness? These questions are very
difficult to answer experimentally for most systems, be they proteins
or large gene networks. Here we address these questions with a model
of the transcription regulation networks that regulate both cellular
functions and embryonic development in many organisms. We
examine millions of such networks that differ in the topology or
architecture of their regulatory interactions, that is, in the ‘‘who
interacts with whom’’ of a network. We find that radically different
network architectures can show the same gene expression pattern.
The networks’ robustness to both mutations and gene expression
noise shows a broad distribution: some network architectures are
highly robust, whereas others are quite fragile. Importantly, the entire
space of network architectures can be traversed through small
changes of individual regulatory interactions, without changing a
network’s gene expression pattern. This means that high robustness
in gene expression can evolve through gradual and neutral evolution
in the space of network architectures. Our results show that the
robustness of transcriptional regulation networks is an evolvable trait
that natural selection can change like any other trait.

Gradual Evolution of Robustness



Figure 1. Regulatory Network Model and the Metagraph Concept

(A) A transcriptional regulation network. Solid black bars indicate genes that encode transcriptional regulators in a hypothetical five-gene network or
gene circuit. Each gene’s expression state is influenced by the transcriptional regulators in the network. This influence is usually exerted by binding of a
transcriptional regulator to a gene’s regulatory region (horizontal line). The model represents the regulatory interactions between transcription factor
j and genes i through a matrix w¼ (wij). A regulator’s effect can be activating (wij . 0, red rectangles) or repressing (wij , 0, blue rectangles). Any given
gene’s expression may be unaffected by most regulators in the network (wij¼ 0, open rectangles). The different hues of red and blue correspond to
different magnitudes of wij. The highly regular correspondence of matrix entries to binding sites serves the purpose of illustration. We note that
transcription factor binding sites often function regardless of their position in a regulatory region.
(B) Gradual evolutionary changes and the metagraph. The middle panel shows a hypothetical network of five genes (top) and its matrix of regulatory
interactions w (bottom), if genes are numbered clockwise from the uppermost gene. Red arrows indicate activating interactions and blue lines
terminating in a circle indicate repressive interactions. The left-most network and the middle one differ in one repressive interaction from gene four to
gene three (dashed gray line, black cross, large open rectangle). The right-most network and the middle one differ in one activating interaction from
gene one to gene five (dashed line, black cross, large open rectangle). Each of the three network topologies corresponds to one node in a metagraph of
network topologies, which is indicated by the large circle around the networks. These circles are connected because the respective networks are
neighbors in the metagraph, i.e., they differ by one regulatory interaction.
(C) Part of a metagraph for a regulatory network with N ¼ 4 genes. Each node corresponds to a network of a given topology, and two nodes are
connected by an edge if they differ at one regulatory interaction (M ’ 0.5 N 2 regulatory interactions, and Hamming distance of S(0) and S‘ of d¼ 0.5).
The metagraph in this case is connected, and the number of edges incident on a node is highly variable. The graph shown includes all viable networks
that differ at no more than four regulatory interactions from an arbitrary node in the metagraph. Note that metagraphs typically have a huge number of
nodes. The number of nodes in a metagraph can be counted because different nodes differ only in the signs of their regulatory interactions.
doi:10.1371/journal.pcbi.0030015.g001
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the probability of attaining the equilibrium state falls below
½. The third measure is the probability that changes in the
gene expression trajectory from S(0) to S‘ preserve S‘ (see
Text S1 for details). Importantly, robustness to noise and
robustness to mutations are highly correlated. Figures 2 and
S1A illustrate this for one example, a network of N¼ 20 genes
(Spearman’s s . 0.56, p , 10�15). Similar observations have
been made for mutational robustness and thermodynamic
stability in RNA secondary structures [52].

We show in Text S1 that all important network properties
depend only on the fraction of genes that differ in their
expression state between S(0) and S‘. We refer to this fraction
as the distance d between the two states (0 � d � 1). We find
highly significant associations between our four measures of
robustness for wide ranges of values for this distance d, the
number of genes N, and number of regulatory interactions.
Examples are shown in Tables S1 and S2 for two of our
measures of robustness to noise. A comparison of the tables
shows that the significant correlations between robustness to
mutations and to noise exist regardless of how robustness to
noise is assessed. The data in these tables are for networks
where regulatory interactions are discrete (wij ¼61), but the
same conclusions hold for networks with continuous-valued
regulatory interactions (Figure S1B; Tables S3 and S4).

The Fraction of Viable Networks Is Tiny
Consider all networks of a given number N of genes and

total number M of regulatory interactions. The fraction vf of
viable networks, that is, networks that arrive at a prespecified
target expression state S‘ given an initial gene expression
state S(0), is generally tiny. We first present a qualitative
argument for why this should be so. Consider an equilibrium
expression state S‘. Now choose one network w at random
out of the space of all possible networks. Because there are 2N

possible equilibrium states, the probability that this network
w arrives at S‘ should be at most on the order of 1/2N. This
simple observation suggests that the fraction of viable
networks should be exponentially small in N. A quantitative
analysis for networks with wij¼61 confirms this exponential
scaling (Figure S2). Even for small networks, the fraction vf
of viable networks is small. For example, we used exhaustive
enumeration to show that for networks with N ¼ 4 genes
(M ¼ 8 regulatory interactions, d ¼ 0.5) less than 0.5% of
networks are viable. For moderately sized networks of N¼ 20
genes (M ¼ 200, d ¼ 0.5), random sampling establishes that
vf ¼ 5.1 3 10�9 6 1.7 3 10�10. That is, fewer than one in one
hundred million networks are viable.

A ‘‘Metagraph’’ of Networks That Differ Greatly in
Their Robustness
Next, we focus on the set of viable networks with a given

number N of genes and a number M of regulatory
interactions within a narrow range. From the set of these
networks, we define a graph whose nodes correspond to the
networks: two networks (nodes) in this graph are connected if
they differ in the value of only one regulatory interaction
(Figure 1B). We call this graph a metagraph, because it is a
graph whose nodes are networks—which could themselves be
represented as (oriented) graphs. These nodes differ in the
topology of their regulatory interactions. Neighboring net-
works in the metagraph arise from one another by genetic
changes that affect only one regulatory interaction (Figure
1B). In the biological evolution of network topology, this
metagraph could be traversed through a series of small
genetic changes, each affecting one regulatory interaction.
From here on we shall concentrate on mutational robust-

ness. This is not much of a restriction since robustness to
noise and to mutational robustness are highly correlated;
thus, one can be used as a proxy for the other. Clearly,
metagraphs are ideally suited to study how mutational
robustness evolves. In fact, all questions about the evolution
of mutationally robust regulatory network topologies are
questions about the structure of the metagraph. We discuss
most of our results for the case where regulatory interactions
are discrete (wij ¼61), but nearly all of our results hold also
for regulatory interactions that have continuous values.
The higher a network’s mutational robustness Rl is, the

larger the number of regulatory interactions one can change
without affecting the network’s equilibrium gene expression
state S‘. If all nodes in the metagraph had the same number
of neighbors, all networks would be equally robust, and
robustness could not change in biological evolution. How-
ever, this is not the case. Figure 3 shows the distribution of
mutational robustness for networks with N¼ 20 genes and M
’ 0.25 N2 regulatory interactions. There are clearly vast
differences in robustness among networks. For example, the
most robust network in Figure 3 has Rl ¼ 0.98 and is almost

Figure 2. A High Statistical Association between Robustness to

Mutations and to Noise

The horizontal axis shows mutational robustness Rl , which is the fraction
of a viable network’s neighbors (networks differing from it in only one
regulatory interaction) that arrive at the same equilibrium state S‘ given
the initial state S(0). The vertical axes show two different measures of
robustness to noise. The left vertical axis (þ, solid line) shows Rm,1, the
probability that a change in one gene’s expression state in the initial
expression pattern S(0) leaves the network’s equilibrium expression
pattern S‘ unchanged. The right vertical axis (circles, dashed line) shows
Rm,*, the fraction of genes whose expression state in S(0) has to change at
random, such that the probability that a network arrives at the
equilibrium state S‘ falls below a value of ½. In a network with large
Rm,*, perturbation of the expression states of a large fraction of genes
affects the equilibrium pattern only rarely. Rl is highly associated with
both Rm,1 (Spearman’s s¼ 0.70) and Rm,* (Spearman’s s¼ 0.69, p , 10�15;
103 networks for both). The sample is obtained from a Monte Carlo
simulation as described in Methods (N ¼ 20, M ’ 0.25 N2 regulatory
interactions, d ¼ 0.5, wij ¼61).
doi:10.1371/journal.pcbi.0030015.g002

PLoS Computational Biology | www.ploscompbiol.org February 2007 | Volume 3 | Issue 2 | e150167

Gradual Evolution of Robustness



300-fold more robust than the network with the lowest
robustness (Rl¼3.3310�3). Figure S3 shows that qualitatively
the same observations hold for networks with varying
regulatory interactions and varying distance between S(0)
and S‘. Networks with continuously valued regulatory
interactions show a similarly broad distribution of robust-
ness. All of these properties seem to be general, holding for
mutational robustness and for our three measures of robust-
ness (unpublished data). The distribution of robustness has
no tendency to become more ‘‘concentrated’’ at a pro-
nounced peak with increasing N. We thus cannot restrict
ourselves to studying a ‘‘typical’’ Rl. In sum, different
networks show very different robustness to mutations or
noise, and heterogeneity in robustness is the rule.

Networks Can Evolve Gradually toward Robustness
A key question regarding the evolvability of robust networks

is whether one can reach highly robust networks starting from
networks of low robustness through a series of small genetic
changes. This is not self-evident. Recall that viable networks
comprise a tiny fraction of all possible ones. They could be
widely scattered in the space of all possible networks and
occupy disconnected islands in this space. However, our
analysis indicates precisely the opposite. The metagraph of
viable networks has one ‘‘giant’’ connected component that
comprises most or all viable networks. Any two networks in
this component can be reached from one another through
gradual changes of one regulatory interaction at a time,
changes that never leave the space of viable networks.

We demonstrated these properties in the following
manner. First, for networks with few genes, we can obtain
all viable networks through exhaustive enumeration. In this
case, we test whether the metagraph of viable networks is
connected by comparing the whole list of viable networks to
that associated with a connected component. This compo-
nent is constructed by initiating a random walk on the
metagraph, starting from an arbitrary viable starting network.
The list of all distinct viable networks visited during this
random walk is a lower bound on the size of the connected
subpart of the metagraph that contains this starting network.
This number usually is very close or equal to the total number
of viable networks. For example, for networks of N¼ 5 genes,
6�M� 7 regulatory interactions, and d¼0.4, there are a total
of 37,338 viable networks (out of 6.3 3 107 possible ones). A
random walk visiting 107 networks finds all 37,338 of these.
More generally, long randomwalks through the space of viable
networks visit all but a very small fraction of the nodes of the
metagraph, and this missing fraction decreases as N increases.

Second, when N becomes too large to enumerate all viable
networks, Monte Carlo sampling becomes necessary (see Text
S1). For networks with few genes and few regulatory
interactions (one to two interactions per gene), some
randomly chosen viable networks are isolated points of the
metagraph. We note that this situation is exceptional and
results from our constraint that forbids more than a
prespecified small total number of regulatory interactions.
In the generic case, however, which becomes more and more
prevalent as N increases, an overwhelming fraction of the
whole metagraph is in one ‘‘giant component’’ (Table S5). For
instance, a fraction 0.998 of viable networks belong to the
giant component of the metagraph for N as small N ¼ 12
(M ’ 0.25 N2, d ¼ 0.5).

We conclude that most or all viable networks are contained
in one large connected component for the cases we examined
here. This means that nearly all viable networks can evolve
toward greater robustness through gradual changes in top-
ology. This great cohesiveness of viable networks is not self-
evident, as we show in Text S1. Specifically, it does not hold
for a metagraph comprising the same number nv of nodes as
the above metagraph of viable networks, where neighboring
nodes (networks) differ in one regulatory interaction, but
where the nodes need not be viable. In such a ‘‘random
metagraph,’’ the probability that an arbitrary node is isolated
is bounded from below by [1�K/(n� nvþ 1)]nv�1 ’ 1, where K
is the number of neighbors of a network w. It follows
immediately that only a negligible fraction of the nodes in a
random metagraph is not isolated.
The connectivity difference between metagraphs of viable

and of random networks is already drastic for a small number
of genes. For example, for N ¼ 6, M ’ 0.5 N2 regulatory
interactions, and d ¼ 0.5, there are a total of n ¼ 8.59 3 1013

networks. Using random sampling, we find that there are
nv ¼ 7.77 3 106 viable networks, of which only a fraction,
0.0022, is isolated. For a random metagraph of the same size,
the fraction of isolated nodes would be at least 0.988.
For all of our previous analyses, we have considered only

one pair of initial and target gene expression states.
Regulatory gene networks, however, often function in more
than one context inside the organism, each of which can be
characterized by a different pair of initial and equilibrium
states. A detailed analysis of such multiple gene expression
states will be reported elsewhere. Here, we just note that our
key results are unaffected by these additional constraints.
Specifically, although for any given N and M, the metagraph
of viable networks is more often disconnected than where
there is a single initial-target pair, it is still dominated by a
single connected giant component as N increases, and the
networks in this component still show a broad distribution of
robustness (Figure S5).

Figure 3. Heterogeneous Distribution of Mutational Robustness

The histogram shows the distribution of the fraction Rl of neighbors of a
network that differ at one regulatory interaction but attain the same
equilibrium gene expression state S‘. The data is obtained from a sample
of 104 networks (N ¼ 20; M ’ 0.5 N 2; d ¼ 0.7) sampled from the
metagraph in a Monte Carlo simulation as outlined in Methods.
doi:10.1371/journal.pcbi.0030015.g003
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Mutational Robustness and Natural Selection
All evolution by natural selection takes place in popula-

tions of organisms. To find out to what extent natural
selection can change mutational robustness, one thus has to
take into account the dynamics of an evolving population of
organisms (networks) on the metagraph. Specifically, the
question is to what extent natural selection can shape the
average mutational robustness (or the robustness to noise) of
networks in the population [53]. We here briefly summarize a
relevant result from earlier work [54] that was derived with
biological macromolecules in mind but applies also to the
networks considered here. This result pertains to populations
that evolve under the influence of (regulatory) mutations and
strong selection to maintain viability. For small population
sizes P, small number of genes N, or small mutation rates l
(PNl � 1), natural selection is not capable of increasing
population robustness beyond the mean robustness of the
networks in the metagraph. In contrast, for larger popula-
tions with sufficiently high mutation rates (PNl � 1), the
population becomes concentrated at nodes (genotypes) of
higher mutational robustness. To understand the selective
force driving the evolution of high mutational robustness,
consider two hypothetical subpopulations of networks on a
metagraph, one with low robustness, the other with high
robustness. Mutations arrive at the two subpopulations with
equal frequency. However, individuals in the subpopulation
with low robustness are much more likely to lose viability than
individuals with high robustness. Over many generations, this
preferential elimination of individuals with low robustness
drives the evolution of high robustness. In the long run, the
average robustness �Rl in a population of networks will exceed
the mean of Rl when averaging uniformly over the meta-
graph. In fact, in the large population size limit, �Rl converges
to an eigenvalue associated with the adjacency matrix [55] of
the metagraph [54]. We here estimate �Rl numerically.

Figure 4 shows the mean population robustness �Rl for a

large population subject to natural selection (black bars) and
for a random sample of the metagraph (open bars) which
represents the average robustness of networks in the meta-
graph. The difference is a measure of the extent to which
natural selection can increase robustness. Figure 4 shows that
although natural selection acts on viability alone, population
robustness is enhanced compared with the metagraph
average. Although this holds regardless of the number N of
genes, the ratio of population robustness to average robust-
ness increases with increasing N, rising to a factor of
approximately three when N ¼ 40. Larger values of N have
greater potential to evolve increased robustness. The same
holds for networks with continuously valued regulatory
interactions (Figure S6) and for our different measures of
robustness to noise (unpublished data).

Designing Robust Networks
We here develop a ‘‘minimum-frustration’’ [56] prescrip-

tion for the design of a highly robust network. There are two
key requirements for robust network design. The first of them
is that the equilibrium gene expression state should be highly
stable, such that noise or mutations leave it unchanged. In
this regard, we note that the expression Si of each gene in the
equilibrium state has to fulfill the equation

si;‘ ¼
X
j

wijsj;‘

 !
: ð1Þ

The equilibrium expression state will be most stable if the
sum above is large in absolute value, because changes in
individual gene expression states or regulatory interactions
will not affect the sign of the sum. In the discrete case (wij ¼
61), the largest possible absolute value is achieved if one
chooses wij¼ Si,‘Sj,‘ for all nonzero regulatory interactions.
The second key requirement for a robust network is that

the equilibrium gene expression state can be reached quickly
from the initial state. The longer the network’s trajectory to
the equilibrium state, the greater the chance that the
trajectory veers off course due to gene expression noise,
and the smaller the network’s mutational robustness. For
example, in a sample of 104 networks with N ¼ 40 genes,
M ’ 100 regulatory interactions, and d ¼ 0.5, Rl is highly
correlated with the reciprocal of the time t needed to reach
the equilibrium state (Rl � 1/t: s ¼ 0.88, p ,10�15).
In the discrete-time model we consider, the shortest

possible time from initial to equilibrium state is one time
step. Which networks have this shortest possible trajectory?
To find out, it is best to separate the genes of the network
into two groups, those that have the same (‘‘aligned’’)
expression state in the initial and equilibrium expression
pattern (Si(0) ¼ Si,‘), and those that have a different
(‘‘misaligned’’) expression state (Si(0) 6¼ Si,‘). To reach the
equilibrium state in just one step (the shortest possible
amount of time), a network has to obey the equation

si;‘ ¼ r
X

j;Sjð0Þ¼Sj;‘
wijSjð0Þ þ

X
j;Sjð0Þ6¼Sj;‘

wijSjð0Þ

0
@

1
A ð2Þ

If one again chooses wij ¼ Si,‘Sj,‘ for all j belonging to
‘‘aligned’’ genes, then the left sum will make a contribution
that is most favorable. In addition, this choice also favors the

Figure 4. Natural Selection for Viability Dramatically Increases Robustness

The horizontal axis shows the number of genes per network. Black bars
on the vertical axis show the mean mutational robustness �Rl for
populations under viability selection with PNl � 1, and grey bars show
the mean mutational robustness �Rl for a population with PNl � 1, in
which selection for increased robustness is ineffective, and, thus,
sampling of the metagraph is uniform (M ’ 0.25 N 2, d ¼ 0.5).
doi:10.1371/journal.pcbi.0030015.g004
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stability of the equilibrium state. For the group of ‘‘mis-
aligned’’ genes, the opposite choice, e.g., wij ¼�Si,‘Sj,‘ might
seem appropriate, because it has the correct sign to validate
the equation; however, this choice would directly oppose the
stability of the equilibrium state.

Taken together, these observations suggest the following
prescription for designing highly robust networks. For any
gene j whose expression state is the same in the initial and the
equilibrium states, choose wij¼ Si,‘Sj,‘ whenever a regulatory
interaction is present. For genes that are not of that type, we
assign the magnitude of nonzero interactions wij such that the
right-hand sum in the above expression is zero or close to
zero for every i. (For a sufficiently large total number of
regulatory interactions, i.e., M/N & 1, choosing random values
for these interactions will achieve this goal.)

We note that although the fraction of networks designed to
be highly robust may be tiny, their absolute number may be
astronomical for any given number of genes, initial states,
and equilibrium states, simply because of the different ways
to choose which regulatory interactions are present. (Fur-
thermore, our prescription also leaves some freedom for
choosing the strengths of those interactions that are to cancel
out.) We also note that our prescription resembles the Hebb
rule for storing information in neural networks [57], an
important difference being that our networks are asymmetric
(wij 6¼ wji). In Text S1, we demonstrate that the simple
principles discussed here are sufficient to produce highly
robust networks (Figure S4).

Discussion

To summarize, we find that networks of different topology
vary by orders of magnitude in their robustness to mutations
and noise. Highly robust networks can be ‘‘designed’’
following a simple prescription for their regulatory inter-
actions. Most importantly, highly robust networks can be
reached from networks with lower robustness through
gradual evolutionary change, one regulatory interaction at a
time. Not only that, all or most networks with a given
equilibrium gene expression state are connected in one large
metagraph of network topologies. These findings hold for a
wide range of numbers of genes, total numbers of regulatory
interactions, and different initial and equilibrium gene
expression patterns.

Albeit the subject of some earlier work [50,58], the topology
of regulatory networks has received more widespread
attention since the realization that many biological systems
keep functioning when faced with a wide spectrum of genetic
and nongenetic change. Such change alters the biochemical
parameters—concentrations, binding constants, half-lives,
etc.—under which a network operates. It requires studying
network topologies if one is to understand robustness,
because much else about a network is in constant flux.
Important earlier work has largely focused on the extent to
which one or few network or circuit topologies supported by
experimental data are robust [7,9,10]. The assertion that such
networks are indeed robust has a major limitation: how do we
know that their robustness is unusual or remarkable? This
question can only be answered by studying many network
topologies and their distribution of robustness. The same holds
for our central question: how can robustness can be achieved
through gradual Darwinian evolution, a process that does not

create radical new network architectures in one step, but
slowly modifies existing networks? An evolutionary perspec-
tive becomes important here: although circuits with a
desirable feature may exist, it may be impossible to reach
them through gradual evolution from other circuits. The
difficulty in answering these questions is due to insufficient
empirical information on topological variants of any one
specific biological network.
What is the value of our results, given that they are based

on a general model of transcriptional regulation networks,
and not on one specific network in one organism? Results
from such an abstract model have the advantage that they
may apply to all or most networks that share specific
characteristics. In this regard, we note that our model is
designed to capture the qualitative behavior of transcrip-
tional regulation networks in which cooperative regulation of
gene expression is important. Given how central such
cooperative regulation is in eukaryotes, it is perhaps not
surprising that variants of this model can correctly predict
the gene expression dynamics of biological circuits such as
the Drosophila gene regulation network [27,39–41]. Also, our
key findings do not depend strongly on many details such as
the number of genes or regulatory interactions. Finally,
similar results—broad distribution and evolvability of robust-
ness—have been recently reported for a small sample of
circadian oscillator networks that are very different from our
regulatory model [59], which suggests that robustness may be
evolvable for a broad class of cellular networks. At the least,
our results call for analysis of a wide range of experimentally
well-understood circuits with partially known topology, in
order to find out whether there are biologically important
exceptions to our findings.
The evolution of increased robustness by the mechanism

discussed here is neutral evolution. This does not mean that
all mutations that occur in the process are neutral. Some
mutations in regulatory interactions—those that cause a
network to leave the metagraph—may be deleterious. How-
ever, such mutations are eliminated by natural selection, and
only the neutral mutations survive. If we had sufficient data to
study the evolution of transcriptional regulation networks
over long times, for example by following changes in
transcription factor binding sites, then the deleterious
mutations that inevitably occur during evolution would leave
only one trace: conservation—to a greater or lesser extent—
of individual binding sites. Limited conservation of regula-
tory interactions and binding sites [60,61] is thus no contra-
diction to neutral evolution. It just indicates that some
mutations that occurred in the evolutionary history of a
network have been eliminated by natural selection.
We note intriguing parallels of our observations to the

work of others both on artificial systems, such as ‘‘digital
organisms,’’ and on natural systems, such as the sequence–
structure relationships of RNA and protein molecules [52,62–
70]. The secondary or tertiary structure of a molecule can be
viewed as its phenotype (analogous to the gene expression
pattern of a regulatory network). Its RNA or amino acid
sequence is its genotype (analogous to a regulatory network
with a given topology of regulatory interactions). The set of
all molecules (sequences) that adopt the same structure
comprises both sequences of great and little robustness to
mutations or thermal noise. Most importantly, a set of
sequences adopting the same structure typically form a very
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large connected graph called a neutral network, where
sequences differing only at one residue are neighbors in the
graph; our notion of a metagraph for regulatory circuits
mirrors the neutral network concept. Such topological
properties show that gradual evolution changing one residue
at a time—analogous to changes affecting one regulatory
interaction at a time—can readily traverse such a graph and
find highly robust sequences, or sequences that have any
other desirable feature. The observation that robustness is
evolvable in biological systems at two different levels of
organization—molecule and circuit—with different architec-
tures and purposes, further suggests that our findings reflect a
general organizational principle of biological systems.

Methods

Random sampling of viable networks. To explore the space of
random viable networks, we generate such networks numerically with
uniform probability when this space is discrete (for instance, when
the regulatory interaction strengths are either zero or 61). A random
network is easily generated by assigning to each of the N2 values wij a
random value. However, in our study we also constrain the numberM
of nonzero wij to lie in a given range, (M�,Mþ). To meet this
constraint, we first compute the fraction of networks that have each
of the allowed values of M. This allows us to generate a probability
distribution for M within the allowed range. For any one randomly
chosen M, we then choose at random the M nonzero interactions.
This procedure uniformly samples the space of all networks,
satisfying the range constraint on M. Keeping only those networks
that are viable then leads to a uniform sampling of the space of viable
networks, allowing us to estimate parameters of interest, such as the
distribution of robustness. This algorithm can be extended to
continuous interaction strengths (see Text S1).

Exploring the connectivity properties of the space of viable
networks. To show that the space of viable networks is indeed
dominated by one large connected component, we first start with
some arbitrary viable reference network. Then we determine
numerically the fraction of viable networks that can be connected
to this reference network via some series of point changes in the
interaction weights. To do this, we generate a random viable network;
from it, we produce a long sequence of 106 point changes that are
randomized but preferentially reduce the Hamming distance to the
reference network. If during this sequence we reach the reference
network, then the two networks are manifestly ‘‘connected’’;
otherwise, we consider that the two of them are not connected to
one another. We repeat this procedure for 1,000 random reference
viable networks. In practice, we find that nearly all (more than 99%)
of the networks are ‘‘connected’’ to the reference one.

Supplementary Information

Figure S1. Statistical Association between Robustness to Mutations
and to Noise

(A) The horizontal axis shows robustness to perturbations of transient
expression changes, Rtrans. Rtrans is the probability that a network still
reaches S‘, as estimated from 5N perturbed trajectories of the
dynamical system siðtþ sÞ ¼ r½

PN
j¼1 wijSjðtÞ�, where, during each time

step, we pick one gene i at random, and reset its expression value
randomly. The vertical axes show mutational robustness Rl and Rm,1
as defined in the text. Rtrans is highly associated with both Rl
(Spearman’s s ¼ 0.57) and Rm,1 (Spearman’s s ¼ 0.76, p , 10�15; 103
networks for both). Rm,* is also highly correlated with Rtrans (Spear-
man’s s ¼ 0.56, p , 10�17), but the values are not plotted here for
visual clarity. The sample is obtained from a Monte Carlo simulation
as described in Methods (N¼ 20, M ’ 0.25 N2 regulatory interactions,
d¼ 0.5, wij ¼61).
(B) Analogous to Figure 2, except for continuous regulatory
interactions. The horizontal axis shows mutational robustness Rl,
which is the fraction of a network’s neighbors (networks differing in
only one regulatory interaction) that arrive at the same equilibrium
state S‘ given the initial state S(0). The vertical axes show two
different measures of robustness to noise. The left vertical axis
(þ, solid line) shows Rm,1, the probability that a change in one gene’s
expression state in the initial expression pattern S(0) leaves the

network’s equilibrium expression pattern S‘ unchanged. The right
vertical axis (circles, dashed line) shows Rm*, the fraction of genes
whose expression state in S(0) has to change at random, such that the
probability that a network arrives at the equilibrium state S‘ falls
below ½. In a network with large Rm*, perturbation of the expression
states of a large fraction of network genes affects the equilibrium
pattern only rarely. Rl is highly associated with both Rm,1 (Spearman’s
s¼55) and Rm* (Spearman’s s¼0.48, p , 10�15; 103 networks for both).
The sample is obtained from a Monte Carlo simulation as described
in Methods (N¼ 20, M ¼’0.25 N2, d ¼ 0.5).

Found at doi:10.1371/journal.pcbi.0030015.sg001 (343 KB PPT).

Figure S2. The Fraction of Viable Networks Is Tiny

The horizontal axis shows the number of genes (N). The vertical axis
shows the fraction of viable networks vf for discrete regulatory
interactions wij ¼ 61) on a logarithmic scale. The number of
interactions is M ’ 0.5 N2, and the distance d between initial and
equilibrium state is set to d¼ 0.5. Note the exponential decrease of vf
with increasing N. The middle line (#) indicates numerical estimates
of vf obtained through random sampling from the space of all
possible networks. Sampling errors are at least one order of
magnitude smaller than the estimated values and thus invisible on
the plot. The upper and lower lines indicate analytically obtained
upper and lower bounds on vf, respectively. The upper bound is the
fraction of networks that have S‘ as their equilibrium state. The lower
bound corresponds to the fraction of viable networks that reach S‘

from S(0) in the shortest possible time (t ¼ 1). (These bounds can be
computed without sampling and are thus exact.)

Found at doi:10.1371/journal.pcbi.0030015.sg002 (45 KB PPT).

Figure S3. Heterogeneous Distribution of Mutational Robustness for
Different Values of c (M ’ cN2) and d
All four histograms show the distribution of the fraction Rl of
neighbors of a network that differ at one regulatory interaction but
attain the same equilibrium gene expression state S‘. While the shape
of this distribution may depend on network parameters, two
important features vary little: the most robust networks represent a
very small fraction of networks, and the difference in robustness
between themost and least robust networks can be very large. The data
shown are based on a sample of 104 networks (N¼ 20) sampled from
the metagraph in Monte Carlo simulation as outlined in Methods. The
total number of regulatory interactions is cN(N�1)�M� cN2. Values
of c and d are indicated in (A–D).

Found at doi:10.1371/journal.pcbi.0030015.sg003 (76 KB PPT).

Figure S4. Association between Mutational Robustness and Quality Q
of a Network

The scatterplot shows the values of Rl and the quantity Q defined in
the main text for a sample of 104 viable networks with N¼ 40 genes,
M ’ 0.5 N2, and d¼0.5. Networks with high values of Q also have high
robustness Rl (Spearman’s s ¼ 0.65, p , 10�15, 104 networks).

Found at doi:10.1371/journal.pcbi.0030015.sg004 (166 KB PPT).

Figure S5. A Broad Distribution of Robustness for More Than One
Initial-Target Pair of Gene Expression States

The figure shows a histogram of values of Rl based on 1,300 randomly
sampled networks with N ¼ 12 genes, M ’ 0.25 N2 regulatory
interactions, and two pairs of input-target gene expression states with
randomly generated initial and equilibrium gene expression states.

Found at doi:10.1371/journal.pcbi.0030015.sg005 (43 KB PPT).

Figure S6. Natural Selection for Viability Dramatically Increases
Robustness

The horizontal axis shows the number of genes per network. Results are
based on populations that are under viability selection. Black bars on
the vertical axis show the mean mutational robustness �Rl for
populations with PNl� 1, where selection is effective, and grey bars
show themeanmutational robustness �Rl forpopulationswithPNl�1,
in which selection is ineffective, and where, thus, sampling of the
metagraph is uniform (M ’ 0.5 N2, d ¼ 0.5, continuous-valued
regulatory interactions wij).

Found at doi:10.1371/journal.pcbi.0030015.sg006 (46 KB PPT).

Table S1. Robustness to Mutations and to Noise Rm,1 Are Associated
Regardless of the Number N of Genes, Fraction c of Regulatory
Interactions (M ; cN2 ), and the Distance d between Initial and
Equilibrium State
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ShownareSpearmancorrelationcoefficients (p-values) betweenRl and
Rm,1 for n¼1,000 networks randomly sampled as described in Methods.
Regulatory interactions are discrete (wij¼61). NS, nonsignificant.

Found at doi:10.1371/journal.pcbi.0030015.st001 (20 KB DOC).

Table S2. Robustness to Mutations and to Noise Rm,* Are Associated
Regardless of the Number N of Genes, Fraction c of Regulatory
Interactions (M ’ cN2), and the Distance d between Initial and
Equilibrium State

Shown are Spearman correlation coefficients (p-values) between Rl

and Rm,* for n ¼ 1,000 networks randomly sampled as described in
Methods. Regulatory interactions are discrete (wij ¼ 61). NS,
nonsignificant.

Found at doi:10.1371/journal.pcbi.0030015.st002 (20 KB DOC).

Table S3. Robustness to Mutations and to Noise Rm,1 Are Associated
Regardless of the Number N of Genes, Fraction c of Regulatory
Interactions (M ; cN2), and the Distance d between Initial and
Equilibrium State

Shown are Spearman correlation coefficients (p-values) between Rl
and Rm,1 for n ¼ 1,000 networks randomly sampled as described in
Methods. Regulatory interactions are continuous. NS, nonsignificant.

Found at doi:10.1371/journal.pcbi.0030015.st003 (22 KB DOC).

Table S4. Robustness to Mutations and to Noise Rm,* Are Associated
Regardless of the Number N of Genes, Fraction c of Regulatory
Interactions (M ’ cN2), and the Distance d between Initial and
Equilibrium State

Shown are Spearman correlation coefficients (p-values) between Rl

and Rm,*¼1,000 networks randomly sampled as described in Methods.
Regulatory interactions are continuous. NS, nonsignificant.

Found at doi:10.1371/journal.pcbi.0030015.st004 (22 KB DOC).

Table S5. Few Networks Are Not in the Giant Connected Metagraph
Component, and Most of These Networks Are Isolated

Values in columns 3 and 4 were obtained as outlined in the Text S1
section ‘‘Numerically determining metagraph connectivity for large
networks’’ for samples of V¼105 (N ¼ 6,8) and V ¼ 104 (N ¼ 12, 20)
randomly chosen viable networks. Values preceded by , might be
equal to zero, but this cannot be ascertained numerically. Total
number of regulatory interactions M ; cN2.

Found at doi:10.1371/journal.pcbi.0030015.st005 (55 KB DOC).

Text S1. Supplementary Material

Found at doi:101371/journal.pcbi.0030015.sd001 (204 KB DOC).
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