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Abstract

The Stanley lattice, Tamari lattice and Kreweras lattice are three remarkable orders defined on the
set of Catalan objects of a given size. These lattices are ordered by inclusion: the Stanley lattice is an
extension of the Tamari lattice which is an extension of the Kreweras lattice. The Stanley order can
be defined on the set of Dyck paths of size n as the relation of being above. Hence, intervals in the
Stanley lattice are pairs of non-crossing Dyck paths. In a former article, the second author defined a
bijection Φ between pairs of non-crossing Dyck paths and the realizers of triangulations (or Schnyder
woods). We give a simpler description of the bijection Φ. Then, we study the restriction of Φ to
Tamari’s and Kreweras’ intervals. We prove that Φ induces a bijection between Tamari intervals and
minimal realizers. This gives a bijection between Tamari intervals and triangulations. We also prove
that Φ induces a bijection between Kreweras intervals and the (unique) realizers of stack triangulations.
Thus, Φ induces a bijection between Kreweras intervals and stack triangulations which are known to be
in bijection with ternary trees.

1 Introduction

A Dyck path is a lattice path made of +1 and −1 steps that starts from 0, remains non-negative and ends
at 0. It is often convenient to represent a Dyck path by a sequence of North-East and South-East steps as
is done in Figure 1 (a). The set Dn of Dyck paths of length 2n can be ordered by the relation P ≤S Q if P
stays below Q. This partial order is in fact a distributive lattice on Dn known as the Stanley lattice. The
Hasse diagram of the Stanley lattice on D3 is represented in Figure 2 (a).

1 2 3 4 5 6 7
(c)(b)(a)

Figure 1: (a) A Dyck path. (b) A binary tree. (c) A non-crossing partition.

It is well known that the Dyck paths of length 2n are counted by the nth Catalan number Cn = 1
n+1

(

2n
n

)

.
The Catalan sequence is a pervasive guest in enumerative combinatorics. Indeed, beside Dyck paths, this
sequence enumerates the binary trees, the plane trees, the non-crossing partitions and over 60 other fun-
damental combinatorial structures [17, Ex. 6.19]. These different incarnations of the Catalan family gave
rise to several lattices beside Stanley’s. The Tamari lattice appears naturally in the study of binary trees
where the covering relation corresponds to right rotation. This lattice is actively studied due to its link with
the associahedron (Stasheff polytope). Indeed, the Hasse diagram of the Tamari lattice is the 1-skeleton of
the associahedron. The Kreweras lattice appears naturally in the setting of non-crossing partitions. In the
seminal paper [9], Kreweras proved that the refinement order on non-crossing partitions defines a lattice.
Kreweras lattice appears to support a great deal of mathematics that reach far beyond enumerative combina-
torics [10, 16]. Using suitable bijection between Dyck paths, binary trees, non-crossing partitions and plane
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trees, the three Catalan lattices can be defined on the set of plane trees of size n in such way that the Stanley
lattice LS

n is an extension of the Tamari lattice LT
n which in turn is an extension of the Kreweras lattice LK

n

(see [8, Ex. 7.2.1.6 - 26, 27 and 28]). In this paper, we shall find convenient to embed the three Catalan lat-
tices on the set Dn of Dyck paths. The Hasse diagram of the Catalan lattices on D3 is represented in Figure 2.

(b) (c)(a)

Figure 2: Hasse diagrams of the Catalan lattices on the set D3 of Dyck paths: (a) Stanley lattice, (b) Tamari
lattice, (c) Kreweras lattice.

There are closed formulas for the number of intervals (i.e. pairs of comparable elements) in each of the
Catalan lattices. The intervals of the Stanley lattice are the pairs of non-crossing Dyck paths and the number
|LS

n | of such pairs can be calculated using the lattice path determinant formula of Lindström-Gessel-Viennot
[6]. It is shown in [4] that

|LS
n | = Cn+2Cn − C2

n+1 =
6(2n)!(2n + 2)!

n!(n + 1)!(n + 2)!(n + 3)!
. (1)

The intervals of the Tamari lattice were recently enumerated by Chapoton [3] using a generating function
approach. It was proved that the number of intervals in the Tamari lattice is

|LT
n | =

2(4n + 1)!

(n + 1)!(3n + 2)!
. (2)

Chapoton also noticed that (2) is the number of triangulations (i.e. maximal planar graphs) and asked for
an explanation. The number |LK

n | of intervals of the Kreweras Lattice has an even simpler formula. In [9],
Kreweras proved by a recursive method that

|LK
n | =

1

2n + 1

(

3n

n

)

. (3)

This is also the number of ternary trees and a bijection was exhibited in [5].

In [1], the second author defined a bijection Φ between the pairs of non-crossing Dyck paths (equivalently,
Stanley’s intervals) and the realizers (or Schnyder woods) of triangulations. The main purpose of this article
is to study the restriction of the bijection Φ to the Tamari intervals and to the Kreweras intervals. We first
give an alternative, simpler, description of the bijection Φ. Then, we prove that the bijection Φ induces a
bijection between the intervals of the Tamari lattice and the realizers which are minimal. Since every triangu-
lation has a unique minimal realizer, we obtain a bijection between Tamari intervals and triangulations. As
a corollary, we obtain a bijective proof of Formula (2) thereby answering the question of Chapoton. Turning
to the Kreweras lattice, we prove that the mapping Φ induces a bijection between Kreweras intervals and
the realizers which are both minimal and maximal. We then characterize the triangulations having a realizer
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which is both minimal and maximal and prove that these triangulations are in bijection with ternary trees.
This gives a new bijective proof of Formula (3).

The outline of this paper is as follows. In Section 2, we review our notations about Dyck paths and
characterize the covering relations for the Stanley, Tamari and Kreweras lattices in terms of Dyck paths. In
Section 3, we recall the definitions about triangulations and realizers. We then give an alternative description
of the bijection Φ defined in [1] between pairs of non-crossing Dyck paths and the realizers. In Section 4, we
study the restriction of Φ to the Tamari intervals. Lastly, in Section 5 we study the restriction of Φ to the
Kreweras intervals.

2 Catalan lattices

Dyck paths. A Dyck path is a lattice path made of steps N = +1 and S = −1 that starts from 0, remains
non-negative and ends at 0. A Dyck path is said to be prime if it remains positive between its start and
end. The size of a path is half its length and the set of Dyck paths of size n is denoted by Dn.

Let P be a Dyck path of size n. Since P begins by an N step and has n N steps, it can be written as
P = NSα1NSα2 . . .NSαn . We call ith descent the subsequence Sαi of P . For i = 0, 1, . . . , n we call ith

exceedence and denote by ei(P ) the height of the path P after the ith descent, that is, ei(P ) = i−
∑

j≤i αj . For

instance, the Dyck path represented in Figure 3 (a) is P = NS1NS0NS1NS2NS0NS0NS3 and e0(P ) = 0,
e1(P ) = 0, e2(P ) = 1, e3(P ) = 1, e4(P ) = 0, e5(P ) = 1, e6(P ) = 2 and e7(P ) = 0. If P, Q are two
Dyck paths of size n, we denote δi(P, Q) = ei(Q) − ei(P ) and ∆(P, Q) =

∑n

i=1 δi(P, Q). For instance, if P
and Q are respectively the lower and upper paths in Figure 3 (b), the values δi(P, Q) are zero except for
δ1(P, Q) = 1, δ4(P, Q) = 2 and δ5(P, Q) = 1.

71 3 50 2 4 6
(b)(a)

71 3 50 2 4 6

Figure 3: (a) Exceedence of a Dyck path. (b) Differences between two Dyck paths.

For 0 ≤ i ≤ j ≤ n, we write i P j (resp. i P j) if ei(P ) ≥ ej(P ) and ei(P ) ≤ ek(P ) (resp. ei(P ) < ek(P ))

for all i < k < j. In other words, i P j (resp. i P j) means that the subpath NSαi+1NSαi+2 . . . NSαj is a
Dyck path (resp. prime Dyck path) followed by ei(P ) − ej(P ) S steps. For instance, for the Dyck path P

of Figure 3 (a), we have 0 P 4, 1 P 4 and 2 P 4 (and many other relations).

We will now define the Stanley, Tamari and Kreweras lattices in terms of Dyck paths. More precisely, we
will characterize the covering relation of each lattice in terms of Dyck paths and show that our definitions
respects the known hierarchy between the three lattices (the Stanley lattice is a refinement of the Tamari
lattice which is refinement of the Kreweras Lattice; see [8, Ex. 7.2.1.6 - 26, 27 and 28]).

Stanley lattice. Let P = NSα1 . . .NSαn and Q = NSβ1 . . . NSβn be two Dyck paths of size n. We denote
by P ≤S Q if the path P stays below the path Q. Equivalently, ei(P ) ≤ ei(Q) for all 1 ≤ i ≤ n. The
relation ≤S defines the Stanley lattice LS

n on the set Dn. Clearly the path P is covered by the path Q in the
Stanley lattice if Q is obtained from P by replacing a subpath SN by NS. Equivalently, there is an index
1 ≤ i ≤ n such that βi = αi − 1, βi+1 = αi+1 + 1 and βk = αk for all k 6= i, i + 1. The covering relation
of the Stanley lattice is represented in Figure 4 (a) and the Hasse Diagram of LS

3 is represented in Figure 2 (a).
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(a) (b)

Figure 4: Covering relations in (a) Stanley lattice, (b) Tamari lattice.

Tamari lattice. The Tamari lattice has a simple interpretation in terms of binary trees. The set of binary
trees can be defined recursively by the following grammar. A binary tree B is either a leaf denoted by ◦ or
is an ordered pair of binary trees, denoted B = (B1, B2). It is often convenient to draw a binary tree by
representing the leaf by a white vertex and the tree B = (B1, B2) by a black vertex at the bottom joined to
the subtrees B1 (on the left) and B2 (on the right). The tree (((◦, ◦), ((◦, ◦), ◦)), (◦, (◦, ◦))) is represented in
Figure 5.

σ

Figure 5: The binary tree (((◦, ◦), ((◦, ◦), ◦)), (◦, (◦, ◦))) and its image by the bijection σ.

The set Bn of binary trees with n nodes has cardinality Cn = 1
n+1

(

2n

n

)

and there are well known bijections
between the set Bn and the set Dn. We call σ the bijection defined as follows: the image of the binary
tree reduced to a leaf is the empty word and the image of the binary tree B = (B1, B2) is the Dyck path
σ(B) = σ(B1)Nσ(B2)S. An example is given in Figure 5.

In [7], Tamari defined a partial order on the set Bn of binary trees and proved to be a lattice. The
covering relation for the Tamari lattice is defined has follows: a binary tree B containing a subtree of type
X = ((B1, B2), B3) is covered by the binary tree B′ obtained from B by replacing X by (B1, (B2, B3)). The
Hasse diagram of the Tamari lattice on the set of binary trees with 4 nodes is represented in Figure 6 (left).

Figure 6: Hasse diagram of the Tamari lattice LT
4 .

The bijection σ allows to transfer the Tamari lattice to the set of Dn Dyck paths. We denote by LT
n the
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image of the Tamari lattice on Dn and denote by P ≤T Q if the path P is less than or equal to the path
Q for this order. The Hasse diagram of LT

4 is represented in Figure 6 (right). The following ptoposition
expresses the covering relation of the Tamari lattice LT

n in terms of Dyck paths. This covering relation is
illustrated in Figure 4 (b).

Proposition 2.1. Let P = NSα1 . . . NSαn and Q = NSβ1 . . . NSβn be two Dyck paths. The path P is
covered by the path Q in the Tamari lattice LT

n if Q is obtained from P by swapping an S step and the

prime Dyck subpath following it, that is, there are indices 1 ≤ i < j ≤ n with αi > 0 and i P j such that
βi = αi − 1, βj = αj + 1 and βk = αk for all k 6= i, j.

Corollary 2.2. The Stanley lattice LS
n is a refinement of the Tamari lattice LT

n . That is, for any pair of
Dyck paths P, Q, P ≤T Q implies P ≤S Q.

Proof of Proposition 2.1: Let B be a binary tree and let P = σ(B).
• We use the well known fact that there is a one-to-one correspondence between the subtrees of B and the
Dyck subpaths of P which are either a prefix of P or are preceded by an N step. (This classical property is
easily shown by induction on the size of P .)
• If the binary tree B′ is obtained from B by replacing a subtree X = ((B1, B2), B3) by X ′ = (B1, (B2, B3)),
then the Dyck path Q = σ(B′) is obtained from P by replacing a subpath σ(X) = σ(B1)Nσ(B2)SNσ(B3)S
by σ(X ′) = σ(B1)Nσ(B2)Nσ(B3)SS; hence by swapping an S step and the prime Dyck subpath following
it.
• Suppose conversely that the Dyck path Q is obtained from P by swapping an S step with a prime
Dyck subpath NP3S following it. Then, there are two Dyck paths P1 and P2 (possibly empty) such that
W = P1NP2SNP3S is a Dyck subpath of P which is either a prefix of P or is preceded by an N step. Hence,
the binary tree B contains the subtree X = σ−1(W ) = ((B1, B2), B3), where Bi = σ−1(Pi), i = 1, 2, 3.
Moreover, the binary tree B′ = σ−1(Q) is obtained from B by replacing the subtree X = ((B1, B2), B3) by
X ′ = (B1, (B2, B3)) = σ−1(P1NP2NP3SS).

�

Kreweras lattice. A partition of {1, . . . , n} is non-crossing if whenever four elements 1 ≤ i < j < k < l ≤ n
are such that i, k are in the same class and j, l are in the same class, then the two classes coincide. The
non-crossing partition whose classes are {1}, {2, 4}, {3}, and {5, 6, 7} is represented in Figure 7. In this
figure, each class is represented by a connected cell incident to the integers it contains.

1 2 3 4 5 6 7

θ

Figure 7: A non-crossing partition and its image by the bijection θ.

The set NCn of non-crossing partition on {1, . . . , n} has cardinality Cn = 1
n+1

(

2n
n

)

and there are
well known bijections between non-crossing partitions and Dyck paths. We consider the bijection θ de-
fined as follows. The image of a non-crossing partition π of size n by the mapping θ is the Dyck path
θ(π) = NSα1NSα2 . . . NSαn , where αi is the size of the class containing i if i is maximal in its class and
αi = 0 otherwise. An example is given in Figure 7.

In [9], Kreweras showed that the partial order of refinement defines a lattice on the set NCn of non-
crossing partitions. The covering relation of this lattice corresponds to the merging of two parts when this
operation does not break the non-crossing condition. The Hasse diagram of the Kreweras lattice on the set
NC4 is represented in Figure 8 (left).
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Figure 8: Hasse diagram of the Kreweras lattice LK
4 .

The bijection θ allows to transfer the Kreweras lattice on the set Dn of Dyck paths. We denote by LK
n

the lattice structure obtained on Dn and denote by P ≤K Q if the path P is less than or equal to the path
Q for this order. The Hasse diagram of LK

4 is represented in Figure 8 (right). The following proposition
expresses the covering relation of the Kreweras lattice LK

n in terms of Dyck paths. This covering relation is
represented in Figure 9.

Proposition 2.3. Let P = NSα1 . . .NSαn and Q = NSβ1 . . . NSβn be two Dyck paths of size n. The path
P is covered by the path Q in the Kreweras lattice LK

n if Q is obtained from P by swapping a (non-empty)
descent with a Dyck subpath following it, that is, there are indices 1 ≤ i < j ≤ n with αi > 0 and i P j such
that βi = 0, βj = αi + αj and βk = αk for all k 6= i, j.

Corollary 2.4. The Tamari lattice LT
n is a refinement of the Kreweras lattice LK

n . That is, for any pair
P, Q of Dyck paths, P ≤K Q implies P ≤T Q.

Figure 9: Two examples of covering relation in the Kreweras lattice.

Proposition 2.3 is a immediate consequence of the following lemma.

Lemma 2.5. Let π be a non-crossing partition and let P = θ(π). Let c and c′ be two classes of π with the
convention that i = max(c) < j = max(c′). Then, the classes c and c′ can be merged without breaking the
non-crossing condition if and only if i P j.

Proof: For any index k = 1, . . . , n, we denote by ck the class of π containing k. Observe that the classes
c and c′ can be merged without breaking the non-crossing condition if and only if there are no integers r, s
with cr = cs such that r < i < s < j or i < r < j < s. Observe also from the definition of the mapping θ that
for all index l = 1, . . . , n, the exceedence el(P ) is equal to the number of indices k ≤ l such that max(ck) > l.
• We suppose that i P j and we want to prove that merging the classes c and c′ does not break the non-
crossing condition. We first prove that there are no integers r, s such that i < r < j < s and cr = cs.
Suppose the contrary. In this case, there is no integer k ≤ r such that r < max(ck) ≤ j (otherwise,
ck = cr = cs by the non-crossing condition, hence max(ck) ≥ max(cs) > j). Thus, {k ≤ r/ max(ck) >
r} = {k ≤ r/ max(ck) > j} ( {k ≤ j/ max(ck) > j}. This implies er(P ) < ej(P ) and contradicts
the assumption i P j. It remains to prove that there are no integers r, s such that r < i < s < j and
cr = cs. Suppose the contrary and let s′ = max(cr). The case where s′ ≥ j has been treated in the
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preceding point so we can assume that s′ < j. In this case, there is no integer k such that i < k ≤ s′ and
max(ck) > s′ (otherwise, ck = cr = cs′ by the non-crossing condition, hence max(ck) = max(cr) = s′). Thus,
{k ≤ i/ max(ck) > i} ( {k ≤ i/ max(ck) > s′} = {k ≤ s′/ max(ck) > s′}. This implies ei(P ) < es′(P ) and
contradicts the assumption i P j.
• We suppose now that merging the classes c and c′ does not break the non-crossing partition and we want
to prove that i P j. Observe that there is no integer k such that i < k ≤ j and max(ck) > j (otherwise,
merging the classes c and c′ would break the non-crossing condition). Thus, {k ≤ j/ max(ck) > j} = {k ≤
i/ max(ck) > j} ⊆ {k ≤ i/ max(ck) > i}. This implies ej(P ) ≤ ei(P ). It remains to prove that there
is no index s such that i < s < j and es(P ) < ei(P ). Suppose the contrary and consider the minimal
such s. Observe that s is maximal in its class, otherwise es−1(P ) = es(P ) − 1 < ei(P ) contradicts the
minimality of s. Observe also that i < r = min(cs) otherwise merging the classes c and c′ would break the
non-crossing condition. By the non-crossing condition, there is no integer k < r such that r ≤ max(ck) ≤ s.
Thus, {k ≤ r − 1/ max(ck) > r − 1} = {k ≤ r − 1/ max(ck) > s} ⊆ {k ≤ s/ max(ck) > s}. This implies
er−1(P ) ≤ es(P ) < ei(P ) and contradicts the minimality of s.

�

3 A bijection between Stanley intervals and realizers

In this section, we recall some definitions about triangulations and realizers. Then, we define a bijection
between pairs of non-crossing Dyck paths and realizers.

3.1 Triangulations and realizers

Maps. A planar map, or map for short, is an embedding of a connected finite planar graph in the sphere
considered up to continuous deformation. In this paper, maps have no loop nor multiple edge. The faces are
the connected components of the complement of the graph. By removing the midpoint of an edge we get two
half-edges, that is, one dimensional cells incident to one vertex. Two consecutive half-edges around a vertex
define a corner. If an edge is oriented we call tail (resp. head) the half-edge incident to the origin (resp. end).

A rooted map is a map together with a special half-edge which is not part of a complete edge and is called
the root. (Equivalently, a rooting is defined by the choice of a corner.) The root is incident to one vertex
called root-vertex and one face (containing it) called the root-face. When drawing maps in the plane the root
is represented by an arrow pointing on the root-vertex and the root-face is the infinite one. See Figure 10 for
an example. The vertices and edges incident to the root-face are called external while the others are called
internal. From now on, maps are rooted without further notice.

Color 0

Color 1

Color 2

v0

v2 v1

Figure 10: A rooted triangulation (left) and one of its realizers (right).
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Triangulations. A triangulation is a map in which any face has degree 3 (has 3 corners). A triangulation
has size n if it has n internal vertices. The incidence relation between faces and edges together with Euler
formula show that a triangulation of size n has 3n internal edges and 2n + 1 internal triangles.

In one of its famous census paper, Tutte proved by a generating function approach that the number of

triangulations of size n is tn = 2(4n+1)!
(n+1)!(3n+2)! [18]. A bijective proof of this result was given in [12].

Realizers. We now recall the notion of realizer (or Schnyder wood) defined by Schnyder [14, 15]. Given an
edge coloring of a map, we shall call i-edge (resp. i-tail, i-head) an edge (resp. tail, head) of color i.

Definition 3.1 ([14]). Let M be a triangulation and let U be the set of its internal vertices. Let v0 be
the root-vertex and let v1, v2 be the other external vertices with the convention that v0, v1, v2 appear in
counterclockwise order around the root-face.
A realizer of M is a coloring of the internal edges in three colors {0, 1, 2} such that:

1. Tree condition: for i = 0, 1, 2, the i-edges form a tree Ti with vertex set U ∪ {vi}. The vertex vi is
considered to be the root-vertex of Ti and the i-edges are oriented toward vi.

2. Schnyder condition: in clockwise order around any internal vertex there is: one 0-tail, some 1-heads,
one 2-tail, some 0-heads, one 1-tail, some 2-heads. This situation is represented in Figure 11.

We denote by R = (T0, T1, T2) this realizer.

Color 1

Color 0

Color 2

Figure 11: Edges coloration and orientation around a vertex in a realizer (Schnyder condition).

A realizer is represented in Figure 10 (right). Let R = (T0, T1, T2) be a realizer. We denote by T0 the tree
made of T0 together with the edge (v0, v1). For any internal vertex u, we denote by pi(u) the parent of u in
the tree Ti. A cw-triangle (resp. ccw-triangle) is a triple of vertices (u, v, w) such that p0(u) = v,p2(v) = w
and p1(w) = u (resp. p0(u) = v,p1(v) = w and p2(w) = u). A realizer is called minimal (resp. maximal)
if it has no cw-triangle (resp. ccw-triangle). It was proved in [11, 13] that every triangulation has a unique
minimal (resp. maximal) realizer. (The appellations minimal and maximal refer to a classical lattice which
is defined on the set of realizers of any given triangulation [11, 13].)

3.2 A bijection between pairs of non-crossing Dyck paths and realizers

In this subsection, we give an alternative (and simpler) description of the bijection defined in [1] between
realizers and pairs of non-crossing Dyck paths.

We first recall a classical bijection between plane trees and Dyck paths. A plane tree is a rooted map whose
underlying graph is a tree. Let T be a plane tree. We make the tour of the tree T by following its border in
clockwise direction starting and ending at the root (see Figure 14 (a)). We denote by ω(T ) the word obtained
by making the tour of the tree T and writing N the first time we follow an edge and S the second time
we follow this edge. For instance, w(T ) = NNSSNNSNNSNSSNNSSS for the tree in Figure 14 (a). It
is well known that the mapping ω is a bijection between plane trees with n edges and Dyck paths of size n [8].

8



Let T be a plane tree. Consider the order in which the vertices are encountered while making the tour
of T . This defines the clockwise order around T (or preorder). For the tree in Figure 14 (a), the clockwise
order is v0 < u0 < u1 < . . . < u8. The tour of the tree also defines an order on the set of corners around
each vertex v. We shall talk about the first (resp. last) corner of v around T .

We are now ready to define a mapping Ψ which associates an ordered pair of Dyck paths to each realizer.

Definition 3.2. Let M be a rooted triangulation of size n and let R = (T0, T1, T2) be a realizer of M . Let
u0, u1, . . . , un−1 be the internal vertices of M in clockwise order around T0. Let βi, i = 1, . . . , n − 1 be the
number of 1-heads incident to ui and let βn be the number of 1-heads incident to v1. Then Ψ(R) = (P, Q),
where P = ω−1(T0) and Q = NSβ1 . . .NSβn .

The image of a realizer by the mapping Ψ is represented in Figure 12.

v0

v2 v1

Ψ

Φ

Figure 12: The bijections Ψ and Φ.

Theorem 3.3. The mapping Ψ is a bijection between realizers of size n and pairs of non-crossing Dyck
paths of size n.

The rest of this section is devoted to the proof of Theorem 3.3. We first prove that the image of a realizer
is indeed a pair of non-crossing Dyck paths.

Proposition 3.4. Let R = (T0, T1, T2) be a realizer of size n and let (P, Q) = Ψ(R). Then, P and Q are
both Dyck paths and moreover the path P stays below the path Q.

Proposition 3.4 is closely related to the Lemma 3.6 below which, in turn, relies on the following technical
lemma.

Lemma 3.5. Let M be a map in which every face has degree three. We consider an orientation of the
internal edges of M such that every internal vertex has outdegree 3 (i.e. is incident to exactly 3 tails). Let C
be a simple cycle made of c edges. By the Jordan Lemma, the cycle C separates the sphere into two connected
regions. We call inside the region not containing the root. Then, the number of tails incident with C and
lying strictly inside C is c − 3.

Proof: Let v (resp. f, e) be the number of vertices (resp. faces, edges) lying strictly inside C. Note
that the edges strictly inside C are internal hence are oriented. The number i of tails incident with C and
lying strictly inside C satisfies e = 3v + i. Moreover, the incidence relation between edges and faces implies
3f = 2e + c and the Euler relation implies (f + 1) + (v + c) = (e + m) + 2. Solving for i gives i = c − 3.

�

Lemma 3.6. Let R = (T0, T1, T2) be a realizer. Then, for any 1-edge e the tail of e is encountered before
its head around the tree T0.

9



Proof of Lemma 3.6: Suppose a 1-edge e breaks this rule and consider the cycle C made of e and the 0-path
joining its endpoints. Using the Schnyder condition it is easy to show that the number of tails incident with
C and lying strictly inside C is equal to the number of edges of C (the different possibilities are represented
in Figure 13). This contradicts Lemma 3.5.

�

e

e e T0

T1

T2

Figure 13: Case analysis for a 1-edge e whose head appears before its tail around the tree T0.

Lemma 3.7. Let P = NSα1 . . .NSαn be a Dyck path and let T = ω−1(P ). Let v0 be the root-vertex of the
tree T and let u0, u1, . . . , un−1 be its other vertices in clockwise order around T . Then, the word obtained by
making the tour of T and writing Sβi when arriving at the first corner of ui and N when arriving at the last
corner of ui is W = Sβ0Nα1Sβ1 . . .Sβn−1Nαn .

Proof: We consider the word W obtained by making the tour of T and writing NSβi when arriving at
the first corner of ui and NS when arriving at the last corner of ui for i = 0, . . . , n − 1. By definition
of the mapping ω, the restriction of W to the letters N, S is W = ω(T ) = P = NSα1 . . . NSαn . There-
fore, W = NSβ0(NS)α1NSβ1(NS)α2 . . . NSβn−1(NS)αn . Hence, the restriction of W to the letters N, S is
W = Sβ0Nα1Sβ1Nα2 . . .Sβn−1Nαn .

�

Proof of Proposition 3.4: We denote P = NSα1 . . . NSαn and Q = NSβ1 . . . NSβn .
• The mapping ω is known to be a bijection between trees and Dyck paths, hence P = ω(T ) is a Dyck path.
• We want to prove that Q is a Dyck path staying above P . Consider the word W obtained by making
the tour of T0 and writing N (resp. S) when we encounter a 1-tail (resp. 1-head). By Lemma 3.7, the
word W is Sβ0Nα1Sβ1Nα2 . . .Sβn−1NαnSβn . By Lemma 3.6, the word W is a Dyck path. In particular,
Sβ0 = 0 and

∑n

i=1 βi =
∑n

i=1 αi = n, hence the path Q returns to the origin. Moreover, for all i = 1, . . . , n,
δi(P, Q) =

∑n

j=1 αi − βi ≥ 0. Thus, the path Q stays above P . In particular, Q is a Dyck path.
�

In order to prove Theorem 3.3, we shall now define a mapping Φ from pairs of non-crossing Dyck paths
to realizers and prove it to be the inverse of Ψ. We first define prerealizers.

Definition 3.8. Let M be a map. Let v0 be the root-vertex, let v1 be another external vertex and let U be
the set of the other vertices. A prerealizer of M is a coloring of the edges in two colors {0, 1} such that:

1. Tree condition: for i = 0, 1, the i-edges form a tree Ti with vertex set U ∪ {vi}. The vertex vi is
considered to be the root-vertex of Ti and the i-edges are oriented toward vi.

2. Corner condition: in clockwise order around any vertex u ∈ U there is: one 0-tail, some 1-heads, some
0-heads, one 1-tail.

3. Order condition: for any 1-edge e, the tail of e is encountered before its head around the tree T0, where
T0 is the tree obtained from T0 by adding the edge (v0, v1) at the right of the root.

We denote by PR = (T0, T1) this prerealizer.

An example of prerealizer is given in Figure 14 (c).

Lemma 3.9. Let PR = (T0, T1) be a prerealizer. Then, there exists a unique tree T2 such that R = (T0, T1, T2)
is a realizer.
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In order to prove Lemma 3.9, we need to study the sequences of corner around the faces of prerealizers.
If h and h′ are two consecutive half-edges in clockwise order around a vertex u we denote by c = (h, h′) the
corner delimited by h and h′. For 0 ≤ i, j ≤ 2, we call (hi, hj)-corner (resp. (hi, tj)-corner, (ti, hj)-corner,
(ti, tj)-corner) a corner c = (h, h′) where h and h′ are respectively an i-head (resp. i-head, i-tail, i-tail) and
a j-head (resp. j-tail, j-head, j-tail).

Proof of Lemma 3.9: Let PR = (T0, T1) be a prerealizer and let N = T0 ∪ T1 be the underlying map.
Let v0 (resp. v1) be the root-vertex of T0 (resp. T1) and let U be the set of vertices distinct from v0, v1.
Let T 0 (resp. N) be the tree (resp. map) obtained from T0 (resp. N) by adding the edge (v0, v1) at the
right of the root. We first prove that there is at most one tree T2 such that R = (T0, T1, T2) is a realizer.

• Let f be an internal face of N and let c1, c2, . . . , ck be the corners of f encountered in clockwise order
around T 0. Note that c1, c2, . . . , ck also correspond to the clockwise order of the corners around the
face f . We want to prove the following properties:
- the corner c1 is a (t1, t0)-corner,
- the corner c2 is either a (h0, h0)- or a (h0, t1)-corner,
- the corners c3, . . . , ck−1 are (h1, h0)-, (h1, t1)-, (t0, h0)- or (t0, t1)-corners,
- the corner ck is either a (h1, h1)- or a (t0, h1)-corner.
First note that by the corner condition of the prerealizers the possible corners are of type (h0, h0),
(h0, t1), (h1, h0), (h1, h1), (h1, t1), (t0, h0), (t0, h1), (t0, t1) and (t1, t0). By the order condition, one
enters a face for the first time (during a tour of T0) when crossing a 1-tail. Hence, the first corner c1 of f
is a (t1, t0)-corner while the corners ci, i = 2, . . . , k are not (t1, t0)-corners. Since c1 is a (t1, t0)-corner,
the corner c2 is either a (h0, h0)- or a (h0, t1)-corner. Similarly, since c1 is a (t1, t0)-corner, the corner
ck is either a (h1, h1)- or a (t0, h1)-corner. Moreover, for i = 2, . . . , k−1, the corner ci is not a (h1, h1)-
nor a (t0, h1)-corner or ci+1 would be a (t1, t0)-corner. Therefore, it is easily seen by induction on i
that the corners ci, i = 3, . . . , k − 1 are either (h1, h0)-, (h1, t1)-, (t0, h0)- or (t0, t1)-corners.

• By a similar argument we prove that the corners of the external face of N are (h1, h0)-, (h1, t1)-,
(t0, h0)- or (t0, t1)-corners except for the corner incident to v0 which is a (h0, h0)-corner and the corner
incident to v1 which is a (h1, h1)-corner.

• Let v2 be an isolated vertex in the external face of N . If a tree T2 with vertex set U ∪{v2} is such that
R = (T0, T1, T2) is a realizer, then there is one 2-tail in each (h1, h0)-, (h1, t1)-, (t0, h0)- or (t0, t1)-corner
of N while the 2-heads are only incident to the (t0, t1)-corners and to the vertex v2. By the preceding
points, there is exactly one (t1, t0) corner in each internal face and none in the external face. Moreover
there is at most one way of connecting the 2-tails and the 2-heads in each face of N . Thus, there is at
most one tree T2 such that R = (T0, T1, T2) is a realizer.

We now prove that there exists a tree T2 such that R = (T0, T1, T2) is a realizer. Consider the colored map
(T0, T1, T2) obtained by
- adding an isolated vertex v2 in the external face of N .
- adding a 2-tail in each (h1, h0)-, (h1, t1)-, (t0, h0)- and (t0, t1)-corner of N .
- joining each 2-tail in an internal face f (resp. the external face) to the unique (t0, t1)-corner of f (resp.
to v2).
We denote by M = T0 ∪ T1 ∪ T2 ∪ {(v0, v1), (v0, v2), (v1, v2)} the underlying map.

• We first prove that the map M = T0 ∪ T1 ∪ T2 ∪ {(v0, v1), (v0, v2), (v1, v2)} is a triangulation. Let f be
an internal face. By a preceding point, f has exactly one (t1, t0) corner c and the (h1, h0)-, (h1, t1)-,
(t0, h0)- or (t0, t1)-corners are precisely the ones that are not consecutive with c around f . Thus, the
internal faces of N are triangulated (split into sub-faces of degree 3) by the 2-edges. Moreover, the
only corners of the external face of N which are not of type (h1, h0), (h1, t1), (t0, h0) or (t0, t1) are
the (unique) corner around v0 and the (unique) corner around v1. Hence the external face of N is
triangulated by the 2-edges together with the edges (v0, v2) and (v1, v2). Thus, every face of M has
degree 3. It only remains to prove that M has no multiple edge. Since the faces of M are of degree 3
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and every internal vertex has outdegree 3, the hypothesis of Lemma 3.5 are satisfied. By this lemma,
there can be no multiple edge (this would create a cycle of length 2 incident to -1 tails!). Thus, the
map M has no multiple edge and is a triangulation.

• We now prove that the coloring R = (T0, T1, T2) is a realizer of M . By construction, R satisfies de
Schnyder-condition. Hence it only remains to prove that T2 is a tree. Suppose there is a cycle C
of 2-edges. Since every vertex in C is incident to one 2-tail, the cycle C is directed. Therefore, the
Schnyder condition proves that there are c = |C| tails incident with C and lying strictly inside C. This
contradicts Lemma 3.5. Thus, T2 has no cycle. Since T2 has |U | edges and |U |+ 1 vertices it is a tree.

�

We are now ready to define a mapping Φ from pairs of non-crossing Dyck paths to realizers. This mapping
is illustrated by Figure 14. Consider a pair of Dyck paths P = NSα1 . . . NSαn and Q = NSβ1 . . . NSβn such
that P stays below Q. The image of (P, Q) by the mapping Φ is the realizer R = (T0, T1, T2) obtained as
follows.

Step 1. The tree T0 is ω−1(P ). We denote by v0 its root-vertex and by u0, . . . , un the other vertices in
clockwise order around T0. We denote by T0 the tree obtained from T0 by adding a new vertex v1 and an
edge (v0, v1) at the right of the root.

Step 2. We glue a 1-tail in the last corner of each vertex ui, i = 0, . . . , n − 1 and we glue βi 1-heads in the
first corner of each vertex ui, i = 1, . . . , n− 1 (if ui is a leaf we glue the 1-heads before the 1-tail in clockwise
order around ui). We also glue βn 1-heads in the (unique) corner of v1. This operation is illustrated by
Figure 14 (b).

Step 3. We consider the sequence of 1-tails and 1-heads around T0. Let W be the word obtained by
making the tour of T0 and writing N (resp. S) when we cross a 1-tail (resp. 1-head). By Lemma 3.7,
W = Nα1Sβ1 . . .NαnSβn . Since the path P stays below the path Q, we have δi(P, Q) =

∑

j≤i αj − βj ≥ 0
for all i = 1, . . . , n, hence W is a Dyck path. Thus, there exists a unique way of joining each 1-tail to a 1-head
that appears after it around the tree T0 so that the 1-edges do not intersect (this statement is equivalent to
the well-known fact that there is a unique way of matching parenthesis in a well parenthesized word); we
denote by T1 the set of 1-edges obtained in this way. This operation is illustrated in Figure 14 (c).

Step 4. The set T1 of 1-edges is a tree directed toward v1; see Lemma 3.10 below. Hence, by construction,
PR = (T0, T1) is a prerealizer. By Lemma 3.9, there is a unique tree T2 such that R = (T0, T1, T2) is a
realizer and we define Φ(P, Q) = R.

v1

v0

(a) (c) (d)(b)

v0

u0

u3

u5 u6
u8

u2

u4 u7

u1

v1

v0

v1v2

v0

Figure 14: Steps of the mapping Φ : (P, Q) 7→ (T0, T1, T2). (a) Step 1: build the tree T0. (b) Step 2: add
the 1-tails and 1-heads. (c) Step 3: join the 1-tails and 1-heads together. (d) Step 4: determine the third
tree T2.
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In order to prove that step 4 of the bijection Φ is well defined, we need the following lemma.

Lemma 3.10. The set T1 of 1-edges obtained at step 3 in the definition of Φ is a tree directed toward v1

and spanning the vertices in U1 = {u0, . . . , un−1, v1}.

Proof: • Every vertex in U1 is incident to an edge in T1 since there is a 1-tail incident to each vertex
ui, i = 1, . . . , n − 1 and at least one 1-head incident to v1 since βn > 0.
• We now prove that the tree T1 has no cycle. Since every vertex in U1 is incident to at most one 1-tail, any
1-cycle is directed. Moreover, if e is a 1-edge directed from ui to uj then i < j since the last corner of ui

appears before the first corner of uj around T0. Therefore, there is no directed cycle.
• Since T1 is a set of n edges incident to n+1 vertices and having no cycle, it is a tree. Since the only sink is v1,
the tree T1 is directed toward v1 (make an induction on the size of the oriented tree T1 by removing a leaf).

�

The mapping Φ is well defined and the image of any pair of non-crossing Dyck paths is a realizer. Con-
versely, by Proposition 3.4, the image of any realizer by Ψ is a pair of non-crossing Dyck paths. It is clear
from the definitions that Ψ ◦ Φ (resp. Φ ◦ Ψ) is the identity mapping on pairs of non-crossing Dyck paths
(resp. realizers). Thus, Φ and Ψ are inverse bijections between realizers of size n and pairs of non-crossing
Dyck paths of size n. This concludes the proof of Theorem 3.3.

�

4 Intervals of the Tamari lattice

In the previous section, we defined a bijection Φ between pairs of non-crossing Dyck paths and realizers.
Recall that the pairs of non-crossing Dyck paths correspond to the intervals of the Stanley lattice. In this
section, we study the restriction of the bijection Φ to the intervals of the Tamari lattice.

Theorem 4.1. The bijection Φ induces a bijection between the intervals of the Tamari lattice LT
n and

minimal realizers of size n.

Since every triangulation has a unique minimal realizer, Theorem 4.1 implies that the mapping Φ′ which
associates with a Tamari interval (P, Q) the triangulation underlying Φ(P, Q) is a bijection. This gives a
bijective explanation to the relation between the number of Tamari intervals enumerated in [3] and the
number of triangulations enumerated in [18, 12].

Corollary 4.2. The number of intervals in the Tamari lattice LT
n is equal to the number 2(4n+1)!

(n+1)!(3n+2)! of

triangulations of size n.

The rest of this section is devoted to the proof of Theorem 4.1. We first recall a characterization of
minimality given in [2] and illustrated in Figure 15.

Proposition 4.3 ([2]). A realizer R = (T0, T1, T2) is minimal if and only if for any internal vertex u, the
vertex p0(p1(u)) is an ancestor of u in the tree T0.

Using Proposition 4.3, we obtain the following characterization of the pairs of non-crossing Dyck paths
(P, Q) whose image by the bijection Φ is a minimal realizer.

Proposition 4.4. Let (P, Q) be a pair of non-crossing Dyck paths and let R = (T0, T1, T2) = Φ(P, Q). Let
u0, . . . , un−1 be the non-root vertices of T0 in clockwise order. Then, the realizer R is minimal if and only if
δi(P, Q) ≤ δj(P, Q) whenever ui is the parent of uj in T0 = ω−1(P ).

In order to prove Proposition 4.4, we need to interpret the value of δi(P, Q) is terms of the realizer
R = Φ(P, Q). Let u be an internal vertex of the triangulation underlying the realizer R = (T0, T1, T2). We
say that a 1-tail is available at u if this tail appears before the first corner of u in clockwise order around T0

while the corresponding 1-head appears (strictly) after the first corner of u.
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u

p0(p1(u))

p1(u)

v1v2

v0

Ψ

(b)(a)

Figure 15: (a) Characterization of minimality: p0(p1(u)) is an ancestor of u in T0. (b) A minimal realizer
and its image by Ψ.

Lemma 4.5. Let (P, Q) be a pair of non-crossing Dyck paths and let R = (T0, T1, T2) = Φ(P, Q). Let
u0, . . . , un−1 be the non-root vertices of T0 in clockwise order. The number of 1-tails available at ui is δi(P, Q).

Proof of Lemma 4.5: We denote P = NSα1 . . . NSαn and Q = NSβ1 . . .NSβn . Let W be the word
obtained by making the tour of T0 and writing NSβi when arriving at the first corner of ui and NS when
arriving at the last corner of ui for i = 0, . . . , n − 1 (with the convention that β0 = 0). By definition
of the mapping ω, the restriction of W to the letters N, S is ω(T0) = P = NSα1 . . . NSαn . Therefore,
W = NSβ0(NS)α1NSβ1(NS)α2 . . . NSβn−1(NS)αn . The prefix of W written after arriving at the first
corner of ui is NSβ0(NS)α1NSβ1 . . . (NS)αiNSβi . The sub-word Sβ0Nα1Sβ1 . . .NαiSβi corresponds to the
sequence of 1-tails and 1-heads encountered so far (N for a 1-tail, S for a 1-head). Thus, the number of
1-tails available at ui is

∑

j≤i αj − βj = δi(P, Q).
�

Proof of Proposition 4.4:
• We suppose that a vertex ui is the parent of a vertex uj in T0 and that δi(P, Q) > δj(P, Q), and we want
to prove that the realizer R = Φ(P, Q) is not minimal. Since ui is the parent of uj we have i < j and all
the vertices ur, i < r ≤ j are descendants of ui. By Lemma 4.5, δi(P, Q) > δj(P, Q) implies that there is a
1-tail t available at ui which is not available at uj , hence the corresponding 1-head is incident to a vertex ul

with i < l ≤ j. Let uk be the vertex incident to the 1-tail t. Since t is available at ui, the vertex uk is not
a descendant of ui. But p0(p1(uk)) = p0(ul) is either ui or a descendant of ui in T0. Thus, the vertex uk

contradicts the minimality condition given by Proposition 4.3. Hence, the realizer R is not minimal.
• We suppose that the realizer R is not minimal and we want to prove that there exists a vertex ui parent
of a vertex uj in T0 such that δi(P, Q) > δj(P, Q). By Proposition 4.3, there exists a vertex u such that
p0(p1(u)) is not an ancestor of u in T0. In this case, the 1-tail t incident to u is available at ui = p0(p1(u))
but not at uj = p1(u) (since t cannot appear between the first corner of ui and the first corner of uj around
T0, otherwise u would be a descendant of ui). Moreover, any 1-tail t′ available at uj appears before the 1-tail
t around T0 (otherwise, the 1-edge corresponding to t′ would cross the 1-edge (u, uj)). Hence, any 1-tail t′

available at uj is also available at ui. Thus, there are more 1-tails available at ui than at uj . By Lemma 4.5,
this implies δi(P, Q) > δj(P, Q).

�

Proposition 4.6. . Let (P, Q) be a pair of non-crossing Dyck paths. Let T = ω−1(P ), let v0 be the root-
vertex of the tree T and let u0, . . . , un−1 be its other vertices in clockwise order. Then, P ≤T Q if and only
if δi(P, Q) ≤ δj(P, Q) whenever ui is the parent of uj.

Propositions 4.4 and Propositions 4.6 clearly imply Theorem 4.1. Hence, it only remains to prove Propo-
sition 4.6.

Proof: We denote Q = NSβ1 . . . NSβn .
• We suppose that P ≤T Q and want to prove that δk(P, Q) ≤ δl(P, Q) whenever uk is the parent of ul. We
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make an induction on ∆(P, Q). If ∆(P, Q) = 0, then P = Q and the property holds. If ∆(P, Q) > 0 there
is a path Q′ = NSβ′

1 . . . NSβ′

n such that P ≤T Q′ and Q′ is covered by Q in the Tamari lattice. The three
paths P, Q′, Q are represented in Figure 16. By definition, there are two indices 1 ≤ i < j ≤ n such that
i Q’ j and βi = β′

i + 1, βj = βj − 1 and βk = β′
k for all k 6= i, j. Thus, δk(P, Q) = δk(P, Q′) + 1 if i ≤ k < j

and δk(P, Q) = δk(P, Q′) otherwise. By the induction hypothesis we can assume that δk(P, Q′) ≤ δl(P, Q′)
whenever uk is the parent of ul. Suppose there exists uk parent of ul such that δk(P, Q) > δl(P, Q). Note
that if uk is the parent of ul then k < l and for all k < r ≤ l, the vertex ur is a proper descendant of uk. Since
δk(P, Q) > δl(P, Q) and δk(P, Q′) ≤ δl(P, Q′) we have k < j ≤ l, hence uj is a proper descendant of uk. Note
that for all r = 0, . . . , n− 1, er(P ) + 1 is equal to the height of the vertex ur in the tree T (i.e. the distance
between v0 and ur). Thus, ek(P ) < ej(P ). Moreover, by the induction hypothesis, δk(P, Q′) ≤ δj(P, Q′).
Hence, ek(Q′) = ek(P ) + δk(P, Q′) < ej(Q

′) = ej(P ) + δj(P, Q′). But since i ≤ k < j this contradicts the

hypothesis i Q’ j. We reach a contradiction, hence δk(P, Q) ≤ δl(P, Q) whenever uk is the parent of ul.

P

δr(P, Q)

Q′

Q

i j

Figure 16: The Dyck paths P ≤T Q′ ≤T Q.

• We suppose that δk(P, Q) ≤ δl(P, Q) whenever uk is the parent of ul and want to prove that P ≤T Q. We
make an induction on ∆(P, Q). If ∆(P, Q) = 0, then P = Q and the property holds. Suppose ∆(P, Q) > 0
and let δ = max{δk(P, Q), k = 0 . . . n}, let e = min{ek(P )/δk(P, Q) = δ} and let i = max{k/ek(P ) =
e and δk(P, Q) = δ}. Let j be the first index such that i < j ≤ n and uj is not a descendant of ui (j = n

if ui+1, . . . , un−1 are all descendants of ui). Let Q′ = NSβ′

1 . . .NSβ′

n with β′
i = βi + 1, β′

j = βj − 1 and
β′

k = βk for all k 6= i, j. The paths P, Q and Q′ are represented in Figure 16. We want to prove that Q′ is
a Dyck path covered by Q in the Tamari lattice and P ≤T Q′.
- We first prove that Q′ is a Dyck path that stays above P . First note that δk(P, Q′) = δk(P, Q)−1 if i ≤ k < j
and δk(P, Q′) = δk(P, Q) otherwise. If δk(P, Q′) < 0, then i ≤ k < j, hence uk is a descendant of ui. Since
the value of δr(P, Q) is weakly increasing along the branches of T , we have δk(P, Q) ≥ δi(P, Q) = δ > 0,
hence δk(P, Q′) ≥ 0. Thus for all k = 0, . . . , n, δk(P, Q′) ≥ 0, that is, Q′ stays above P .
- We now prove that P ≤T Q′. Suppose there exist k, l, such that δk(P, Q′) > δl(P, Q′) with uk parent of
ul. Since δk(P, Q) ≤ δl(P, Q), we have k < i ≤ l < j. Since a vertex ur is a descendant of ui if and only if
i < r < j, the only possibility is l = i. Moreover, since uk is the parent of ui we have ek(P ) < ei(P ) = e,
hence by the choice of e, δk(P, Q) < δ = δi(P, Q). Hence, δk(P, Q′) = δk(P, Q) ≤ δi(P, Q) − 1 = δi(P, Q′).
We reach a contradiction. Thus δk(P, Q′) ≤ δl(P, Q′) whenever uk is the parent of ul. By the induction
hypothesis, this implies P ≤T Q′.
- It remains to prove that Q′ is covered by Q in the Tamari lattice. It suffices to prove that i Q’ j. Recall
that for all r = 0, . . . , n − 1, er(P ) + 1 is the height of the vertex ur in the tree T . For all i < r < j,
the vertex ur is a descendant of ui hence er(P ) > ei(P ). Moreover, since the value of δx(P, Q) is weakly
increasing along the branches of T , δr(P, Q) ≥ δi(P, Q) for all i < r < j. Thus, for all i < r < j,
er(Q) = er(P ) + δr(P, Q) > ei(Q) = ei(P ) + δi(P, Q) and er(Q

′) = er(Q) − 1 > ei(Q
′) = ei(Q) − 1. It only

remains to show that ej(Q
′) ≤ ei(Q

′). The vertex uj is the first vertex not descendant of ui around T , hence
ej(P ) ≤ ei(P ). Moreover δj(P, Q) ≤ δ = δi(P, Q). Furthermore, the equalities ei(P ) = ej(P ) and δj(P ) = δ
cannot hold simultaneously by the choice of i. Thus, ej(Q) = ej(P ) + δj(P, Q) < ei(Q) = ei(P ) + δi(P, Q)
and ej(Q

′) = ej(Q) ≤ ei(Q
′) = ei(Q) − 1.

�
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5 Intervals of the Kreweras lattice

In this section, we study the restriction of the bijection Φ to the Kreweras intervals.

Theorem 5.1. The mapping Φ induces a bijection between the intervals of the Kreweras lattice LK
n and

realizers of size n which are both minimal and maximal.

Before commenting on Theorem 5.1, we characterize the realizers which are both minimal and maximal.
Recall that a triangulation is stack if it is obtained from the map reduced to a triangle by recursively inserting
a vertex of degree 3 in one of the (triangular) internal face. An example is given in Figure 17.

Figure 17: A stack triangulation is obtained by recursively inserting a vertex of degree 3.

Proposition 5.2. A realizer R is both minimal and maximal if and only if the underlying triangulation M
is stack. (In this case, R is the unique realizer of M .)

The proof of Proposition 5.2 uses the following Lemma.

Lemma 5.3. Let M be a triangulation and let R = (T0, T1, T2) be one of its realizers. Suppose that M has
an internal vertex v of degree 3 and let M ′ be obtained from M by removing v (and the incident edges).
Then, the restriction of the realizer R to the triangulation M ′ is a realizer.

Proof: By Schnyder condition, the vertex v is incident to three tails and no head, hence it is a leaf in each
of the trees T1, T2, T3. Thus, the tree condition is preserved by the deletion of v. Moreover, deleting v does
not deprive any other vertex of an i-tail, hence the Schnyder condition is preserved by the deletion of v.

�

Proof of Proposition 5.2:
• We first prove that any realizer R of a stack triangulation M is minimal and maximal, that is, contains
neither a cw- nor a ccw-triangle. We proceed by induction on the size of M . If M is reduced to the triangle,
the property is obvious. Let M be a stack triangulation not reduced to the triangle. By definition, the
triangulation M contains an internal vertex v of degree 3 such that the triangulation M ′ obtained from M
by removing v is stack. By Lemma 5.3, the restriction of the realizer R to M ′ is a realizer. Hence, by the
induction hypothesis, the triangulation M ′ contains neither a cw- nor a ccw-triangle. Thus, if C is either a
cw- or a ccw-triangle of M , then C contains v. But this is impossible since v is incident to no head.
• We now prove that any realizer R of a non-stack triangulation M contains either a cw- or a ccw-triangle.
- We first prove that the property holds if M has no internal vertex of degree 3 nor separating triangle (a
triangle which is not a face). It is known that if R contains a directed cycle, then it contains either a cw- or
ccw-triangle (proof omitted; see [11]). Thus it suffices to prove that R contains a directed cycle. Let u be
the third vertex of the internal triangle incident to the edge (v1, v2). The vertex u is such that p1(u) = v1

and p2(u) = v2 (see Figure 18). The vertex u has degree at least 4 and is not adjacent to v0 (otherwise one
of the triangles (v0, v1, u) or (v0, v2, u) contains some vertices, hence is separating). Thus, u′ = p0(u) 6= v0.
Moreover, either p1(u

′) 6= v1 or p2(u
′) 6= v2, otherwise the triangle (v1, v2, u

′) is separating. Let us assume
that u′′ = p1(u

′) 6= v1 (the other case is symmetrical). By Schnyder condition, the vertex u′′ lies inside the
cycle C made of the edges (v0, v1), (v1, u) and the 0-path from u to v0. By Schnyder condition, the 1-path
from u′′ to v1 stays strictly inside C. Let C′ be the cycle made of the edges (v1, u), (u, u′) and the 1-path
from u′ to v1. By Schnyder condition, the 2-path from u′′ to v2 starts inside the cycle C′, hence cut this
cycle. Let v be the first vertex of C′ on the 2-path from u′′ to v2. The vertex v is incident to a 2-head lying
inside C′, hence by Schnyder condition v = u. Thus, the cycle made of the edges (u, u′), (u′, u′′) and the
2-path from u′′ to u is directed.
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Figure 18: The vertices u, u′ = p0(u) and u′′ = p1(u
′).

- We now prove that the property holds for any non-stack triangulation M without internal vertex of degree
3. If M has no separating triangle then, by the preceding point, the realizer R contains either a cw- or
ccw-triangle. Suppose now that M has a separating triangle ∆. We can choose ∆ not containing any other
separating triangle. In this case, the triangulation M ′ lying inside the triangle ∆ has no separating triangle
and is not stack (since no internal vertex has degree 3). Let t0, t1, t2 be the vertices of the triangle ∆. By
definition, there are some vertices lying inside the triangle ∆. By Lemma 3.5, there is no tail incident to ∆
and lying inside ∆. Thus, for i = 1, 2, 3, the half-edges incident to the vertex ti and lying inside ∆ are heads.
Moreover, the Schnyder condition implies that all the heads incident to ti have the same color. Furthermore,
for each color i = 1, 2, 3 there is an i-head incident to one of the vertices t0, t1, t2, otherwise the vertices
inside ∆ would not be connected to vi by an i-path. Hence, we can assume without loss of generality that
for i = 1, 2, 3, the heads incident to ti and lying inside ∆ are of color i. Thus, the restriction R′ of R to the
triangulation lying inside ∆ is a realizer. By the preceding point, the realizer R′ contains either a cw- or
ccw-triangle, hence so do R.
- We now prove that the property holds for any non-stack triangulation M . Let R be a realizer of a non-stack
triangulation M . Let M ′ be the triangulation obtained from M ′ by recursively deleting every internal vertex
of degree 3. The triangulation M ′ is not stack and has no internal vertex of degree 3. Moreover, by Lemma
5.3, the restriction R′ of the realizer R to the triangulation M ′ is a realizer. By the preceding point, the
realizer R′ contains either a cw- or ccw-triangle, hence so do R.

�

Given Theorem 5.1 and Proposition 5.2, the mapping Φ induces a bijection between the intervals of
the Kreweras lattice and the stack triangulations. Stack triangulations are known to be in bijection with
ternary trees (see for instance [19]), hence we obtain a new proof that the number of intervals in LK

n is
1

2n+1

(

3n
n

)

. The rest of this section is devoted to the proof of Theorem 5.1. We first recall a characterization
of the realizers which are both minimal and maximal. This characterization which is illustrated in Figure 19
follows immediately from the characterizations of minimality and of maximality given in [2].

Proposition 5.4 ([2]). A realizer R = (T0, T1, T2) is both minimal and maximal if and only if for any
internal vertex u, either p0(p1(u)) = p0(u) or p1(p0(u)) = p1(u).

Let R = (T0, T1, T2) be a realizer of a triangulation M and let u, u′ be two vertices distinct from v0

and v2. We say that there is a 1-obstruction between u and u′ if there is a 1-edge e such that the tail of e
appears before the first corner of u while its head appears strictly between the first corner of u and the first
corner of u′ around the tree T0. This situation is represented in Figure 20. Using Proposition 5.4, we obtain
the following property satisfied by realizers which are both minimal and maximal.

Lemma 5.5. Let R = (T0, T1, T2) be a minimal and maximal realizer and let (P, Q) = Ψ(R). Let
v0, u0, u1, . . . , un = v1 be the vertices of the tree T0 in clockwise order. Then, for all indices 0 ≤ i < j ≤ n,
the relation i Q j holds if and only if the three following properties are satisfied:

(1) the vertex uj is an ancestor of ui in the tree T1,
(2) either p1(p0(ui)) = uj or p0(ui) = p0(uj) (with the convention that p0(un) = v0),
(3) there is no 1-obstruction between ui and uj.
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p1(u)u
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or

Figure 19: (a) Condition for a realizer to be both minimal and maximal: p0(p1(u))=p0(u) or p1(p0(u))=
p1(u). (b) A minimal and maximal realizer and its image by Ψ.

v0

v1e

u′

u

Figure 20: A 1-obstruction between the vertices u and u′.

The proof Lemma 5.5 of is based on the following result.

Lemma 5.6. Let R = (T0, T1, T2) be a minimal and maximal realizer and let (P, Q) = Ψ(R). Let
v0, u0, u1, . . . , un = v1 be the vertices of the tree T0 in clockwise order. For all indices 0 ≤ i < j ≤ n,
the relation i Q j holds if and only if p1(ui) = uj. Moreover, in this case ej(Q) = ei(Q) if and only if
p0(ui) = p0(uj) and there is no 1-edge whose head is incident to uj and whose tail appears before the first
corner of ui.

Proof: Let 0 ≤ i < j ≤ n such that p1(ui) = uj .
• We first prove that for all index r = i + 1, . . . , j − 1, the inequality ek(Q) > ei(Q) holds.
Let ui1 , . . . , uis

be the vertices on the 0-path from ui0 = ui to uis+1
= p0(uj) (that is, p0(uik

) = uik+1
for all

k = 0, . . . , s); see Figure 21. The characterization of minimal and maximal realizers given in Proposition 5.4
implies that p1(uik

) = uj for all k = 1, . . . , s. For all k = 0, . . . , s, we denote by rk the index of the last
descendant of uik

around T0 and we denote rs+1 = j − 1. Note that, for all k = 0, . . . , s, the vertices
urk+1, . . . , urk+1

are descendants of uik+1
in T0. Hence, for all k = 0, . . . , s and all l = rk + 1, . . . , rk+1, the

inequality el(P ) > ei(P ) − k holds (since for any index h the value eh(P ) + 1 is the height of the vertex
uh is the tree T0). By the minimality condition given by Proposition 4.3, none of the 1-tails available at ui

is matched to one the vertices ui+1, . . . , ur0
(since these vertices are descendants of ui). Moreover, none of

these available 1-tails is matched to one of the vertices ur0+1, . . . , uj−1 or there would be a crossing with
the 1-edge (ui, uj) (see Figure 21). Hence, the 1-tails available at i are also available at all the vertices
ui+1, . . . , uj − 1. Moreover, for all k = 1, . . . , s and all l = rk + 1, . . . , rk+1 the k 1-tails incident to each
of the vertices ui0 , . . . , uik−1

are available at the vertex ul. Thus, given Lemma 4.5, for all k = 0, . . . , s,
for all l = rk + 1, . . . , rk+1, δl(P, Q) ≤ δi(P, Q) + k. Thus, for all l = i + 1, . . . , j − 1, the inequality
el(Q) = el(P ) + δl(P, Q) > ei(Q) = ei(P ) + δi(P, Q) holds.
• It only remains to prove that the inequality ej(Q) ≤ ei(Q) holds and equality occurs if and only if p0(ui) =
p0(uj) and there is no 1-edge whose head is incident to uj and whose tail appears before the first corner
of ui.
- Since the realizer R is minimal the vertex p0(uj) is an ancestor of uj in the tree T0 (by Proposition
4.3). Hence, the inequality ej(P ) ≤ ei(P ) holds and equality occurs if and only if p0(ui) = p0(uj). We
now compare the values of δi(P, Q) and δj(P, Q) which are the number of tails available at ui and at uj
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respectively (by Lemma 4.5).
- We first prove that any 1-tails available at uj is also available at ui. No 1-tail available at uj is incident
to a vertex ul with r0 < l < j or the corresponding 1-edge would cross the edge (ui, uj) (see Figure 21).
Moreover, the characterization of minimal and maximal realizers given in Proposition 5.4 implies that no
1-tail available at uj is incident to a vertex ul with i < l ≤ r0 (since these vertices are descendants of ui).
Hence, any the 1-tail available at uj is also available at ui.
- We now prove any 1-tail available at ui is available at uj except if the corresponding 1-head is incident to
uj . Clearly, no 1-tail available at ui is such that the corresponding 1-head is incident to a vertex ul with
r0 < l < j or the 1-edge under consideration would cross the edge (ui, uj) (see Figure 21). Since the realizer
R is minimal, there is no 1-tail available at ui and such that the corresponding 1-head is a vertex ul with
i < l ≤ r0 (since these vertices are descendants of ui). Hence, if a 1-tail available at ui is not available at
uj , then the corresponding 1-head is incident to uj .
- Given Lemma 4.5, the preceding points imply that the inequality δi(P, Q) ≤ δj(P, Q) holds and equality
occurs if and only if there is no 1-edge whose head is incident to uj and whose tail appears before the first
corner of ui. Hence, ej(Q) = ej(P ) + δj(P, Q) ≤ ei(Q) = ei(P, Q) + δi(P, Q) and equality occurs if and only
if p0(ui) = p0(uj) and no index k < i is such that p1(uk) = uj. �

uj

ur0

ur1ui0 =ui

ui1

uis

uis+1

urs

Figure 21: Notations for the proof of Lemma 5.6.

Proof of Lemma 5.5:
• We suppose that i Q j and we want to prove the properties (1), (2) and (3).

(1) Since i Q j, there are indices i0 = i, i1, . . . , is+1 = j such that i0 Q i1 Q . . . Q is+1 and ei0(Q) =
ei1(Q) = · · · = eis

(Q). Lemma 5.6 implies p1(uik
) = uik+1

for all k ≤ s. Hence uj is a ancestor of ui in the
tree T1.
(2) Since eik

(P ) = ei(P ) for all k ≤ s, Lemma 5.6 implies p0(uik
) = p0(ui) for all k ≤ s. Moreover, p1(uis

) =
uj , thus Proposition 5.4 implies that either p0(uj) = p0(uis

) = p0(ui) or uj = p1(p0(uis
)) = p1(p0(ui)).

This situation is represented in Figure 22.
(3) We want to prove that there is no 1-obstruction between ui and uj . We suppose that the tail of a 1-edge
e appears before the first corner of ui around T0 and we want to prove that the corresponding 1-head h is not
incident to a vertex uk with i < k < j. Clearly, if the 1-head h is incident to a vertex uk with i < k < j, then
the vertex uk is either one of the vertices ui0 , ui2 , . . . , uis

or one of their descendants (otherwise, the edge e
would cross one of the 1-edges (ui0 , ui1), . . . ,(uis

, uis+1
); see Figure 22). Since ei0(Q) = ei1(Q) = · · · = eis

(Q),
Lemma 5.6 implies that uk is none of the vertices ui1 , ui2 , . . . , uis

. Moreover, since the realizer R is minimal,
Proposition 4.3 implies that uk is not a (proper) descendant of one of the vertices i0, . . . , is. Thus, the 1-head
h is not incident to a vertex uk with i < k < j and e is not creating a 1-obstruction.
• We suppose that the vertices ui and uj satisfy the properties (1), (2) and (3) and want to prove that i Q j.
Observe first that by property (1), there are indices i0 = i, i1, . . . , is+1 = j such that p1(uik

) = uik+1
.

- We first prove that, for all k = 1, . . . , s, p0(uik
) = p0(ui); this situation is represented in Figure 22.

Suppose the contrary and consider the first index k ∈ {1, . . . , s} such that p0(uik
) 6= p0(ui). In this case,

uik
= p1(uik−1

) and p0(uik
) 6= p0(uik−1

) = p0(ui). Since the realizer R is minimal and maximal, Propo-
sition 5.4 implies that uik

= p1(p0(uik−1
) = p1(p0(ui)). Thus, the vertices uik+1

, . . . , uis+1
are distinct
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from p1(p0(ui)) and are ancestors of p0(ui) in the tree T1. In particular, uj = uis+1
6= p1(p0(ui)), and

p0(uj) 6= p0(ui). This contradicts Property (2).
- We now prove that for all index k = 1, . . . , s there is no 1-edge e whose head is incident to uik

and whose
tail appears before the first corner of uk−1. Suppose that such a 1-edge e exist. Observe that the 1-tail t of
the edge e do not appear before the first corner of ui otherwise the edge e creates a 1-obstruction between ui

and uj . Hence, the 1-tail t is incident either to one of the vertices ui0 , . . . , uik−2
or to one of their descendants

(otherwise, the edge e would cross one of the 1-edges (ui0 , ui1), . . . ,(uik−2
, uik−1

); see Figure 22). Moreover,
the 1-tail t is not incident to the vertices ui0 , . . . , uik−2

, otherwise e would create a cycle in the tree T1.
Lastly, since the realizer R is minimal, the 1-tail t is not incident to a descendant of uil

, l = 0, . . . , k − 2.
Thus the 1-tail t does not appear before the first corner of uk−1.

- By Lemma 5.6, the preceding points imply ik Q ik+1 and eik
(Q) = ei(Q) for all k = 0 . . . s. Thus, i Q j.

�

. . . . . .uis+1
=ujui0 =ui ui0 =ui

uis+1
=uj

ui2 uisui1
uis

ui2ui1

Figure 22: Notations for the proof of Lemma 5.5.

Proof of Theorem 5.1: Let P = NSα1 . . . NSαn and Q = NSβ1 . . . NSβn be two Dyck paths and let
R = (T0, T1, T2) = Φ(P, Q). Let v0, u0, u1, . . . , un = v1 be the vertices of the tree T0 in clockwise order.
• We suppose that P ≤K Q and we want to prove that the realizer R is minimal and maximal. We proceed
by induction on ∆(P, Q).
- We first suppose that ∆(P, Q) = 0, that is P = Q, and we want to prove that R is minimal and maximal.
Let W be the word obtained by making the tour of T0 and writing N (resp. S) when following an edge of T0

for the first (resp. second) time and writing N (resp. S) when crossing a 1-tail (resp. 1-head). By definition
of the mapping ω, the restriction of W to the letters N, S is ω(T0) = NSα1 . . . NSαnNS. Moreover, for
all i = 0, . . . , n there are αi 1-heads incident to the first corner of ui and one 1-head incident to its last
corner. Thus, W = N(NS)α1NSα1(NS)α2 . . . NSαn−1(NS)αnNSαnS. Between any letter N of W and the
corresponding letter S there is exactly one letter N . Thus, for any internal vertex u, the vertex p1(u) is the
first vertex appearing after the last corner of u around T0 (that is, the first vertex which is not a descendant
of u appearing after u around T0). By Proposition 5.4, this implies that R is minimal and maximal.
- We now suppose that ∆(P, Q) > 0. In this case, there is a Dyck path Q′ = NSβ′

1 . . .NSβ′

n covered by Q
in the Kreweras lattice and such that P ≤K Q′. Since Q′ is covered by Q is the Kreweras lattice, there are
indices 0 ≤ i < j ≤ n such that i Q’ j and βi = 0, βj = β′

i + β′
j and βk = β′

k for all k 6= i, j (this situation is
represented in Figure 23 (a)). By the induction hypothesis, the realizer R′ = (T ′

0, T
′
1, T

′
2) = Φ(P, Q′) is both

minimal and maximal. Moreover, by definition of the bijection Φ, the trees T0 and T ′
0 are the same. We

use this fact to identify the vertices in the prerealizers PR = (T0, T1) and PR′ = (T0, T
′
1) that we denote by

v0, u0, u1, . . . , un = v1 in clockwise order around T0 = T ′
0. We also denote by p′

1(u) the parent of any vertex
u in T ′

1.

• We first prove that for any vertex v, p′
1(v) = p1(v) except if p′

1(v) = ui in which case p1(v) = uj.
Since i Q j, Lemma 5.5 implies that there is no 1-obstruction between ui and uj in the realizer R′.
Thus, the β′

i 1-heads incident to ui can be unglued from the first corner of ui and glued to the first
corner of uj without creating any crossing in the prerealizer PR′ = (T0, T

′
1) (the transfer of the β′

i

1-heads is represented in Figure 23 (b)). Let PR′′ = (T0, T
′′
1 ) be the colored map obtained. Clearly,

PR′′ = (T0, T
′′
1 ) satisfies the tree condition (T ′′

1 is a tree), the corner condition (the 1-heads are in
first corners, the 1-tails are in last corners) and the order condition (any 1-tail appears before the
corresponding 1-head around T0), therefore PR′′ is a prerealizer. Moreover, for all i = 0, . . . , n, there
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are βi 1-heads incident to the vertex ui. Thus, by definition of the mapping Φ, the prerealizer PR′′

is equal to PR = (T0, T1). Since the only difference between the prerealizers PR′ and PR is that the
1-heads incident to ui in PR′ are incident to uj in PR, the property holds.

• We now prove that the realizer R = (T0, T1, T2) is minimal and maximal. If the realizer R is not both
minimal and maximal, there is a vertex u such that p1(u) 6= p1(p0(u)) and p0(p1(u)) 6= p0(u). Since
the realizer R′ is both minimal and maximal, either p′

1(u) = p′
1(p0(u)) or p0(p

′
1(u)) = p0(u). But

p′
1(u) 6= p′

1(p0(u)), otherwise p1(u) = p1(p0(u)). Thus, p0(p
′
1(u)) = p0(u) and p′

1(u) = ui. Hence,
p0(ui) = p0(u) and p1(u) = uj . Moreover, since i Q’ j, Lemma 5.5 implies that either p0(ui) = p0(uj)
or p′

1(p0(ui)) = uj . But, if p0(ui) = p0(uj), then p0(u) = p0(ui) = p0(uj) = p0(p1(u)) which is
forbidden. And, if p′

1(p0(ui)) = uj, then p1(p0(u)) = p1(p0(ui)) = p′
1(p0(ui)) = uj = p1(u) which is

also forbidden. We reach a contradiction.

P

Q’

Q

v0

(b)

v0
PR′ PR′′ = PR

ui
ui

i

(a)

j

uj =v1 uj =v1

Figure 23: (a) The Dyck paths P ≤K Q′ ≤K Q. (b) The prerealizer PR′′ is obtained from PR′ = (T0, T
′
1)

by moving β′
i 1-heads from the first corner of ui to the first corner of uj .

• We suppose that the realizer R is minimal and maximal and we want to prove that P ≤K Q. We proceed
by induction on ∆(P, Q). If ∆(P, Q) = 0, then P = Q and the property holds. We suppose now that
∆(P, Q) > 0 and we denote by v0, u0, u1, . . . , un = v1 the vertices of the tree T0 in clockwise order.
- We first prove that there are indices 0 ≤ k < i < j ≤ n such that p0(uk) = p0(ui) and p1(uk) = uj. We
suppose that no such indices exist and we want to prove that P = Q. Let u be an internal vertex. If u has a
sibling in T0 appearing after u around T0, then p1(u) is the first such sibling (since the indices i, j, k do not
exist), else p1(u) = p1(p0(u)) (since the realizer R is minimal and maximal). Thus, for any vertex u, p1(u)
is the first vertex appearing after the last corner of u around T0. Let W be the word obtained by making the
tour of T0 and writing N (resp. S) when following an edge of T0 for the first (resp. second) time and writing
N (resp. S) when crossing a 1-tail (resp. 1-head). By definition of the mapping ω, the restriction of W to
the letters N, S is ω(T0) = NSα1 . . . NSαnNS. Moreover, for all i = 0, . . . , n there are βi 1-heads in the first
corner of ui and one 1-head in its last corner. Thus, W = N(NS)α1NSβ1(NS)α2 . . .NSβn−1(NS)αnNSβnS.
Moreover, between any letter N of W and the corresponding letter S there is exactly one letter N . Thus,
β1 = α1,. . . , βn = αn, that is, P = Q.
- Let k < i < j be as described in the preceding point with k maximal and i minimal with respect to k (i.e.
ui is the first sibling of uk appearing after uk around the tree T0). This situation is represented in Figure 24.
Observe that no 1-head is incident to ui in the prerealizer PR = (T0, T1) (see Figure 24), hence βi = 0,. Let
H be the set of 1-heads incident to uj and such that the corresponding 1-tail is either incident to uk or to
one of its descendants. One can unglue the 1-heads in H from the first corner of uj and glue them to the
first corner of ui without creating any crossing (see Figure 24). Moreover, the resulting colored map PR′ is
easily seen to be a prerealizer that we denote by PR′ = (T0, T

′
1). Let R′ be the realizer corresponding to the

prerealizer PR′ and let Q′ = NSβ′

1 . . . NSβ′

n be the Dyck path such that Φ(P, Q′) = R′. By definition of Φ,
we have β′

i = |H |, β′
j = βj − |H | and β′

l = βl for all l 6= i, j.
- We now prove that the realizer R′ = Φ(P, Q′) is minimal and maximal. By Proposition 5.4, we only need
to prove that for every internal vertex u, either p0(p

′
1(u)) = p0(u) or p′

1(p0(u)) = p′
1(u), where p′

1(u)
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denotes the parent of u in the tree T ′
1. Suppose that there is a vertex u not satisfying this condition.

Note first that u 6= uk since p0(p
′
1(uk)) = p0(uk). Since the realizer R is minimal and maximal, either

p0(p1(u)) = p0(u) or p1(p0(u)) = p1(u). Suppose first p0(p1(u)) = p0(u). In this case, the vertex u is
a descendant of uk (otherwise, p0(p

′
1(u)) = p0(p1(u)) = p0(u)), and p′

1(u) = uj (for the same reason).
Therefore, p0(uj) = p0(p1(u)) = p0(u) implies that uj is a descendant of uk. This is impossible since uj

appears after ui around T0. Suppose now that p1(p0(u)) = p1(u). In this case, the vertex u is a descendant
of uk (otherwise, p′

1(p0(u)) = p1(p0(u)) = p1(u) = p′
1(u)), and p1(p0(u)) = p1(u) = uj (for the same

reason). Thus p′
1(p0(u)) = p′

1(u) = ui. We reach again a contradiction.
- We now prove that the Dyck path Q′ is covered by Q in the Kreweras lattice. By definition of the covering
relation in the Kreweras lattice LK , it suffices to prove that i Q’ j. Since the realizer R′ is minimal and
maximal, it suffices to prove that the conditions (1), (2) and (3) of Lemma 5.5 hold. Clearly, there is no
1-obstruction between the vertices ui and uj in the realizer R′ (see Figure 24), hence condition (3) holds.
Moreover, since the realizer R is minimal and maximal, either p0(uk) = p0(uj) or p1(p0(uk)) = uj . Thus,
either p0(ui) = p0(uj) or p1(p0(ui)) = uj, hence condition (2) holds. Let i = i1, i2, . . . , is be the indices of
the siblings of uk appearing between uk and uj in clockwise order around T0 (see Figure 24). By the choice
of k, we get p1(uir

) = uir+1
for all r < s. Moreover, since the realizer R is minimal and maximal, either

p0(uk) = p0(uj) or p1(p0(uk)) = uj. If either case, we get p1(us) = uj. Thus, p′
1(uir

) = p1(uir
) = uir+1

for all r < s, and p′
1(us) = p1(us) = uj. Hence, uj is an ancestor of ui in the tree T ′

1, that is, condition (1)
holds.
- The realizer R′ = Φ(P, Q′) is minimal and maximal, hence by the induction hypothesis P ≤K Q′. Moreover,
the path Q′ is covered by Q in the Kreweras lattice. Thus, P ≤K Q.

�

uk ui
uk ui uj ujui2 ui2

. . . . . .
uis

uis

PR′PR

Figure 24: The vertices uk, ui, uj in the prerealizer PR = (T0, T1) and PR′ = (T0, T
′
1).
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