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UNIQUENESS AND STABILITY IN AN
INVERSE PROBLEM FOR THE
SCHRÖDINGER EQUATION.

Lucie BAUDOUIN Jean-Pierre PUEL ∗

ABSTRACT: We study the Schrödinger equation iy′ + ∆y + qy = 0 in Ω × (0, T )
with Dirichlet boundary data y|∂Ω×(0,T ) and real valued initial condition y|Ω×{0} and
we consider the inverse problem of determining the potential q(x), x ∈ Ω when
∂y
∂ν |Γ0×(0,T ) is given. Here Ω is an open bounded domain of RN , Γ0 is an open sub-
set of ∂Ω satisfying a suitable geometrical condition and T > 0. More precisely,
from a global Carleman estimate we prove a stability inequality between ‖p − q‖ and∥∥∥∂y(q)∂ν − ∂y(p)

∂ν

∥∥∥ with appropriate norms.

Keywords: Inverse problem, Schrödinger equation, Dirichlet boundary conditions.
AMS Classification: 35R30, 31B20

1 Introduction
Let N ∈ N, T > 0 and let Ω ⊂ RN be a bounded domain with C2-boundary ∂Ω. Let
Γ0 be an open subset of ∂Ω.

Throughout this paper, we use the following notations :

∇v =
(
∂v

∂x1
, . . . ,

∂v

∂xN

)
, D2v =

(
∂2v

∂xi∂xj

)
1≤i,j≤N

,

∆v =
N∑
i=1

∂2v

∂x2
i

, v′ =
∂v

∂t
and v′′ =

∂2v

∂t2
,

ν ∈ RN denotes the unit outward normal vector to ∂Ω,
∂v

∂ν
= ∇v.ν is the normal derivative.

∗baudouin@math.uvsq.fr, jppuel@cmapx.polytechnique.fr, Laboratoire de Mathématiques Appliquées,
Université de Versailles Saint-Quentin, 45 avenue des Etats Unis, 78035 Versailles Cedex, France.
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We consider the Schrödinger equation : iy′(x, t) + ∆y(x, t) + q(x)y(x, t) = 0, x ∈ Ω, t ∈ (0, T )
y(x, t) = h(x, t), x ∈ ∂Ω, t ∈ (0, T )
y(x, 0) = y0(x), x ∈ Ω.

(1)

This paper treats two kinds of inverse problems which can be stated as follows.

Non linear inverse Problem : Is it possible to retrieve the potential q = q(x), x ∈
Ω from measurement of the normal derivative

∂y

∂ν

∣∣∣∣
Γ0×(0,T )

where y is the solution to (1)?

In this direction, we will answer to two more precise problems.

Uniqueness : Under geometrical conditions on Γ0, does the equality
∂y(q)
∂ν

=
∂y(p)
∂ν

on Γ0 × (0, T ) imply q = p on Ω ?

Stability : Under geometrical conditions on Γ0, is it possible to estimate ‖q− p‖L2(Ω)

or better, a stronger norm of (p− q), by a suitable norm of(
∂y(q)
∂ν

− ∂y(p)
∂ν

) ∣∣
Γ0×(0,T )

?

Indeed, we will only give a local answer about the determination of q. We will first
work on a linearized version of the problem and consider the following Schrödinger
equation : iu′(x, t) + ∆u(x, t) + q(x)u(x, t) = f(x)R(x, t), x ∈ Ω, t ∈ (0, T )

u(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T )
u(x, 0) = 0, x ∈ Ω

(2)

Linear inverse problem : Is it possible to determine f(x), x ∈ Ω from the
knowledge of the normal derivative

∂u

∂ν

∣∣∣∣
Γ0×(0,T )

where R and q are given and u is the solution to (2)?

In the case of the wave equation, the uniqueness result for the linear inverse problem
has been proved by M.V. KLIBANOV in [7] and a stability result of M. YAMAMOTO,
deriving from it, can be read in [13].
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Here we set y = y(q) the weak solution to (1) and u = u(f) the one to (2). If we
formally linearize equation (1) around a non stationary solution, we obtain equation
(2). In fact, we notice here that if we set f = q − p, u = y(p) − y(q) and R = y(q)
on Ω × (0, T ), we obtain (2) after substraction of (1) with potential q from (1) with
potential p and linearization.

In our inverse problem, we have to determine a coefficient of a lower order term in a
Schrödinger equation from a single time dependent observation of Neumann data on a
part Γ0 of the boundary. On the other hand, there is another formulation for stationnary
inverse problems knowing the Dirichlet to Neumann map and the relation between the
two problems is not really clear. In this latter direction, results are given in [2] for the
stationnary Schrödinger equation which appear to be similar to ours.

Assuming that q ∈ L∞ is a given function, we are concerned with the stability
around q. That is to say q and y(q) are known while p is unknown. Later in section 5,
we will give a meaning to equation (1) when y0 ∈ L2(Ω) and h ∈ L2(∂Ω × (0, T )).
Of course, additional assumptions will be required on y0 and h in order to obtain our
main result which states as follows.

Theorem 1. Let U be a bounded subset of L∞(Ω), q ∈ L∞(Ω) and y be a solution of
equation (1).
We assume

∃ x0 ∈ RN \ Ω such that Γ0 ⊃ {x ∈ ∂Ω; (x− x0).ν(x) ≥ 0},

y(q) ∈W 1,2(0, T, L∞(Ω)),

y0 is real valued and |y0| ≥ r0 > 0, ae in Ω.

There exists a constant C = C(Ω, T,Γ0, ‖q‖L∞(Ω), y0, h,U) > 0 such that if

∂y(q)
∂ν

− ∂y(p)
∂ν

∈ H1(0, T ;L2(Γ0))

then ∀ p ∈ U ,

‖q − p‖L2(Ω) ≤ C

∥∥∥∥∂y(q)∂ν
− ∂y(p)

∂ν

∥∥∥∥
H1(0,T ;L2(Γ0))

. (3)

Remarks : 1) We have the same result if y0 takes its values in iR.
2) If we consider equation (1) on (−T, T ) and with y0 taking its values in C, then,
under the formalism of Theorem 1, we can prove the estimate

‖q − p‖L2(Ω) ≤ C

∥∥∥∥∂y(q)∂ν
− ∂y(p)

∂ν

∥∥∥∥
H1(−T,T ;L2(Γ0))

.

A regularity result in the linear case, obtained in section 4, implies that the right
hand side of inequality (3) is finite under some additional regularity on y(q).
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Corollary 2. Let U be a bounded subset of L∞(Ω) and q ∈ L∞(Ω).
We assume :

∃ x0 ∈ RN \ Ω such that Γ0 ⊃ {x ∈ ∂Ω; (x− x0).ν(x) ≥ 0},

y(q) ∈W 1,2(0, T,W 1,∞(Ω)),

y0 is real valued and |y0| ≥ r0 > 0, ae in Ω.

Then there exists a constant C = C(Ω, T,Γ0, ‖q‖L∞ , y0, h,U) > 0 such that
∀ p ∈ U verifying q − p ∈ H1

0 (Ω),

C−1‖q − p‖L2(Ω) ≤
∥∥∥∥∂y(q)∂ν

− ∂y(p)
∂ν

∥∥∥∥
H1(0,T ;L2(Γ0))

≤ C‖q − p‖H1
0 (Ω). (4)

The condition on y(q) requires sufficient smoothness on q, y0 and h and compati-
bility conditions for y0 and h on ∂Ω× {0}. In particular, |h(x, 0)| ≥ r0 > 0, x ∈ ∂Ω
must be satisfied since |y0(x)| ≥ r0 > 0, ae in Ω and h(0) has to be real valued.

The first inequality of Corollary 2 in (4) shows the stability of the nonlinear inverse
problem and gives uniqueness while the second inequality gives the continuous depen-
dance of the normal derivative of the solution with respect to the potential.

Many of the results we can refer to concern the wave equation. They are related
to the same kind of inverse problems of determining a potential, some of them ([10],
[13]) with a Dirichlet boundary data and a Neumann measurement and others with a
Neumann boundary data and a Dirichlet measurement ([5], [6]). These references are
all based upon local or global Carleman estimates. Nevertheless, in our approach, as in
[6] for example, in order to prove Theorem 1, we do not use any of the compactness-
uniqueness arguments which are required in [13] for the same kind of situation. Indeed,
our present proof is based upon a global Carleman estimate (Proposition 3) which leads
to the result in a direct way.

Up to our knowledge, the result of determination of a time independent potential
in Schrödinger equation from a single time dependent measurement on a suitable part
of the boundary is new. Let us notice that in the different context of Cauchy problem,
V. ISAKOV in [4] uses local Carleman estimates for the Schrödinger equation to prove
uniqueness of the solution.

This paper is organized as follows :
We first establish a global Carleman estimate for a Schrödinger equation with a

potential (Section 2). This estimate leads us to show a theorem describing uniqueness
and stability of the linear inverse problem (Section 3). The idea is inspired by O. Yu.
IMANUVILOV and M. YAMAMOTO [6].

Then, after recalling some classical properties of regularity concerning our equa-
tions we prove a two sided inequality in the linear case (Section 4).

In section 5, we complete the proof of Theorem 1 and Corollary 2 from the results
obtained for the linear problem. In section 6, under additional hypotheses, we finally
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improve the result of Theorem 1 by showing stability for a stonger norm of (p − q),
using there an observability estimate proved from the same Carleman estimate.

2 A global Carleman estimate
In this step, we will show a global Carleman estimate concerning a function v = v(x, t)
equals to zero on ∂Ω×(−T, T ) and solution of a Schrödinger equation with a bounded
potential.

First, we assume that it is possible to find a regular and positive weight function
ψ = ψ(x) defined on RN and pseudo- convex with respect to the Schrödinger operator.
Indeed, we will suppose that ψ verifies the following properties.

• ψ ∈ C4(RN ),
• ψ(x) ≥ 0, ∀x ∈ Ω,
• |∇ψ(x)| ≥ β > 0, ∀x ∈ Ω,
• ∃ Λ1 > 0, ∃ ε > 0 such that ∀ ξ ∈ RN , ∀ λ > Λ1,

λ|∇ψ. ξ|2 +D2ψ
(
ξ, ξ
)
≥ ε |ξ|2 (5)

• ∇ψ.ν < 0, ∀x ∈ ∂Ω \ Γ0.

A classical answer to the problem of choosing a weight ψ and a geometrical condi-
tion upon Γ0 is the following :

x0 ∈ RN \ Ω
ψ = |x− x0|2 (6)

Γ0 ⊃ {x ∈ ∂Ω, (x− x0).ν(x) ≥ 0}

In this case all the required conditions are satisfied.

Then, for s > 0 and λ > 0 we define on Ω× (−T, T ) the functions θ and ϕ by

θ(x, t) =
eλψ(x)

(T − t)(T + t)
and ϕ(x, t) =

α− eλψ(x)

(T − t)(T + t)

where α > ‖eλψ‖L∞(Ω). We also set Lv = iv′ + ∆v + qv.

Proposition 3 (Carleman Estimate). Let q ∈ L∞(Ω), ‖q‖L∞ ≤ m and let ψ, θ
and ϕ satisfy the above conditions. There exists Λ0 > 0, s0 > 0 and a constant
M = M(Ω, T,Γ0, β, ε,m,Λ0, s0) > 0 such that
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for all λ > Λ0 and for all s > s0,

sλ

∫ T

−T

∫
Ω

|∇v|2e−2sϕ dxdt+ s3λ4

∫ T

−T

∫
Ω

|v|2e−2sϕ dxdt

+
∫ T

−T

∫
Ω

(
|P̃1v|2 + |P̃2v|2

)
e−2sϕ dxdt (7)

≤ M

∫ T

−T

∫
Ω

|Lv|2e−2sϕ dxdt+Msλ

∫ T

−T

∫
Γ0

θ

∣∣∣∣∂v∂ν
∣∣∣∣2 e−2sϕ∇ψ.ν dσdt.

for all v satisfying ∣∣∣∣∣∣∣
Lv ∈ L2(Ω× (−T, T )),
v ∈ L2(−T, T ;H1

0 (Ω)),
∂v

∂ν
∈ L2(−T, T ;L2(Γ0)),

where P̃1 and P̃2 will be defined later by (8) and (9).

Proof :
We can refer to [1] for the general method. The main idea consists in setting v = esϕw
and calculating

Pw = e−sϕL(esϕw).

Thus we have

Pw = iw′ + isϕ′w + ∆w + 2s∇ϕ.∇w + sw∆ϕ+ s2|∇ϕ|2w + qw,

and we set
P1w + P2w = Pw − qw

where

P1w = iw′ + ∆w + s2|∇ϕ|2w,
P2w = isϕ′w + 2s∇ϕ.∇w + s∆ϕw.

We just have represented Pw − qw as the sum of adjoint (P1) and skew-adjoint (P2)
operators. Then,∫ T

−T

∫
Ω

|Pw − qw|2 dxdt =
∫ T

−T

∫
Ω

|P1w|2 dxdt+
∫ T

−T

∫
Ω

|P2w|2 dxdt

+2Re
∫ T

−T

∫
Ω

P1wP2w dxdt,

where z is the conjugate of z and Re(z) its real part.
As v ∈ L2(−T, T ;H1

0 (Ω)) and v′ ∈ L2(−T, T ;H−1(Ω)) (because Lv ∈ L2(Ω ×
(−T, T ))), we have v ∈ C([−T, T ];L2(Ω)) andw ∈ C([−T, T ];L2(Ω)) withw(x,±T ) =
0.

6



We will first look for lower bounds for

Re

∫ T

−T

∫
Ω

P1wP2w dxdt,

reminding that

P1w = iw′ + ∆w + s2|∇ϕ|2w,
P2w = −isϕ′w + 2s∇ϕ.∇w + s∆ϕw.

We multiply each term of P1w by each term of P2w. The properties of w and some
integrations by parts allow to write the following equalities.

I11 = Re

∫ T

−T

∫
Ω

iw′(−isϕ′w) dxdt = −s
2

∫ T

−T

∫
Ω

ϕ′′|w|2 dxdt.

Writing Im(z) for the imaginary part of z ∈ C, we have Im(z) − Im(z) = 2Im(z)

and taking z = 2sλ
∫ T

−T

∫
Ω

θ∇ψ∇ww′ dxdt, we show that :

I12 = Re

∫ T

−T

∫
Ω

iw′(2s∇ϕ.∇w) dxdt

= sλ Im

∫ T

−T

∫
Ω

θ(∆ψ + λ|∇ψ|2)ww′ dxdt

− sλ Im

∫ T

−T

∫
Ω

θ′w∇ψ.∇w dxdt.

Moreover, since Im z = −Im z, then :

I13 = Re

∫ T

−T

∫
Ω

iw′(s∆ϕw) dxdt = −sλ Im
∫ T

−T

∫
Ω

θ(∆ψ + λ|∇ψ|2)ww′dxdt

and since Im
∫ T

−T

∫
Ω

ϕ′∇w.∇w dxdt = 0,

I21 = Re

∫ T

−T

∫
Ω

∆w(−isϕ′w) dxdt = sλ Im

∫ T

−T

∫
Ω

θ′w∇ψ.∇w dxdt.

The next inequality uses the fact that ∇w =
∂w

∂ν
. ν on ∂Ω× (0, T ) because w = 0 on

∂Ω× (0, T ) :
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I22 = Re

∫ T

−T

∫
Ω

∆w(2s∇ϕ.∇w) dxdt

= − sλ

∫ T

−T

∫
Ω

θ(∆ψ + λ|∇ψ|2)|∇w|2 dxdt

− sλ

∫ T

−T

∫
∂Ω

θ

∣∣∣∣∂w∂ν
∣∣∣∣2∇ψ.ν dσdt

+ 2sλ2

∫ T

−T

∫
Ω

θ|∇ψ.∇w|2 dxdt

+ 2sλ Re
∫ T

−T

∫
Ω

θ
n∑

i,j=1

∂ψ

∂xi∂xj

∂w

∂xi

∂w

∂xj
dxdt.

Using integrations by parts we obtain :

I23 = Re

∫ T

−T

∫
Ω

∆w(s∆ϕw) dxdt

= sλ

∫ T

−T

∫
Ω

θ(∆ψ + λ|∇ψ|2)|∇w|2 dxdt

− sλ

2

∫ T

−T

∫
Ω

θ∆2ψ|w|2 dxdt

− sλ2

2

∫ T

−T

∫
Ω

θ(|∆ψ|2 + 2∇ψ.∇(∆ψ) + ∆(|∇ψ|2))|w|2 dxdt

− sλ3

∫ T

−T

∫
Ω

θ(|∇ψ|2∆ψ +∇ψ.∇(|∇ψ|2))|w|2 dxdt

− sλ4

2

∫ T

−T

∫
Ω

θ|∇ψ|4|w|2 dxdt,

and we obviously have

I31 = Re

∫ T

−T

∫
Ω

s2|∇ϕ|2w(isϕ′w) dxdt = 0,

I32 = Re

∫ T

−T

∫
Ω

s2|∇ϕ|2w(2s∇ϕ.∇w) dxdt

= s3λ3

∫ T

−T

∫
Ω

θ3(|∇ψ|2∆ψ +∇ψ.∇(|∇ψ|2))|w|2 dxdt

+ 3s3λ4

∫ T

−T

∫
Ω

θ3|∇ψ|4|w|2 dxdt,
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and

I33 = Re

∫ T

−T

∫
Ω

s2|∇ϕ|2w(s∆ϕw) dxdt

= −s3λ3

∫ T

−T

∫
Ω

θ3|∇ψ|2∆ψ|w|2 dxdt− s3λ4

∫ T

−T

∫
Ω

θ3|∇ψ|4|w|2 dxdt.

These four last equalities explain why we required ψ ∈ C4(Rn).

Thereafter, we obtain :

Re

∫ T

−T

∫
Ω

P1wP2w dxdt =

− s

2

∫ T

−T

∫
Ω

ϕ′′|w|2 dxdt− 2sλ Im
∫ T

−T

∫
Ω

θ′w∇ψ.∇w dxdt

− sλ

∫ T

−T

∫
∂Ω

θ

∣∣∣∣∂w∂ν
∣∣∣∣2∇ψ.ν dσdt+ 2sλ2

∫ T

−T

∫
Ω

θ|∇ψ.∇w|2 dxdt

+ 2sλ Re
∫ T

−T

∫
Ω

θD2ψ(∇w,∇w) dxdt− sλ

2

∫ T

−T

∫
Ω

θ∆2ψ|w|2 dxdt

− sλ2

2

∫ T

−T

∫
Ω

θ(|∆ψ|2 + 2∇ψ.∇(∆ψ) + ∆(|∇ψ|2))|w|2 dxdt

− sλ3

∫ T

−T

∫
Ω

θ(|∇ψ|2∆ψ +∇ψ.∇(|∇ψ|2))|w|2 dxdt

− sλ4

2

∫ T

−T

∫
Ω

θ|∇ψ|4|w|2 dxdt+ s3λ3

∫ T

−T

∫
Ω

θ3∇ψ.∇(|∇ψ|2)|w|2 dxdt

+ 2s3λ4

∫ T

−T

∫
Ω

θ3|∇ψ|4|w|2 dxdt.

We call X1 the terms which are neglectible within respect to

sλ2

∫ T

−T

∫
Ω

θ|∇ψ.∇w|2 dxdt or s3λ4

∫ T

−T

∫
Ω

θ3|∇ψ|4|w|2 dxdt.

Then :

X1 = −s
2

∫ T

−T

∫
Ω

ϕ′′|w|2 dxdt− 2sλ Im
∫ T

−T

∫
Ω

θ′w∇ψ.∇w dxdt

− sλ

2

∫ T

−T

∫
Ω

θ∆2ψ|w|2 dxdt

− sλ2

2

∫ T

−T

∫
Ω

θ(|∆ψ|2 + 2∇ψ.∇(∆ψ) + ∆(|∇ψ|2))|w|2 dxdt

− sλ3

∫ T

−T

∫
Ω

θ(|∇ψ|2∆ψ +∇ψ.∇(|∇ψ|2))|w|2 dxdt

− sλ4

2

∫ T

−T

∫
Ω

θ|∇ψ|4|w|2 dxdt+ s3λ3

∫ T

−T

∫
Ω

θ3∇ψ.∇(|∇ψ|2)|w|2 dxdt.
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Now, we can notice that :

1) sλ Im

∫ T

−T

∫
Ω

θ′w∇ψ.∇w dxdt ≤ sλ

∫ T

−T

∫
Ω

(θ′)
1
2 |∇ψ.∇w|2 dxdt

+ sλ

∫ T

−T

∫
Ω

(θ′)
3
2 |w|2 dxdt,

2) α is such that ϕ > 0 on Ω× (−T, T ),
3) |θ| ≤ Cθ3, |θ′| ≤ Cθ2 and |ϕ′′| ≤ Cθ3 on (−T, T )× Ω, C = C(T ) > 0.

Then,

|X1| ≤ Csλ

∫ T

−T

∫
Ω

θ|∇ψ.∇w|2 dxdt+ Csλ4

∫ T

−T

∫
Ω

θ|w|2 dxdt

+ Cs3λ3

∫ T

−T

∫
Ω

θ3|w|2 dxdt.

We can also write :

Re

∫ T

−T

∫
Ω

P1wP2w dxdt ≥ X1 + 2sλ2

∫ T

−T

∫
Ω

θ|∇ψ.∇w|2 dxdt

+ 2sλ Re
∫ T

−T

∫
Ω

θD2ψ(∇w,∇w) dxdt

+ 2s3λ4

∫ T

−T

∫
Ω

θ3|∇ψ|4|w|2 dxdt

− sλ

∫ T

−T

∫
∂Ω

θ

∣∣∣∣∂w∂ν
∣∣∣∣2∇ψ.ν dσdt.

Moreover,∫ T

−T

∫
Ω

|Pw − qw|2 dxdt ≤ 2
∫ T

−T

∫
Ω

|Pw|2 dxdt+ 2
∫ T

−T

∫
Ω

q2|w|2 dxdt.

Therefore, from these two last inequalities and if we impose

|∇ψ(x)| ≥ β > 0, ∀x ∈ Ω,

we obtain :

4sλ2

∫ T

−T

∫
Ω

θ|∇ψ.∇w|2 dxdt+ 4sλ Re
∫ T

−T

∫
Ω

θD2ψ(∇w,∇w) dxdt

+ 4s3λ4β4

∫ T

−T

∫
Ω

θ3|w|2 dxdt+
∫ T

−T

∫
Ω

|P1w|2 + |P2w|2 dxdt

≤ 2 |X1|+ 2
∫ T

−T

∫
Ω

|Pw|2 dxdt+ 2
∫ T

−T

∫
Ω

q2|w|2 dxdt

+ 2sλ
∫ T

−T

∫
∂Ω

θ

∣∣∣∣∂w∂ν
∣∣∣∣2∇ψ.ν dσdt.
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Hence, it is clear that if we take λ > Λ2 and s > s0 large enough, then∫ T

−T

∫
Ω

q2|w|2 dxdt and all the terms of X1 will be absorbed by the two dominat-

ing terms of the left hand side. Then, we see there exists M1 > 0 depending on
Ω, T,m, β,Λ2, s0 and independant of s and λ such that

sλ2

∫ T

−T

∫
Ω

θ|∇ψ.∇w|2 dxdt+ sλ Re

∫ T

−T

∫
Ω

θD2ψ(∇w,∇w) dxdt

+ s3λ4

∫ T

−T

∫
Ω

θ3|w|2 dxdt+
∫ T

−T

∫
Ω

(|P1w|2 + |P2w|2) dxdt

≤ M1

∫ T

−T

∫
Ω

|Pw|2 dxdt+M1 sλ

∫ T

−T

∫
∂Ω

θ

∣∣∣∣∂w∂ν
∣∣∣∣2∇ψ.ν dσdt.

At this step, applying condition (5) on ψ, we obtain that ∀ λ > Λ0, where Λ0 =
max(Λ2,Λ1),

ε sλ

∫ T

−T

∫
Ω

θ|∇w|2 dxdt+ s3λ4β4

∫ T

−T

∫
Ω

θ3|w|2 dxdt

+
∫ T

−T

∫
Ω

|P1w|2 dxdt+
∫ T

−T

∫
Ω

|P2w|2 dxdt

≤ M1

∫ T

−T

∫
Ω

|Pw|2 dxdt+M1 sλ

∫ T

−T

∫
∂Ω

θ

∣∣∣∣∂w∂ν
∣∣∣∣2∇ψ.ν dσdt.

Let us remark that θ > 0 on (−T, T ) × Ω and ∇ψ.ν < 0 on ∂Ω \ Γ0. Then, by
modifying the constant M1 into M2 = M2(Ω, T,m, β, ε,Λ0, s0) > 0 we obtain :

sλ

∫ T

−T

∫
Ω

|∇w|2 dxdt+ s3λ4

∫ T

−T

∫
Ω

|w|2 dxdt

+
∫ T

−T

∫
Ω

(|P1w|2 + |P2w|2) dxdt

≤M2

∫ T

−T

∫
Ω

|Pw|2 dxdt+M2 sλ

∫ T

−T

∫
Γ0

θ

∣∣∣∣∂w∂ν
∣∣∣∣2∇ψ.ν dσdt.

We can now rewrite our inequality with v instead of w. We have

|v|2e−2sϕ = |w|2,
e−2sϕ|∇v|2 = |∇w + s∇ϕw|2 ≤ 2|∇w|2 + 2s2|∇ϕ|2|w|2,∣∣∣∣∂v∂ν

∣∣∣∣2 e−2sϕ =
∣∣∣∣∂w∂ν

∣∣∣∣2 on ∂Ω,

Pw = e−sϕL(v),

and defining

P̃1v = esϕP1w, (8)
P̃2v = esϕP2w, (9)

11



we finally show (7) : ∃M = M(Ω, T,Γ0, β, ε,m,Λ0, s0) such that ∀ s > s0, ∀ λ >
Λ0,

sλ

∫ T

−T

∫
Ω

|∇v|2e−2sϕ dxdt+ s3λ4

∫ T

−T

∫
Ω

|v|2e−2sϕ dxdt

+
∫ T

−T

∫
Ω

(
|P̃1v|2 + |P̃2v|2

)
e−2sϕ dxdt

≤ M

∫ T

−T

∫
Ω

|Lv|2e−2sϕ dxdt+Msλ

∫ T

−T

∫
Γ0

θ

∣∣∣∣∂v∂ν
∣∣∣∣2 e−2sϕ∇ψ.ν dσdt.

Hence the end of the proof of Proposition 3. �

Remark : Under the conditions upon ψ, we can notice that θe−2sϕ and ∇ψ.ν are
bounded on (−T, T )× Γ0 and replace∫ T

−T

∫
Γ0

θ

∣∣∣∣∂v∂ν
∣∣∣∣2 e−2sϕ∇ψ.ν dσdt by C

∫ T

−T

∫
Γ0

∣∣∣∣∂v∂ν
∣∣∣∣2 dσdt

We knew, from counter-examples that a geometrical condition was necessary and
the choice of Γ0 given in (6) is very usual. Indeed, E. MACHTYNGIER [9], R. TRIG-
GIANI, P.- F. YAO and I. LASIECKA in references [8], [11] and [12] used that kind of
open set of the boundary. In [9], E. MACHTYNGIER shows an observability inequal-
ity which estimates initial data by boundary Neumann data for a Schrödinger equation
without a potential on Γ0 = {x ∈ ∂Ω; (x− x0).ν(x) ≥ 0} using a multiplier identity
and Holmgren’s uniqueness theorem. Moreover, observability inequalities are techni-
cally related to our inverse problem (see [13] and section 6). The reference [11] is
based on Carleman estimates, that R. TRIGGIANI proved for a more general kind of
coupled Schrödinger equation and applied it to exact controllability. However, both of
them are not directly applicable to obtain the result we are expecting.

3 Stability in the linear case
We first consider the linear inverse problem and give the following result.

Theorem 4. Let q ∈ L∞(Ω) and u be a solution of equation (2).
We assume that

Γ0 satisfies (6),

R ∈W 1,2(0, T, L∞(Ω)),

R(0) is real valued and |R(x, 0)| ≥ r0 > 0, ae in Ω.

There exists a constant C = C(Ω, T, ‖q‖L∞(Ω), R) > 0 such that if

∂u

∂ν
∈ H1(0, T ;L2(Γ0)),

12



then,

‖f‖L2(Ω) ≤ C

∥∥∥∥∂u∂ν
∥∥∥∥
H1(0,T ;L2(Γ0))

. (10)

Proof :
As we need to estimate

∂u

∂ν
in H1(0, T ;L2(Γ0)) norm, we work on the equation satis-

fied by v = u′ : iv′(x, t) + ∆v(x, t) + q(x)v(x, t) = f(x)R′(x, t), x ∈ Ω, t ∈ (0, T )
v(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T )
v(x, 0) = −if(x)R(x, 0), x ∈ Ω

(11)

The Carleman inequality we just obtained is the key of the proof. We extend the
function v on Ω × (−T, T ) by the formula v(x, t) = −v(x,−t) for every (x, t) ∈

Ω × (−T, 0). Since R(0) and f are real valued, v ∈ C([−T, T ];H1
0 (Ω)) and

∂v

∂ν
∈

L2((−T, T ) × Γ). We also extend R on Ω × (−T, T ) by the formula R(x, t) =
R(x,−t) for every (x, t) ∈ Ω × (−T, 0) and if we denote the extention of R′ by the
same notation, then R′ ∈ L2(−T, T ;W 1,∞(Ω)). Thus, v satisfies the same equation
(11), set in (−T, T ).

We set w = e−sϕv, P1w = iw′ + ∆w + s2|∇ϕ|2w and e−sϕP̃1v = P1w as in
section 2 and we define :

I = Im

∫ 0

−T

∫
Ω

P̃1v e
−2sϕv dxdt.

On the one hand,

I = Im

∫ 0

−T

∫
Ω

P1ww dxdt

= Im

∫ 0

−T

∫
Ω

(
iw′ + ∆w + s2|∇ϕ|2w

)
w dxdt

= Re

∫ 0

−T

∫
Ω

w′w dxdt− Im

∫ 0

−T

∫
Ω

(
|∇w|2 − s2|∇ϕ|2|w|2

)
dxdt

=
1
2

∫ 0

−T

∫
Ω

(
|w|2

)′
dxdt

=
1
2

∫
Ω

|w(x, 0)|2 dx

=
1
2

∫
Ω

|f(x)|2|R(x, 0)|2e−2sϕ(x,0) dx

On the other hand, Cauchy-Schwarz inequality and Carleman estimate stated as in

13



Proposition 3 in section 2, give :

I ≤

(∫ T

−T

∫
Ω

|P̃1v|2e−2sϕ dxdt

) 1
2
(∫ T

−T

∫
Ω

|v|2e−2sϕ dxdt

) 1
2

≤ s−
3
2

(
M

∫ T

−T

∫
Ω

|fR′|2e−2sϕ dxdt+Ms

∫ T

−T

∫
Γ0

θ

∣∣∣∣∂v∂ν
∣∣∣∣2 e−2sϕ∇ψ.ν dσdt

)

Then, ϕ(x, t) =
α− eλψ(x)

(T − t)(T + t)
is such that e−2sϕ(x,t) ≤ e−2sϕ(x,0) for all x ∈ Ω

and t ∈ (−T, T ) and it is easy to see that under the conditions satisfied by ψ, θe−2sϕ

and ∇ψ.ν are bounded on (−T, T )× Γ0. Therefore

I ≤ s−
3
2

(
M

∫ T

−T

∫
Ω

|fR′|2e−2sϕ(x,0) dxdt+Ms

∫ T

−T

∫
Γ0

∣∣∣∣∂v∂ν
∣∣∣∣2 dσdt

)
.

Moreover, using the definition of the extensions of v and R′, we easily get

I ≤ s−
3
2

(
M

∫ T

0

∫
Ω

|fR′|2e−2sϕ(x,0) dxdt+Ms

∫ T

0

∫
Γ0

∣∣∣∣∂v∂ν
∣∣∣∣2 dσdt

)
.

From R ∈W 1,2(0, T, L∞(Ω)) and |R(x, 0)| ≥ r0 > 0 ae in Ω, we deduce that :

∃ g0 ∈ L2(0, T ), |R′(x, t)| ≤ g0(t)|R(x, 0)|, ∀x ∈ Ω, t ∈ (0, T ).

Hence we have :∫
Ω

|f |2|R(0)|2e−2sϕ(0) dx ≤ Ms−
3
2

∫ T

0

∫
Ω

|f |2|g0|2|R(0)|2e−2sϕ(0) dxdt

+ Ms−
1
2

∫ T

0

∫
Γ0

∣∣∣∣∂v∂ν
∣∣∣∣2 dσdt.

But g0 ∈ L2(0, T ) ⇒
∫ T
0
|g0(t)|2 dt ≤ K < +∞ and so we write[∫

Ω

|f(x)|2|R(x, 0)|2e−2sϕ(x,0) dx

](
1− MK

s
3
2

)
≤Ms−

1
2

∫ T

0

∫
Γ0

∣∣∣∣∂v∂ν
∣∣∣∣2 dσdt.

Then, if s is large enough, (s > (MK)
2
3 ), we see that there exist a constant C =

C(M, s) > 0 such that :∫
Ω

|f(x)|2|R(x, 0)|2e−2sϕ(x,0) dx ≤ C

∫ T

0

∫
Γ0

∣∣∣∣∂v∂ν
∣∣∣∣2 dσdt.

Since |R(x, 0)| ≥ r0 > 0, ae in Ω and e−2sϕ(x,0) ≥ e−2sα−1
T2 > 0, ∀x ∈ Ω, we

obtain ∫
Ω

|f(x)|2 dx ≤ C

∫ T

0

∫
Γ0

∣∣∣∣∂v∂ν
∣∣∣∣2 dσdt,
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and it is (10) :

‖f‖L2(Ω) ≤ C

∥∥∥∥∂u∂ν
∥∥∥∥
H1(0,T ;L2(Γ0))

.

Therefore, Theorem 4 has been proved. �

Remark : if we replace the assumption “R(0) is real valued ” by the following
“R(0) takes its values in iR” , using the same idea, but with a different extension of v
and R, we will be able to prove the same result.

Corollary 5. Let u be the solution of equation (2) and Γ0 given by (6).
We assume :

q ∈ L∞(Ω), R ∈W 1,2(0, T,W 1,∞(Ω)),

R(0) is real valued and |R(x, 0)| ≥ r0 > 0 ae in Ω.

Then, there exists a constant C = C(Ω, T, ‖q‖L∞(Ω), R) > 0 such that for all f ∈
H1

0 (Ω) :

C−1‖f‖L2(Ω) ≤
∥∥∥∥∂u∂ν

∥∥∥∥
H1(0,T ;L2(Γ0))

≤ C‖f‖H1
0 (Ω). (12)

The proof will be given in the following section.

Remark : It follows from Theorem 4 that(
∂u

∂ν
= 0 on (0, T )× Γ0

)
⇒ (f = 0 on Ω)

and it corresponds to the uniqueness result, for the linear case, proposed in section
1. In the non linear situation, we easily show uniqueness by choosing f = q − p,
u = y(p)− y(q) and R = y(p) on Ω× (0, T ).
This result can be writen in the following way :

Theorem 6. Let p ∈ L∞(Ω) and q ∈ L∞(Ω). We assume that y(p) or y(q) belongs
to W 1,2(0, T,W 1,∞(Ω)), y0 is real valued and |y0(x)| ≥ r0 > 0 almost everywhere
in Ω.

If
∂y(q)
∂ν

=
∂y(p)
∂ν

on (0, T )× Γ0, then q = p on Ω.

4 Existence and regularity properties
The estimates we will need to prove Corollary 5 can be summed up by the following
lemmas.

Lemma 7. Let us consider iy′(x, t) + ∆y(x, t) + q(x)y(x, t) = g(x, t), x ∈ Ω, t ∈ (0, T )
y(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T )
y(x, 0) = y0(x), x ∈ Ω

(13)
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where q ∈ L∞(Ω), y0 ∈ H1
0 (Ω) and g ∈ X , with X = L1(0, T,H1

0 (Ω)) or X =
W 1,1(0, T, L2(Ω)). This equation admits a unique weak solution
y ∈ C([0, T ],H1

0 (Ω)) such that the mapping (g, y0) → ∂y
∂ν is linear and continuous

from X ×H1
0 (Ω) to L2(Γ× (0, T )) and ∃ C = C(Ω, T, ‖q‖L∞(Ω)) > 0 such that :

∀ t ∈ (0, T ), ‖y(t)‖H1
0 (Ω) ≤ C

(
‖y0‖H1

0 (Ω) + ‖g‖X
)

(14)∥∥∥∥∂y∂ν
∥∥∥∥
L2(Γ×(0,T ))

≤ C
(
‖y0‖H1

0 (Ω) + ‖g‖X
)

(15)

Proof :
Concerning estimate (14), we can refer to [3]. It is a classical result which can be for-
mally obtained by two manipulations using Gronwall inequality. In a first time we have

to work on “Im
∫

Ω

(13).y dx” and show that if y0 ∈ L2(Ω) and g ∈ L1(0, T, L2(Ω))

then (13) admits a unique solution y ∈ C([0, T ], L2(Ω)) such that ∀ t ∈ (0, T ),

‖y(t)‖L2(Ω) ≤ C
(
‖y0‖L2(Ω) + ‖g‖L1(0,T,L2(Ω))

)
.

Then, in a second time, working on “Re
∫

Ω

(13).y′ dx”, we manage to obtain (14) in

both of the two cases for space X .

Estimate (15) can be deduced from this other result :

Lemma 8. Let γ = γ(x, t) ∈ C2(Ω× (0, T ),Rn). Under the same hypothesis as in
the preceding lemma, the following multipliers identity holds for every weak solution
of (13) with initial data y0 ∈ H1

0 (Ω) and g ∈ X :∫ T

0

∫
Γ

γ.ν|∂y
∂ν
|2 dσdt = Im

∫
Ω

yγ.∇y dx
∣∣∣T
0

+Re
∫ T

0

∫
Ω

y∇(divγ).∇y dxdt+ 2Re
∫ T

0

∫
Ω

n∑
i,j=1

∂γj
∂xi

∂y

∂xi

∂y

∂xj
dxdt

−2Re
∫ T

0

∫
Ω

qyγ.∇y dxdt−Re

∫ T

0

∫
Ω

q|y|2 divγ dxdt

+2Re
∫ T

0

∫
Ω

gγ.∇y dxdt+Re

∫ T

0

∫
Ω

gy divγ dxdt.

We first obtain this identity for very regular data g ∈ W 1,1(0, T,D(Ω)) and y0 ∈
D(Ω) by calculating

′′ Re

∫ T

0

∫
Ω

(13).(γ.∇y +
1
2
y divγ) dxdt ′′.

and the result holds by integration by parts. At this step, reference [9] gives a similar
result for the Schrödinger equation without potential. Then, by density, the estimate
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holds true for every solution of (13) with initial data y0 ∈ H1
0 (Ω) and g ∈ X .

We finally choose γ = γ(x) ∈ C2(Ω× (0, T ),Rn) such that γ = ν on the C2-
boundary ∂Ω. Then γ.ν = 1 on (0, T ) × ∂Ω and applying estimate (14) with Lemma
8, we manage to obtain estimate (15). �

Proof of Corollary 5 :
Since f ∈ H1

0 (Ω) and R ∈ W 1,2(0, T,W 1,∞(Ω)), we have fR′ ∈ L1(0, T,H1
0 (Ω))

and fR(0) ∈ H1
0 (Ω). Thereafter, we know that equation (11) has a solution v ∈

C([0, T ];H1
0 (Ω)) and it also implies

∂v

∂ν
∈ L2((0, T ) × Γ). Of course, the left in-

equality in (12) derives from Theorem 4. Besides, from Lemma 7 :∥∥∥∥∂v∂ν
∥∥∥∥
L2((0,T )×Γ0)

≤
∥∥∥∥∂v∂ν

∥∥∥∥
L2((0,T )×∂Ω)

≤ C
(
‖fR(0)‖H1

0 (Ω) + ‖fR′‖L1(0,T,H1
0 (Ω))

)
≤ C‖f‖H1

0 (Ω)

This proves the right hand side of inequality (12) and the proof of Corollary 5 is com-
plete. �

5 Proof of Theorem 1 and Corollary 2
We would like first to give a meaning to equation (1) we are studying.

Lemma 9. Let q ∈ L∞(Ω), y0 ∈ L2(Ω) and h ∈ L2(∂Ω× (0, T )). Then, there exists
a unique solution

y ∈ C([0, T ],H−1(Ω)) ∩H−1(0, T, L2(Ω)),

defined by transposition, of the problem (1) : iy′(x, t) + ∆y(x, t) + q(x)y(x, t) = 0, x ∈ Ω, t ∈ (0, T )
y(x, t) = h(x, t), x ∈ ∂Ω, t ∈ (0, T )
y(x, 0) = y0(x), x ∈ Ω.

Proof :
We define the adjoint system iϕ′ + ∆ϕ+ qϕ = g, in Ω× (0, T )

ϕ = 0, on ∂Ω× (0, T )
ϕ(T ) = 0, in Ω

It is well-known that we have the following regularity properties about this Schrödinger
equation :
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a) If g ∈ L1(0, T,H1
0 (Ω)) then ϕ ∈ C([0, T ],H1

0 (Ω)) and
∂ϕ

∂ν
∈ L2(Γ × (0, T ))

(Lemma 7).

b) If g ∈ H1
0 (0, T, L2(Ω)) ↪→ W 1,1(0, T, L2(Ω)) then ϕ ∈ C([0, T ],H2(Ω)) and

∂ϕ

∂ν
∈ C([0, T ],H

1
2 (∂Ω)).

Indeed, we first have ϕ ∈ C([0, T ], L2(Ω)). The study of the equation satisfied by ϕ′

gives ϕ ∈ C1([0, T ], L2(Ω)) and that leads to ∆ϕ = g−qϕ−iϕ′ ∈ C([0, T ], L2(Ω)).
Then ϕ ∈ C([0, T ],H2(Ω)) and its normal derivative is in C([0, T ],H

1
2 (∂Ω)).

We say that y is a solution of (1) in the transposition sense if and only if it is
possible, for every g, to give a meaning to∫ T

0

∫
Ω

gy dxdt = i

∫
Ω

y0ϕ(0) dx+
∫ T

0

∫
∂Ω

h
∂ϕ

∂ν
dσdt.

We take g ∈ D(0, T,D(Ω)). By density in L1(0, T,H1
0 (Ω)) and H1

0 (0, T, L2(Ω))
we are able to define y ∈ L∞(0, T,H−1(Ω)) ∩H−1(0, T, L2(Ω)) with q ∈ L∞(Ω),
y0 ∈ L2(Ω) and h ∈ L2(∂Ω× (0, T )).

We refer to [9] for the transposition method concerning the Schrödinger equation
and the way to prove that we finally obtain y ∈ C([0, T ],H−1(Ω))∩H−1(0, T, L2(Ω)).
Nevertheless, we would like to underline that the important point here is that we have
a potential q ∈ L∞(Ω) and we have to give a meaning to qy (indeed, we proved that
qy ∈ H−1(0, T ;L2(Ω)), since y ∈ H−1(0, T ;L2(Ω))). Let us also notice that the

regularity we obtain in y implies
∂y

∂ν
∈ H−2(0, T ;H− 3

2 (Γ)). �

Thereafter, we define u = y(p)− y(q), which verifies : iu′ + ∆u+ pu = (q − p)y(q), in Ω× (0, T )
u = 0, on ∂Ω× (0, T )
u(0) = 0, in Ω.

(16)

The key of our proof is that in the linear case, all the constants depend on the L∞ norm
of the potential. Then, since p ∈ U , where U is bounded in L∞, we are in fact, with
(16) in a situation similar to the linear case (2).

Proof of Theorem 1 :
We have y(q) ∈W 1,2(0, T, L∞(Ω)) and we know that

W 1,2(0, T, L∞(Ω)) ⊂ C([0, T ],W 1,∞(Ω))

then we have y(x, 0) = y0 ∈ L∞(Ω). Thus, hypothesis |y0(x)| ≥ r0 > 0, ae in Ω
makes sense and we can apply the result of Theorem 4, which leads to :

‖q − p‖L2(Ω) ≤ C

∥∥∥∥∂u∂ν
∥∥∥∥
H1(0,T ;L2(Γ0))

.
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And the proof of Theorem 1 is complete. �

Proof of Corollary 2 :
We assume that y(q) ∈W 1,2(0, T,W 1,∞(Ω)) and q−p ∈ H1

0 (Ω). Then, it comes (q−
p)y(q) ∈W 1,2(0, T,H1

0 (Ω)) and there exists a unique solution u ∈ C([0, T ],H1
0 (Ω))

to (16).

We are in the same situation as in the linear case (2) and we can apply the result of
Corollary 5 which leads to :

C−1‖q − p‖L2(Ω) ≤
∥∥∥∥∂u∂ν

∥∥∥∥
H1(0,T ;L2(Γ0))

≤ C‖q − p‖H1
0 (Ω).

It means that there exists a constant C = C(Ω, T,Γ0, ‖q‖L∞ , y0, h,U) > 0 such
that for all p ∈ U satisfying q − p ∈ H1

0 (Ω),

C−1‖q − p‖L2(Ω) ≤
∥∥∥∥∂y(q)∂ν

− ∂y(p)
∂ν

∥∥∥∥
H1(0,T ;L2(Γ0))

≤ C‖q − p‖H1
0 (Ω),

and the proof is complete. �

Remark : The importance of Carleman estimate being global has to be underlined.
It is also well shown, in reference [6], how a global Carleman estimate leads really
faster to a conclusion in a non linear situation for the wave equation. We can refer
to [13] for a situation using only a local estimate with a weaker result. Indeed, to
prove a stability inequality in a non linear situation from the knowledge of the linear
case, an observability inequality and a compactness-uniqueness argument are required.
However, to improve our results, we will precisely use an observability estimate.

6 Improvement of the symetry of the two-sided esti-
mates

It is known that for the wave equation, a symetric two sided estimate can be shown, for
instance in [13]. The result obtained for the Schrödinger equation in Corollary 2 is not
symetric in terms of the norms of (p− q). We will here improve the result of Theorem
1 under slightly stronger regularity hypothesis on y(q).

Proposition 10 (Observability Estimate). We assume q ∈ L∞, z0 ∈ H1
0 (Ω) and Γ0 is

given by (6). If z is the weak solution of iz′(x, t) + ∆z(x, t) + q(x)z(x, t) = 0, x ∈ Ω, t ∈ (0, T )
z(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T )
z(x, 0) = z0(x), x ∈ Ω

(17)

then, there exists a constant C = C(Ω, T,Γ0, ‖q‖L∞) > 0 such that

‖z0‖H1
0 (Ω) ≤ C

∥∥∥∥∂z∂ν
∥∥∥∥
L2(0,T ;L2(Γ0))

. (18)
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Proof :
It is a well-known consequence of the Carleman estimate (Proposition 3).
Let 0 < T0 < T1 < T . First of all, since all the needed conditions are satisfied (from
Lemma 7), we can apply Proposition 3 to the weak solution z of (17).

Remark : Some changes are made. We work on [0, T ] and with

θ(x, t) =
eλψ(x)

T (T − t)
, ϕ(x, t) =

α− eλψ(x)

T (T − t)
.

Then we have :∫ T

0

∫
Ω

|∇z|2e−2sϕ dxdt+ s2λ3

∫ T

0

∫
Ω

|z|2e−2sϕ dxdt ≤M

∫ T

0

∫
Γ0

∣∣∣∣∂z∂ν
∣∣∣∣2 dσdt

and since e−2sϕ ≥ c > 0 on [T0, T1]× Ω, it means that :

‖z‖L2(T0,T1;H1
0 (Ω)) ≤ C

∥∥∥∥∂z∂ν
∥∥∥∥
L2((0,T )×Γ0)

Let χ ∈ C∞(0, T ) be a function such that 0 ≤ χ(t) ≤ 1, ∀t ∈ [0, T ], χ = 1 on
[0, T0] and χ = 0 on [T1, T ]. Then, χ′ = 0 on [0, T0] ∪ [T1, T ] and we obtain

‖χ′z‖L2(0,T ;H1
0 (Ω)) ≤ C

∥∥∥∥∂z∂ν
∥∥∥∥
L2((0,T )×Γ0)

with C = C(χ). Moreover, w = χz satisfies : iw′ + ∆w + qw = iχ′z, in Ω× (0, T )
w = 0, on ∂Ω× (0, T )
w(T ) = 0, in Ω.

Then, applying again Lemma 7 and since χ′z ∈ L2(0, T ;H1
0 (Ω)), we have

‖w(t)‖H1
0 (Ω) ≤ C ‖χ′z‖L2(0,T ;H1

0 (Ω)), ∀ t ∈ [0, T ].

Therefore, with t = 0 and recalling that w(0) = z0, we obtain :

‖z0‖H1
0 (Ω) ≤ C ‖χ′z‖L2(0,T ;H1

0 (Ω)) ≤ C

∥∥∥∥∂z∂ν
∥∥∥∥
L2((0,T )×Γ0)

,

what proves the inverse inequality (18). �

Thereafter, we manage to obtain better stability results about our inverse problem.
The main idea is to use this observability estimate and the price to pay is to assume
more regularity on the given function R and to obtain a result with non explicit con-
stants that we had till now.
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Theorem 11. Let q ∈ L∞(Ω) and u be a solution of equation (2).
Assume that

Γ0 satisfies (6),

R ∈W 1,2(0, T,W 1,∞(Ω)) ∩W 2,1(0, T ;L∞(Ω)),

R(0) is real valued and |R(x, 0)| ≥ r0 > 0, ae in Ω.

Then, there exists a constant C = C(Ω, T,Γ0, ‖q‖L∞(Ω), R) > 0 such that for all
f ∈ H1

0 (Ω),

C−1 ‖f‖H1
0 (Ω) ≤

∥∥∥∥∂u∂ν
∥∥∥∥
H1(0,T ;L2(Γ0))

≤ C ‖f‖H1
0 (Ω). (19)

Proof :
We work on equation (11), satisfied by v = u′ : iv′(x, t) + ∆v(x, t) + q(x)v(x, t) = f(x)R′(x, t), x ∈ Ω, t ∈ (0, T )

v(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T )
v(x, 0) = −if(x)R(x, 0), x ∈ Ω

We introduce :  iz′ + ∆z + qz = 0, in Ω× (0, T )
z = 0, on ∂Ω× (0, T )
z(0) = −ifR(0), in Ω

and  iϕ′ + ∆ϕ+ qϕ = fR′, in Ω× (0, T )
ϕ = 0, on ∂Ω× (0, T )
ϕ(0) = 0, in Ω.

Then,
v(x, t) = z(x, t) + ϕ(x, t), x ∈ Ω, t ∈ (0, T ).

On the one hand, as we have R ∈ W 2,1(0, T, L∞(Ω)) and because of Lemma 7, we
can write : ∥∥∥∥∂ϕ∂ν

∥∥∥∥
L2((0,T )×Γ0)

≤ C ‖fR′‖W 1,1(0,T ;L2(Ω)) ≤ C ‖f‖L2(Ω).

On the other hand, since R ∈W 1,2(0, T,W 1,∞(Ω)) the observability inequality gives

‖fR(0)‖H1
0 (Ω) ≤ C

∥∥∥∥∂z∂ν
∥∥∥∥
L2((0,T )×Γ0)

.

Moreover, we have to notice that if R(0) ∈ W 1,∞(Ω) and |R(x, 0)| ≥ r0 > 0, then
1

R(0)
∈W 1,∞(Ω) and it yields

‖f‖H1
0 (Ω) ≤ C‖fR(0)‖H1

0 (Ω).
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We finally obtain :

‖f‖H1
0 (Ω) ≤ C

∥∥∥∥∂v∂ν
∥∥∥∥
L2((0,T )×Γ0)

+ C ‖f‖L2(Ω).

Then, writting this estimate with u and applying Theorem 4 to take away the term
‖f‖L2(Ω), we obtain the left hand side of (19).
To conclude, we can directly apply Lemma 7 to (11) since f ∈ H1

0 (Ω) and R ∈
W 1,2(0, T,W 1,∞(Ω)). We then obtain :∥∥∥∥∂v∂ν

∥∥∥∥
L2(0,T ;L2(Γ0))

≤ C‖fR(0)‖H1
0 (Ω) + C‖fR′‖L1(0,T ;H1

0 (Ω))

≤ C ‖f‖H1
0 (Ω).

Since v = u′, we actually know there exists a strictly positive constant C depending
on Ω, T,Γ0, ‖q‖L∞(Ω) and R such that

C−1‖f‖H1
0 (Ω) ≤

∥∥∥∥∂u∂ν
∥∥∥∥
H1(0,T ;L2(Γ0))

≤ C‖f‖H1
0 (Ω)

and the proof of Theorem 11 is complete. �

As for the proof of Theorem 1 and Corollary 2 in Section 5, we can derive from
Theorem 11 the following one.

Theorem 12. Let U be a bounded subset of L∞(Ω) and q ∈ L∞(Ω). Assume that

Γ0 satisfies (6),

y(q) ∈W 1,2(0, T,W 1,∞(Ω)) ∩W 2,1(0, T, L∞(Ω)),

y0 is real valued and |y0| ≥ r0 > 0, ae in Ω.

Then, there exists a constant C = C(Ω, T,Γ0, ‖q‖L∞ , y0, h,U) > 0 such that ∀ p ∈
U verifying q − p ∈ H1

0 (Ω),

C−1 ‖p− q‖H1
0 (Ω) ≤

∥∥∥∥∂y(q)∂ν
− ∂y(p)

∂ν

∥∥∥∥
H1(0,T ;L2(Γ0))

≤ C ‖p− q‖H1
0 (Ω).
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