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Abstract

The correlation structure of some remarkable point processes on the one-
dimensional real line is investigated. More specifically, focus is on translation
invariant determinantal, permanental and/or renewal point processes. In some
cases, anomalous (non-Poissonian) fluctuations for the number of points in a
large window can be observed. This may be read from the total correlation
function of the point process. We try to understand when and why this occurs
and what are the anomalous behaviors to be expected.

From examples, it is shown that determinantal (fermion) point processes
can be super-homogeneous (the number variance grows slower than the number
mean) and even hyper-uniform (when variance growth saturates).

Renewal point processes with bounded spacings variance are essentially
Poissonian (the number variance grows like the number mean as in Poisson
models).

Under certain conditions, permanental (boson) point processes can be sub-
homogeneous or critical (in the sense that the number variance grows faster
than the number mean).

We give several detailed examples illustrating these properties of interest
together with unexpected behaviors.

KEYWORDS: Random systems, determinantal, permanental and renewal
point processes on the line, correlation functions, sub- and super-homogeneous
point processes, anomalous fluctuations.

1 Introduction

In this note, we investigate the correlation structure of some peculiar point pro-
cesses on the one-dimensional real line. We shall more precisely focus attention on
translation invariant determinantal, permanental and/or renewal random point pro-
cesses.

For ‘essentially Poissonian’ point processes, the number of points variance within
a window grows like the number mean, as the size of the window grows large. This
is typical of Poisson interaction-free gas which are ubiquitous in Nature.

In some cases of interest, anomalous (non-Poissonian) fluctuations for the random
number of points in a large window arise. We try to understand when and why this
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occurs and what are the various anomalous behaviors to be expected. As will become
apparent from the body of the text, these issues have recently been the source of
considerable interest in the Physics literature.

It turns out that point processes can be ‘super-homogeneous’ (in that the number
variance grows slower than the number mean) and even ‘hyper-uniform’ (when vari-
ance growth saturates). This expresses some degree of regularity of the model under
study; ultimately, points could display a regularity close to the one of the standard
lattice.

On the opposite, point processes can be ‘sub-homogeneous’ or critical (in the
sense that the number variance grows faster than the number mean). Such point
processes will exhibit large disorder.

The total correlation function of these random point processes may then be read
from the number of points variance within a window. Anomalous fluctuations lead to
anomalous correlations in that the structure factor exhibit unconventional behavior
in a neighborhood of wave-length zero. We shall discuss this point and quantify these
allegations.

From examples, it is shown that long-range determinantal (or fermion) point
processes can be super-homogeneous and even hyper-uniform. Renewal point pro-
cesses with bounded spacings variance and nearest-neighbor interactions are essen-
tially Poissonian. Under certain conditions, permanental (boson) point processes can
be sub-homogeneous or critical. We shall give an example.

After a brief introduction on random point processes with infinitely many parti-
cles on the line, we supply several detailed examples illustrating these properties of
interest and we exhibit some of their unexpected behaviors.

2 Generalities on random point processes (PP)

To fix the background and notations, we start with generalities on random point
processes.

2.1 PP with a finite number of particles

Given a system with N indistinguishable particles, let XN := (Xn;n = 1, .., N)
denote their random position in RN . Assume that the probability density function
(pdf) uN (xN ) of their joint positions at point xN := (x1, .., xN ) of RN exists. Under
our assumption, uN (xN ) is a symmetric (or exchangeable) function of its arguments.
We shall also need to introduce vN

(
x(N)

)
:= N ! · uN

(
x(N)

)
which is the joint pdf

of X(N) :=
(
X(n);n = 1, .., N

)
at point x(N), where X(1) ≤ .. ≤ X(N) is the ordered

version of XN . With n < N , let uN (xn) :=
∫

RN−n uN (xn;xn+1, .., xN ) dxn+1..dxN
stand for the n−point marginal density of Xn. Let ρn,N (xn) := N !

(N−n)!uN (xn) ≥ 0
be the n−point correlation function (or points intensity) given that there are N par-
ticles in the system. It is the probability density that there are particles at point xn.
Clearly, ρn,N (xn) is also symmetric. With EN standing for the conditional expecta-
tion given N particles, φ : R → C some suitable test function, using exchangeability,
we get

EN

(
N∏
n=1

(1 + zφ (Xn))

)
=

N∑
n=0

zn
(
N

n

)
E

(
n∏

m=1

φ (Xm)

)
(1)
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=
N∑
n=0

zn
(
N

n

)∫
Rn

n∏
m=1

φ (xm)uN (xn) dxn

=
N∑
n=0

zn

n!

∫
Rn

n∏
m=1

φ (xm) ρn,N (xn) dxn

where integration is with respect to the product Lebesgue measure dxn := dx1..dxn
in Rn.

- If z = 1 and φ (x) = exp {iθϕ (x)} − 1, where θ is a real parameter, the latter
expansion reduces to

EN
(
eiθ

∑N
n=1 ϕ(Xn)

)
=

N∑
n=0

1
n!

∫
Rn

n∏
m=1

(
eiθϕ(Xm) − 1

)
ρn,N (xn) dxn,

which is the usual generating function of the additive particle functional ψ :=∑N
n=1 ϕ (Xn).

- Let B ⊆ R be a Borel set of R. Let φ (x) = 1 (x ∈ B), the indicator of x in B.
Then, with NN (B) :=

∑N
n=1 1 (Xn ∈ B), the number of points within B,

EN

(
N∏
n=1

(1 + zφ (Xn))

)
= EN

(
(1 + z)NN (B)

)
=

N∑
n=0

zn

n!

∫
Bn

ρn,N (xn) dxn. (2)

This shows that, with [NN (B)]n := NN (B)!
(NN (B)−n)! , the factorial moments of NN (B)

are given by:

E ([NN (B)]n) =
∫
Bn

ρn,N (xn) dxn. (3)

Clearly, if B = R, E ([NN (R)]n) =
∫

Rn ρn,N (xn) dxn = N !
(N−n)! < ∞ so that, as

required, NN (R) d∼ δN (the Dirac law at point N).

Remark: if the components of XN are independent and identically distributed
(iid), then uN (xN ) =

∏N
n=1 u1 (xn) and uN (xn) =

∏n
m=1 u1 (xm) does not depend

on N. We get EN
(
(1 + z)NN (B)

)
= {1 + zP (X1 ∈ B)}N so that NN (B) has bino-

mial bin(N,P (X1 ∈ B)) distribution. For rare sets B = BN for which P (X1 ∈ BN ) =
ρ/N , ρ > 0, NN (BN ) d→ Poisson(ρ) as N ↗∞. �

Examples:
• Let (ψi (x) ; i = 1, .., N) be N square-integrable real-valued functions satisfying

−∞ <
∫

R ψi (x)ψj (x) dx = ai,j < ∞, i, j = 1, .., N. Let AN = [ai,j ] be the square
N×N matrix with entries ai,j and assume A is not singular. With xN = (x1, .., xN ),
define the N ×N weight matrix WN (xN ) to be the symmetric matrix with m×m′

entry

WN (xN )m,m′ = WN (xm, xm′) =
N∑

i,j=1

ψi (xm)
(
A−1

)
i,j
ψj (xm′) , m,m′ = 1, .., N.
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Let |WN | stand for the determinant of the matrix WN . Let ΨN (xN ) be the N ×
N matrix with i × j−entry ΨN (xN )i,j = ψi (xj). Then, observing WN (xN ) =

ΨN (xN )
′
A−1ΨN (xN ) , |WN (xN )| =

∣∣A−1
∣∣ |ΨN (xN )|2 and

∫
RN |ΨN (xN )|2 dxN =

N ! |A|, we get that

uN (xN ) =
1
N !

|WN (xN )|

is a symmetric pdf on RN . Further,

ρn,N (xn) = |Wn,N (xn)|

where Wn,N (xn) is the n× n matrix with entries Wn,N (xN )m,m′ = Wn,N (xm, xm′)
and

Wn,N (xm, xm′) =
N∑

i,j=1

ψi (xm)
(
A−1

)
i,j
ψj (xm′) , m,m′ = 1, .., n.

Such point processes with determinantal correlation functions are called determinan-
tal with N particles.

If (ψi (x) ; i = 1, .., N) forms an orthonormal system,
∫

R ψi (x)ψj (x) dx = δi,j and

WN (xN )m,m′ = WN (xm, xm′) =
N∑
i=1

ψi (xm)ψi (xm′) , m,m′ = 1, .., N.

A familiar example arises from eigenvalues distribution in the GUE ensemble of
Random Matrix Theory. In this case, ψi (x) = Pi−1,N (x) e−x

2/2 where Pi−1,N (x);
i = 1, .., N are the N first orthonormal Hermite polynomials. The joint distribution
of the ordered eigenvalues is

vN
(
x(N)

)
=
∣∣WN

(
x(N)

)∣∣ = ∏
1≤m1<m2≤N

(
x(m2) − x(m1)

)2
e−

∑N
m=1 x

2
(m) .

It is of interest to ask whether the kernel WN has a proper limit when N ↗ ∞. It
does but it requires scaling. For instance, using asymptotic formulae for Hermite
polynomials, it may be shown that, with zN satisfying WN (zN , zN ) ∼

√
2N/π :

π√
2N

WN

(
zN +

πx(m)√
2N

, zN +
πx(m′)√

2N

)
→N↗∞ W (xm, xm′) =

sin
(
π
(
x(m′) − x(m)

))
π
(
x(m′) − x(m)

) ,

with a limiting sine kernel in the bulk of the spectrum as the number of ‘particles’
tends to infinity.

Similarly, by scaling around the largest eigenvalue,

1√
2N1/6

WN

(
2N +N1/3x(m)√

2N
,
2N +N1/3x(m′)√

2N

)
→ N↗∞W

(
x(m), x(m′)

)
= Ai (xm, xm′) ,

with a limiting Airy kernel Ai (., .) at the edge of the spectrum (see [TW]). In sharp
contrast to the previous limiting point process with a sine kernel, the limiting Airy
point process is not translation invariant. This suggests that random point processes
with infinitely many particles should be of interest. Before dealing with this point,
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let us first randomize the number of points in a PP with finitely many points.

Randomizing the number of points: Assume the number of points in the
system is now random, let us call it N . Assume N is finite almost surely (a.s.) and
that N has all its moments finite. Then

E

( N∏
N=1

(1 + zφ (XN ))

)
=
∑
N≥0

P (N = N) EN

(
N∏
n=1

(1 + zφ (Xn))

)

=
∑
N≥0

P (N = N)
N∑
n=0

zn

n!

∫
Rn

n∏
m=1

φ (xm) ρn,N (xn) dxn

=
∑
n≥0

zn

n!

∑
N≥n

∫
Rn

n∏
m=1

φ (xm) ρn (xn;N) dxn

where
ρn (xn;N) = P (N = N) ρn,N (xn) .

Thus,

E

( N∏
N=1

(1 + zφ (XN ))

)
=
∑
n≥0

zn

n!

∫
Rn

n∏
m=1

φ (xm) ρn (xn) dxn

where now
ρn (xn) :=

∑
N≥n

ρn (xn;N) .

The function ρn (xn) is called the n−point correlation function of (XN ; N = 1, ..,N ).
Clearly

ρn (xn) =
∑
N≥n

N !
(N − n)!

P (N = N)uN (xn) (4)

=
∑
N≥n

N !
(N − n)!

u (xn;N)

where

u (xn;N) = P (N = N)uN (xn) =
∫

RN−n

uN (xn;xn+1, .., xN ) dxn+1..dxN (5)

is the joint probability that there are N particles in the system and that the n first
one are located at points xn.

Let φ (x) = 1 (x ∈ R). Then

E
(
(1 + z)N

)
=
∑
n≥0

zn

n!

∫
Rn

ρn (xn) dxn

and, since these quantities exist

E ([N ]n) =
∫

Rn

ρn (xn) dxn =
∑
N≥n

N !
(N − n)!

P (N = N) <∞.
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Further,

E
(
vN
)

=
∑
n≥0

(v − 1)n

n!

∫
Rn

ρn (xn) dxn

=
∑
m≥0

vm

m!

∑
n≥m

(−1)n−m

(n−m)!

∫
Rn

ρn (xn) dxn

showing that

P (N = m) =
1
m!

∑
n≥m

(−1)n−m

(n−m)!

∫
Rn

ρn (xn) dxn.

2.2 PP with an infinite number of particles

Assume N := N (R) = ∞ with probability 1 so that the total number of points
is now infinite. Suppose however that, for each bounded subset B of R with finite
volume |B|, N (B) < ∞, a.s.. Then, the correlation functions at least need to be
symmetric, non-negative and locally integrable on each B.

Reproducing the previous steps locally, for each bounded subset B of R, each
bounded φ on B, if there is a maximal zc > 0 for which the finiteness condition∑

n≥0

(zc ‖φ‖∞)n

n!

∫
Bn

ρn (xn) dxn <∞,

is fulfilled, then, for all z ≤ zc :

E

N (B)∏
N=1

(1 + zφ (XN ))

 =
∑
n≥0

zn

n!

∫
Bn

n∏
m=1

φ (xm) ρn (xn) dxn

where

ρn (xn) =
∑
N≥n

N !
(N − n)!

P (N (B) = N)uN (xn)

=
∑
N≥n

N !
(N − n)!

∫
BN−n

uN (xn;xn+1, .., xN ) dxn+1..dxN .

The finiteness condition is fulfilled for instance if
∫
Bn ρn (xn) dxn < CnB , for some

constant CB > 0 only depending on B.

In slightly different words, with
(
xN ∈ BN

)
N≥1

, if x(N) =
(
x(1), .., x(N)

)
where

x(1) ≤ .. ≤ x(N) is the ordered version of xN within B,

ρn
(
x(n)

)
=
∑
N≥n

1
(N − n)!

∫
BN−n

vN
(
x(n);x(n+1), .., x(N)

)
dx(n+1)..dx(N) (6)

is now the probability density that there are particles at x(n) in B.
By inclusion-exclusion principle, this system can be inverted to give the distribu-

tion of X(n) within B as

vn
(
x(n)

)
=
∑
N≥n

(−1)N−n

(N − n)!

∫
BN−n

ρN
(
x(n);x(n+1), .., x(N)

)
dx(n+1)..dx(N). (7)
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Assuming B =
[
x(1), x(n)

]
vn
(
x(n)

)
=
∑
N≥n

(−1)N−n

(N − n)!

∫
[x(1),x(n)]N−n

ρN
(
x(n);x(n+1), .., x(N)

)
dx(n+1)..dx(N)

(8)
is the (Janossy) probability density that the m−th left-most particle is at x(m),
m = 1, .., n with no other particle in

[
x(1), x(n)

]
.

Remark: The PP with correlation function ρn
(
x(n)

)
is said to be translation in-

variant if, for each n ≥ 1, each x ∈ R : ρn
(
x(n)

)
= ρn

(
x(1) + x, x(2) + x, .., x(n) + x

)
.

For translation invariant systems, choosing x = −x(1) we have:

ρn
(
x(n)

)
= ρn

(
0, x(2) − x(1), .., x(n) − x(1)

)
.

In particular, ρ1

(
x(1)

)
= ρ (the density of points is constant),

ρ2

(
x(2)

)
= ρ2

(
x(2) − x(1)

)
=: ρ2g

(
x(2) − x(1)

)
, ....

For translation invariant PP, the effect of a Bernoulli thinning operation is sim-
ple: by thinning, we mean that each point of the translation invariant PP is erased
with probability p ∈ (0, 1) and left unchanged with probability 1− p, independently
for each point, the erosion process being independent of randomness entering into
the construction of the initial PP. Under these hypotheses, the correlations structure
of the thinned process are the same as the one of the original process at the only
exception that the original intensity of points ρ is changed into ρp. ♦

Counting: Assuming φ (x) =
∑k
l=1 zl · 1 (x ∈ Bl) where the Bl are disjoint

subsets of B, with N (Bl) =
∑N (B)
N=1 1 (XN ∈ Bl)

E

N (B)∏
N=1

(1 + zφ (XN ))

 = E

(
k∏
l=1

(1 + z · zl)N (Bl)

)

=
∑
n≥0

zn

n!

∑
n1+..+nk=n

k∏
l=1

znl

l

∫
B

n1
1 ×..×Bnk

k

ρn (xn) dxn,

showing that, for each n and k, each integers n1, .., nk such that n1 + ..+ nk = n

E

(
k∏
l=1

[N (Bl)]nl

)
=
∫
B

n1
1 ×..×Bnk

k

ρn (xn) dxn. (9)

In particular, if k = 1, E ([N (B)]n) =
∫
Bn ρn (xn) dxn and the variance σ2

B of N (B)
is

σ2
B =

∫
B

ρ1 (x1) dx1 −
∫
B2

(ρ1 (x1) ρ1 (x2)− ρ2 (x1, x2)) dx1dx2.
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Right-most particle in B: Assume z = −1 and φ (x) = 1 (x > x∗) with x∗ ∈ R.
Then

E

N (B)∏
N=1

(1 + zφ (XN ))

 = P
(
X(N (B)) ≤ x∗

)
,

where X(N (B)) is the right-most particle in B. The distribution of X(N (B)) is given
by

P
(
X(N (B)) ≤ x∗

)
=
∑
n≥0

(−1)n

n!

∫
[B∩(x∗,∞)]n

ρn (xn) dxn.

If for all x∗ ∈ R,
∑
n≥0

(−1)n

n!

∫
(x∗,∞)n ρn (xn) dxn < ∞, the PP is said to have a

right-most particle. If this is the case, the latter quantity is its distribution function.

3 Translation invariant examples

We now give translation invariant examples of interest.

3.1 Translation invariant determinantal (or fermion) point
processes

Construction, definitions and properties: With f (r) = f (−r) satisfying
0 < f (0) < ∞, let f (r) ∈ L2 (R) be a real positive-definite (or of positive type)
function, meaning: for all integer n, all real numbers xn := (xm,m = 1, .., n) and
all zn ∈ Cn : z′n ·W (xn) · zn ≥ 0. Here W (xn) := [f (xm − xm′)]n1 is the n × n
symmetric matrix whose m×m′ entry is W (xn)m,m′ = W (xm, xm′) = f (xm − xm′),
m,m′ ∈ {1, .., n} .

We shall also letW (x) := [f (xm − xm′)]∞1 , an infinite dimensional weight matrix.

If f is continuous, by Bochner theorem, positive-definiteness of f holds if f̂ (λ) :=∫
R e

−iλrf (r) dr (which is real) is non-negative for almost all λ. Note therefore that
f (r) = 1

2π

∫
R e

iλrf̂ (λ) dλ is the Fourier transform of the bounded positive spectral
density f̂ and |f (r) /f (0)| ≤ 1. For each compact set B ⊂ R, consider W as the op-
erator acting on L2 (B) with kernel W (xm, xm′) . Under our assumptions, by Mercer
theorem, W is locally trace class. Let (λk (B) ; k ≥ 0) be its corresponding eigen-
values. When B is an interval, λk (B) is also the k−th Fourier coefficient in the
series expansion of f (r) restricted to B. Then, the point process with determinantal
correlation functions

ρn (xn) = |W (xn)| , n ≥ 1 (10)

is well-defined and translation invariant, if and only if, for each B, each k, λk (B) ∈
[0, 1]. It is called a determinantal (or fermion) point process (for short DPP).
See [DVJ], page 142, [M] and [S]. If this condition is to be fulfilled, necessarily,
f̂ (λ) ∈ [0, 1] .

Let P be the permutation matrix which maps the indices of xn into the ones of
x(n) where now the x(m) are ordered on the real line. By considering instead the
novel congruent matrix P ′Wn (xn)P , we also get the correlation functions

ρn
(
x(n)

)
=
∣∣W (

x(n)

)∣∣ = ∣∣[f (x(m) − x(m′)

)]n
1

∣∣ , n ≥ 1.
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For instance, ρ1

(
x(1)

)
= f (0) =: ρ, ρ2

(
x(2)

)
= ρ2g

(
x(2) − x(1)

)
where, with r > 0,

g (r) := 1 − {f (r) /f (0)}2 ∈ [0, 1] are the first two correlation functions. We shall
also use h (r) := g (r)− 1 which is the total (centered) correlation function.

Remark: The set of positive-definite functions forms a closed cone as this prop-
erty is preserved under convex linear combinations and point-wise products and if
a sequence (fk; k ≥ 1) of such positive-definite functions converges, then the limit
remains positive-definite.

If f1 and f2 are 2 positive-definite functions with associated weight matrices
Wi (x) = [fi (xm − xm′)], i = 1, 2, then the weight matrix W (x) associated to
f = f1 · f2 is W (x) = W1 (x) ◦ W2 (x) where ◦ stands for Hadamard (or Schur)
entry-wise product. The Hadamard product of positive-definite matrices indeed is
a positive-definite matrix. Taking f1 (r) = f2 (r) = f (r) /f (0) where f is definite-
positive, it follows that −h (r) is definite positive (or h (r) is definite negative). For
determinantal point processes, the total correlation function h (r) is definite negative
and negative (doubly negative), with values in [−1, 0] . ♦

There are two immediate consequences of this construction:

• When evaluating the limiting variance of the random number of points in an
interval of length x (as x↗∞) around the origin, the question of the integrability of
h (r) pops in. Integrability of h (r) holds if and only if f is square-integrable. When
f is integrable, this will be the case if f̂ (λ) itself is integrable and, if both functions
are integrable, by Fourier-Plancherel theorem

−f (0)2
∫

R
h (r) dr =

∫
R
f (r)2 dr =

∫
R
f̂ (λ)2 dλ.

• Finally, the generating functional of determinantal point processes takes a fa-
miliar form. For instance, in this case,

E

N (B)∏
N=1

(1 + zφ (XN ))

=
∑
n≥0

zn

n!

∫
Bn

n∏
m=1

φ (xm) · |W (xn)| dxn

= : |I + zWφ|L2(B)

and the expansion reduces to a Fredholm determinant where Wφ is the operator on
L2 (B) with kernel W (xm, xm′)φ (xm′) . Similarly, for determinantal point processes,
the right-most particle in B distribution is

P
(
X(N (B)) ≤ x∗

)
= |I −W |L2(B∩(x∗,∞)) .

Let us now give some examples.

Examples:
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1./ With ρ, ξ > 0, take for example f (r) = ρe−|r|/(2ξ), with f̂ (λ) = ρξ−1

(2ξ)−2+λ2 .

The function f is integrable and square-integrable. Further, f̂ (λ) ∈ [0, 4ρξ]. There-
fore, if ρ belongs to some range R ⊆ (0, ρc := 1/ (4ξ)], the induced determinantal
point process is well-defined and translation invariant with g (r) := 1− e−|r|/ξ. Here,
|h (r)| decays exponentially and

∫
R h (r) dr = −2ξ where ξ is the correlation length.

A broader class to which this Example belongs, corresponds to the choice f (r) =
ρe−ζ|r/r0|

α/2 where ρ, ζ, r0 > 0 and α ∈ (0, 2] . In that case, h (r) = −e−ζ|r/r0|α . The
Fourier transform of f (r) is proportional to α−stable pdf on the real line.

2./ With ρ ∈ R ⊆ (0, ρc := 1], take for example f (r) = ρ sin (πr) / (πr), for which
f̂ (λ) = ρ · 1 (λ ∈ [−π,+π]). Then g (r) := 1 − {sin (πr) / (πr)}2 . Note that |h (r)|
does not decay exponentially, but rather like the power-law r−2 with exponent larger
than 1. The function h is integrable and

∫
R h (r) dr = −1. Here, f is not integrable

but f2 is.
The corresponding long-range Hamiltonian of points is the one of the GUE eigen-

values ensemble in random matrix theory

Hn

(
x(n)

)
= −

∑
1≤m1<m2≤n

log
(
x(m2) − x(m1)

)
+

1
2n

n∑
m=1

x2
(m).

It exhibits a repulsive Coulombic logarithmic interaction potential at reciprocal tem-
perature β = 2 (see [CL1]).

3./ Let ρ, ξ > 0 and let f0 (r) =
√

ρ21/ξ

Γ(1/ξ) exp
{
−
(
r
2ξ + e−r

)}
be a Gumbel

function on R (with Γ (.) the Euler gamma function). Define f̃0 (r) := f0 (−r) and
let f (r) := f0 ∗ f̃0 (r) be the convolution of f0 with a symmetrized version of itself.
Then, f is symmetric. Further, one can check that f (r) = ρ {cosh (r/2)}−1/ξ with
f (0) = ρ and f (r) /f (0) ≤ 1. Function f is integrable and square-integrable.

The Fourier transform of f0 (r) is
√

ρ21/ξ

Γ(1/ξ)Γ
(

1
2ξ − iλ

)
so that

f̂ (λ) :=
ρ21/ξ

Γ (1/ξ)

∣∣∣∣Γ( 1
2ξ
− iλ

)∣∣∣∣2 ≥ 0,

with f̂ (0) = ρ21/ξ Γ(1/(2)ξ)2

Γ(1/ξ) . As a result, f is positive definite. For values of ρ ∈ R ⊆(
0, ρc :=:= 2−1/ξ Γ(1/ξ)

Γ(1/(2ξ))2

]
for which f̂ (0) ≤ 1, the induced determinantal point pro-

cess is well-defined. The two-point correlation function is g (r) = 1−{cosh (r/2)}−2/ξ

and h (r) = −{cosh (r/2)}−2/ξ with |h (r)| ∼r↗∞ 41/ξe−r/ξ showing that correlation
length is indeed ξ. The function h is integrable and

∫
R h (r) dr = −22/ξ Γ(1/ξ)2

Γ(2/ξ) with∫
R h (r) dr ∼ξ↗∞ −8ξ and

∫
R h (r) dr ∼ξ↘0 − (2ξ)−1/2 diverging at both ends.

4./ Let f1 (r) =
√
ρe−|r|/(2ξ) and f2 (r) =

√
ρ sin (πr) / (πr) and consider the

point-wise product f (r) = f1 (r) · f2 (r) with f (0) = ρ. We have f̂ (λ) = 1
2π f̂1∗f̂2 (λ)

where f̂1 (λ) =
√
ρξ−1

(2ξ)−2+λ2 and f̂2 (λ) =
√
ρ · 1 (λ ∈ [−π,+π]). We find

f̂ (λ) =
2ρξ
π

∫ π

−π

dλ′

1 + 4ξ2 (λ− λ′)2
=
ρ

π
(arctan (2ξ (λ+ π))− arctan (2ξ (λ− π))) ≥ 0.

10



The induced determinantal point process is well-defined at least if 2ρ arctan (2ξπ) /π ≤
1 and so ρc = π/ (2 arctan (2ξπ)) .

The total pair correlation function is h (r) = −e−|r|/ξ sin2 (πr) / (πr) with expo-
nential decay and correlation length ξ.

5./ Let f1 (r) = f2 (r) =
√
ρ sin (πr) / (πr) and consider the point-wise product

f (r) = f1 (r) · f2 (r) = f1 (r)2 with f (0) = ρ. We have f̂ (λ) = 1
2π f̂

∗2
1 (λ) where

f̂1 (λ) =
√
ρ · 1 (λ ∈ [−π,+π]). With (x)+ := max (x, 0), we have

f̂ (λ) = ρ

(
1−

∣∣∣∣ λ2π
∣∣∣∣)

+

≥ 0.

The induced determinantal point process is well-defined at least if ρ ≤ ρc = 1. Here,
h (r) = −{sin (πr) / (πr)}4. We shall see below that 2I =

∫
R h (r) dr = −2/3.

6./ With ρ ∈ R ⊆ (0, ρc := 1], let f (r) = 2ρ
π2r2

{
sin(πr)
πr − cos (πr)

}
(which is

symmetric) satisfying f (0) = (2ρ) /3. In this case, it can easily be checked that

f̂ (λ) = ρ

(
1−

(
λ

π

)2
)

+

,

which has a ‘circular’ shape. The function f (r) is of positive type. It has in-
finitely many zeroes, located at points r solving: tan (πr) = πr. Further, h (r) =
−
{

3
π2r3 (sin (πr)− πr cos (πr))

}2
, satisfying |h (r)| ∼|r|↗∞ Cr−4.

In any case, the density of points ρ should not exceed a critical value ρc whose
value is obtained by imposing f̂ (λ) ∈ [0, 1]. Note that the exact range R of values of
ρ for which the DPP is well-defined is a priori included or equal to the interval (0, ρc].
It could be that R ⊂ (0, ρc]; example 6./ will show that this is indeed possible.

The 2−point correlation function g (r) always belongs to [0, 1] (so that total cor-
relation h (r) ∈ [−1, 0] is negative); this translates the evidence that translation
invariant determinantal (fermion) point processes are always ‘repulsive’. Note finally
that in Examples 1./, 3./ and 5./, f (r) is doubly positive, that is positive-definite
and positive. In Examples 2./, 4./ and 6./, f (r) simply is positive-definite (of posi-
tive type).

Number of points; variance growth with volume: Let x > 0. If B :=
[−x/2;x/2], with Nx := N ([−x/2;x/2]) , if the DPP is translation invariant, we
have

E (Nx) =: ηx = ρx and σ2 (Nx) =: σ2
x = ρx+ ρ2

∫
[−x/2;x/2]2

(g (x1 − x2)− 1) dx1dx2.

An integration by parts yields

σ2
x = ηx

(
1 + ρ

∫
R

(
1− |r|

x

)
+

h (r) dr

)
, (11)

from which we get: h (x) =
(
σ2
x

)′′
/
(
2ρ2
)
, relating the total correlation function h to

the second derivative of σ2
x with respect to x.

11



If h is integrable, it follows from the last formula that: σ2
x/ηx →x↗∞ 1 +

ρ
∫

R h (r) dr ≥ 0, suggesting that, when 1 + ρ
∫

R h (r) dr > 0, the variance σ2
x should

also grow like volume x.

It may happen that 1 + ρ
∫

R h (r) dr = 0 so that
∫

R h (r) dr attains its lower pos-
sible bound −1/ρ. If this is so, σ2

x/ηx →x↗∞ 0 and variance growth is sub-linear.

This will be the case for instance, if ρ = ρc = 1 in the second example; at critical
density of points, variance grows as log x (slower than x); see [CL1] where it is also
shown that a Central Limit Theorem for Nx holds. We shall come back to the log x
growth condition later.

For the first example, 1 + ρ
∫

R h (r) dr ≥ 1/2 (= 1/2 when ρ = ρc = 1/ (4ξ))
and, although fluctuations are minimal at ρ = ρc, this opportunity is ruled out. The
same holds true for the third example, since 1 + ρ

∫
R h (r) dr ≥ 1 + ρc

∫
R h (r) dr =

1 − 21/ξ Γ(1/ξ)
Γ(2/ξ)

(
Γ(1/ξ)

Γ(1/(2ξ))

)2

> 0. We shall comment Examples 4./ and 5./ from the
point of view of variance growth later.

Point systems for which the variance growth is sub-linear with respect to vol-
ume are called super-homogeneous (see [GJL]). If in addition there is a constant C
such that σ2

x ≤ C so that the variance saturates, the point process is said to be
hyper-uniform (see [TS]). Hyper-uniform PP constitute a proper sub-class of super-
homogeneous PP.

The simplest example of a translation invariant hyper-uniform PP is as follows
(see [GT], page 041105): Take the lattice with distance D > 0 between consecutive
points. In each cell of length D put a point uniformly at random, independently
for each cell and consider the random set of all these points. Although random,
this process inherits part of the determinism of the underlying lattice. The obtained
jittered point process is translation invariant and hyper-uniform. Similar behavior
are observed for quasi-crystals ([GO]). Another far less intuitive example is the so-
called G-process defined in [GLS] which may either be viewed as the output of a
D/M/1-queue or as a self-correcting (or stress release) process, see also [DVJ], pages
244-245.

Such ‘glassy’ hyper-uniform systems present some long-range order and are strongly-
correlated. They are believed to be of some interest in the Harrison-Zeldovich theory
of cosmology. See [GJL], for a 3−dimensional version of the hyper-uniformity con-
cept.

Determinantal super-homogeneous systems are to be searched in systems for
which the spectral density f̂ (λ) has compact support (as in Example 2./): they
do not possess infinite wave-length fluctuations. Example 2./ is super-homogeneous
with logarithmic number variance growth with length x. Are there translation invari-
ant DPP which are hyper-uniform? Before addressing this question, let us investigate
an important class of translation invariant PP which cannot be super-homogeneous,
as they are ‘too’ random, being ‘essentially Poissonian’.

3.2 Renewal point processes gas

Construction, definitions and properties: Consider a ‘delayed’ renewal point
process (RPP) on the real line, defined as follows: starting from the origin 0, which

12



is not a point of the point process, assume the distance (delay) ∆0 till the first point
met to the right is random with pdf f0. Starting from this first point, consecutive
points to the right are at mutual random distances (∆m;m ≥ 1) of one another,
where the ∆m are iid with common density f . Assume E (∆1) = µ := 1/ρ < ∞.

Assume also that ∆0 is independent of (∆m;m ≥ 1) . Let ∆′
0
d= ∆0 be the distance

to the origin of the first point met to the left of 0. For consecutive points, proceed
similarly and independently to the left with ∆−m

d= ∆m, m ≥ 1 representing the
mutual distances between consecutive points to the left. We are left with a point
process

(
X(n); n ∈ Z\ {0}

)
on R:

X(n) = ∆0 +
n−1∑
m=1

∆m and X(−n) = −∆′
0 −

n−1∑
m=1

∆−m, n ≥ 1.

Let Λ0 (x) := E (Nx) be the expected number of points in the interval [−x/2, x/2]
centered at the origin. Λ0 (x) is absolutely continuous with respect to Lebesgue
measure with density of points λ0 (x) at x satisfying λ0 (x) = λ0 (−x) and, by Black-
well Renewal Theorem, λ0 (x) → ρ as x ↗ ∞. Let λ̂0 (s) =

∫∞
0
e−sxλ0 (x) dx and(

f̂0 (s) ; f̂ (s)
)

denote respectively the Laplace-Stieltjes transforms of λ0 (x), f0 (x)
and f (x) on the half-line. Then, usual the renewal structure of the point process,

λ̂0 (s) =
f̂0 (s)

1− f̂ (s)
.

For the specific choice of the joint pdf of (∆′
0,∆0) : f∆′

0,∆0 (x′, x) = ρf (x′ + x), the
marginal pdf f0 of ∆0 (and ∆′

0) reads:

f0 (x) = ρ

(
1−

∫ x

0

f (z) dz
)
.

We therefore get f̂0 (s) = ρ
s

(
1− f̂ (s)

)
so that λ̂0 (s) = ρ/s; this shows that λ0 (x) =

ρ is constant. Such specific delayed renewal point processes are called translation
invariant: For each point x ∈ R, the joint law of the distances of the first point met
to the left and to the right of x coincides with the one of (∆′

0,∆0) at the origin (see
[SVH]).

If
(
X(n); n ∈ Z\ {0}

)
denotes the ordered random positions of points on the line

of a translation invariant RPP,
(
X(n); n ∈ Z\ {0}

)
is Markovian in that for each

n ∈ Z\ {0}

P
({
X(m) ∈ dx(m)

}
m≥n |

{
X(m) = x(m)

}
m<n

)
= P

({
X(m) ∈ dx(m)

}
m≥n | X(n−1) = x(n−1)

)
.

In particular,

P
(
X(n) ∈ dx(n) |

{
X(m) = x(m)

}
m<n

)
/dx(n) = f

(
x(n) − x(n−1)

)
.
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Consider now the statistical features of the underlying ‘pure’ renewal point pro-
cess. Define Λ (x) to be the expected number of points in the interval [−x/2, x/2]
centered at the origin when the origin now is a point of the point process and when
the mutual random distances (∆m;m ∈ Z\ {0}) between consecutive points to the
right (and then independently to the left), are iid with common density f . Λ (x) is
absolutely continuous with respect to Lebesgue measure with density of points λ (x),
with λ (x) → ρ as x↗∞. Clearly, with λ̂ (s) =

∫∞
0
e−sxλ (x) dx,

λ̂ (s) =
f̂ (s)

1− f̂ (s)
.

With x(1) ≤ .. ≤ x(n), the n−point correlation functions of the delayed renewal point
process are given by (see [DVJ])

ρn
(
x(n)

)
= λ0

(
x(1)

) n∏
m=2

λ
(
x(m) − x(m−1)

)
. (12)

When the process is translation invariant ρn
(
x(n)

)
= ρ

∏n
m=2 λ

(
x(m) − x(m−1)

)
; in

particular ρ1

(
x(1)

)
= ρ and ρ2

(
x(2)

)
= ρ2g

(
x(2) − x(1)

)
where g (r) := λ (r) /ρ→ 1

as r ↗∞. The Janossy densities are given by (see [DVJ])

vn
(
x(n)

)
= ρ

n∏
m=2

f
(
x(m) − x(m−1)

)
.

If the variance σ2 of ∆1 is finite, if I (r) :=
∫ r
0

(g (x)− 1) dx, we have

Î (s) :=
∫ ∞

0

e−srI (r) dr ∼s↘0
−1
2µs

(
µ2 − σ2

)
showing, by Tauberian theorem, that I (r) → I := −1

2µ

(
µ2 − σ2

)
as r ↗∞. If µ ≥ σ

(respectively µ < σ), I ≤ 0 (respectively I > 0). Therefore, for translation invariant
renewal point processes with finite spacings variance, the ratio of the variance of Nx
to its mean satisfies

σ2
x/ηx →x↗∞ 1− 1

µ2

(
µ2 − σ2

)
=
σ2

µ2
> 0. (13)

Such processes can never be super-homogeneous: large scale fluctuations are identi-
cal to the ones of the Poisson point process as they grow like volume x. However, if
µ > σ (respectively µ < σ), the normalized variance σ2

µ2 < 1 (respectively σ2

µ2 > 1)
and therefore fluctuations are smaller (respectively larger) than the ones expected
for the Poisson process for which σ2

µ2 = 1. This can be used to distinguish between
super– (respectively sub–) Poissonian point processes.

Examples from Gibbs measures: Let U (x) stand for some interaction po-
tential, with U (x) ↘ 0 as x ↗ ∞. If U (x) > 0 when x > 0, potential U is purely
repulsive whereas if U (x) < 0 when x < 0, potential U is purely attracting. If none
of these conditions is fulfilled, one can always define the repulsive (attracting) do-
mains of U to be {x > 0 : U (x) > 0} (respectively, {x > 0 : U (x) < 0}). In the set
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{x > 0 : U (x) = 0}, U is ‘neutral’. If U is attracting in a neighborhood of x = 0,
assume U (x) > δ log x where δ ∈ (0, 1/β), locally.

Let p stand for thermodynamical ‘pressure’, β for reciprocal ‘temperature’, β > 0.
Assume the pdf of ∆1 is given by

f (x) =
1

Zβ (p)
e−β(px+U(x)), x > 0,

where
Zβ (p) =

∫ ∞

0

e−β(px+U(x))dx.

Under our assumptions on U , E (∆1) = 1/ρ <∞ and, with Fβ (p) := − 1
β logZβ (p),

the equation of state reads
1
ρ

= ∂pFβ (p) .

From the expression of the Janossy densities in this case, the Hamiltonian of such an
n−particle system at x(n) only exhibit nearest-neighbor interactions with

Hn

(
x(n)

)
=

n∑
m=2

U
(
x(m) − x(m−1)

)
+ p

(
x(n) − x(1)

)
.

Because f̂ (s) = Zβ(p+s/β)
Zβ(p) , the intensity function λ appearing in the correlation

functions is characterized by

λ̂ (s) =
(

Zβ (p)
Zβ (p+ s/β)

− 1
)−1

=
Zβ (p+ s/β)

Zβ (p)− Zβ (p+ s/β)
.

When s is small, λ̂ (s) ∼ ρ/s in accordance, by Tauberian theorem, with λ (r) → ρ
as r ↗∞.

Let us now investigate some Examples.

? Assume first U (x) = 0, for all x > 0 (no interaction). Then Zβ (p) = 1
βp ;

the equation of state reads p
ρ = β−1. In this case, λ̂ (s) = (βp) /s so that g (r) =

λ (r) /ρ = 1 (r > 0) is constant. The underlying random point process is the interac-
tion free Poisson process with intensity ρ. Here I = 0 and σ2

x/ηx →x↗∞ 1 (actually,
σ2
x/ηx = 1, for all x).

? Take for instance the hard-core model for which U (x) = ∞ · 1 (x < D) + 0 ·
1 (x ≥ D). Here Zβ (p) = 1

βpe
−βpD and with ρ < ρc = D−1, the equation of state

reads p
(

1
ρ −D

)
= β−1. Here, λ̂ (s) =

(
(1 + s/ (βp)) esD − 1

)−1
. Using the equation

of state and the identity

1
Γ (a)

∫ ∞

0

(r − r0)
a−1
+ e−b(r−r0)e−srdr = (b+ s)−a e−sr0 , with a, b, r0 > 0,

a series expansion of λ̂ (s) leads by Laplace inversion to

g (r) = λ (r) /ρ =
1
ρ

∑
m≥1

1
Γ (m)

(1/ρ−D)−m e−
(r−mD)
1/ρ−D (r −mD)m−1

+ , r > 0
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=
(
D +

1
βp

)∑
m≥1

1
Γ (m)

(βp)m e−βp(r−mD) (r −mD)m−1
+ .

From the expression of g (r) we have g (r) = 0 if r < D and g (D) = (1− ρD)−1 =
(βp) /ρ > 1. This last expression constitutes an old result from equilibrium Statisti-
cal Physics (see for example (A17) of [MS] page 3155). From the above expression,
one can prove that the limit 1

ξ :=lim infr↑∞− 1
r log |h (r)| exists, with ξ therefore in-

terpreting as the correlation length of the 2−point correlation function.
It can be checked that

I :=
∫ ∞

0

h (r) dr = − 1
2µ
(
µ2 − σ2

)
= −{D (2 + βpD)} / {2 (1 + βpD)} < 0

and
σ2
x/ηx →x↗∞ (1 + βpD)−2

> 0.

Since (1 + βpD)−2
< 1, the hard-core model is super-Poissonian as µ > σ.

? Take U (x) = −u log
(
1− e−x/D

)
where u,D > 0, D fixing the length scale.

Then f (x) = 1
Zβ(p)e

−βpx (1− e−x/D
)βu

where

Zβ (p) =
∫ ∞

0

e−βpx
(
1− e−x/D

)βu
dx (14)

= D

∫ 1

0

zβpD−1 (1− z)βu dz = D
Γ (βpD) Γ (βu+ 1)
Γ (βpD + βu+ 1)

.

If u < 0, potential U is purely attracting, with U (x) ∼x↘0 −u log x and for the
process to be well-defined, u needs to be larger than −β−1. If u > 0, it is purely
repulsive. Let us consider a special case of importance.

Specifying u = 1/β, potential U is purely repulsive and the pdf f (x) is a linear
combination of two exponentials. Further,

Zβ (p) =
1

βp (βpD + 1)
.

The equation of state reads

p

ρ
= β−1 +

pD

βpD + 1
.

In terms of the correlation length ξ = D
2βpD+1 , it can easily be checked from Laplace

inversion of λ̂ (s) that g (r) = 1 − e−r/ξ, r > 0. Clearly, I = −ξ = − 1
2µ

(
µ2 − σ2

)
where µ = ρ−1 and σ2 = (pβ)−2 +D2/ (βpD + 1)2.

Further,
1
ρξ

= 4 +
1

(βpD + 1)βpD
> 4,

showing that 4ρξ < 1 (or ρ < ρc := 1/ (4ξ)). When length scale D ↗ ∞, 4ρξ ↘ 1
and the limiting pdf f (x) = (βp)2 xe−βpx still is a well-defined density on (0,∞).
The limiting critical equation of state reads: p

ρ = 2β−1 whereas correlation length ξ
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tends to (2βp)−1
. Thus, the full range of admissible parameters (ρ, ξ) is 4ρξ ≤ 1 (or

ρ ≤ ρc := 1/ (4ξ)).

Comparing with the first example 1./ of translation invariant determinantal point
process, this remarkable renewal process is also determinantal as both processes share
the same n−point correlations. Actually, it is the only one (see [S] and [M]).

The above limiting (critical) process for large D suggests that the full model (14)
should be exactly solvable even if u 6= 1/β, when ρ approaches its largest admissible
value. Suppose indeed u = (α− 1) /β where α > 0. If α ∈ (0, 1) potential U (x) =
−u log

(
1− e−x/D

)
is purely attracting, neutral if α = 1 whereas α > 1 is a purely

repulsive case, with α = 2 coinciding with the previous case study. Using the large
D expansion of the Euler gamma function appearing in the expression of Zβ (p), we
get

Zβ (p) ∼D↗∞ D−(α−1) Γ (α)
(βp)α

,

corresponding to the critical limiting equation of state p
ρ = αβ−1. It corresponds to

a large D limiting density of type gamma(α, βp) for ∆1

f (x) =
(βp)α

Γ (α)
xα−1e−βpx,

with f̂ (s) = (1 + s/ (αρ))−α . We have µ = ρ−1 and σ2 = 1/
(
αρ2

)
. Thus

λ̂ (s) =
f̂ (s)

1− f̂ (s)
=
∑
m≥1

(1 + s/ (αρ))−mα

showing by Laplace inversion that g (r) takes the exact form

g (r) =
e−βpr

ρr

∑
m≥1

(βpr)mα

Γ (mα)
=
α (βp)α

ρ
rα−1e−βprdα ((βpr)α) , r > 0. (15)

Here dα (x) := e′α (x) is the derivative with respect to x of eα (x) :=
∑
m≥0

xm

Γ(mα+1) ,
the Mittag-Leffler exponential function. We may check that this novel correlation
function is consistent with what we already know:

When α = 1, e1 (x) = exp (x) and g (r) = 1, r > 0. The RPP is a Poisson point
process with intensity ρ = pβ.

When α = 2, e2 (x) = cosh (
√
x), d2 (x) = 1

2
√
x

sinh (
√
x) and g (r) = 1 − e−r/ξ,

where ξ = (2βp)−1, r > 0.
When α = 1/2, e2 (x) = ex

2
erf c (−x) and d2 (x) = 2 (xe2 (x) + 1/

√
π) where

erf c (x) := 2/
√
π
∫∞
x
e−z

2
dz. We have g (r) ↗ ∞ as r ↘ 0 since g (r) is of order

r−1/2.

One can check that I =
∫∞
0
h (r) dr = (1− α) / (2βp) =

(
1− α−1

)
/ (2ρ) . This

quantity is positive when α < 1. Further, σ2
x/ηx →x↗∞ α−1. The case α > 1 (re-

spectively α < 1) corresponds to a super-(respectively sub-) Poissonian case.
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? Even for simple models, the correlation function can be hard to evaluate. Take
for example the purely repulsive potential U defined by U (x) = u · (x/D)−1, where
u,D are positive constants. U is monotone decreasing with U (x) → ∞ as x ↘ 0.
In this particular case, the mutual distance between points has generalized inverse
Gaussian density, namely

f (x) =
1(

uD
p

)1/2

K
(
β
√
upD

) exp {−β (px+ uD/x)} , x > 0

where K (z) =
∫∞
0

exp {−z (x+ 1/x)} dx is a modified Bessel function of the third

kind. Thus, Zβ (p) =
(
uD
p

)1/2

K
(
β
√
upD

)
and

f̂ (s) =
(

p

p+ s/β

)1/2

K
(
β
√

(p+ s/β)uD
)
/K

(
β
√
upD

)
.

The Laplace inverse of λ̂ (s) = f̂ (s)
(
1− f̂ (s)

)−1

is not known.

Even worse, take the Lennard-Jones model, with a, b > 0, U (x) = ax−6 − bx−3

with U (x) ∼ ax−6 → ∞ as x ↘ 0 and U (x) ∼ −bx−3 → 0 as x ↗ ∞. Potential U
has a minimum at x∗ = (2a/b)1/3 with U∗ := U (x∗) < 0. For x > (a/b)1/3, potential
U is attracting. In that case, there is even no simple expression of the normalizing
constant Zβ (p) so that both f̂ (s) and λ̂ (s) are out of reach.

4 Super- and sub-homogeneous point processes

With ϕ ∈ L1 (R) ∩ L2 (R) , consider the additive functional ψ :=
∑∞
N=1 ϕ (XN )

of some translation invariant random PP with infinitely many points (XN ;N ≥ 1).
Its variance is given in terms of total correlation function h by

σ2
ψ =

∫
R

∫
R
ϕ (x1)ϕ (x2)

(
ρδx2−x1 + ρ2h (x2 − x1)

)
dx1dx2.

In Fourier space, it has the spectral representation

σ2
ψ =

1
2π

∫
R
|ϕ̂ (λ)|2 Ŝ (λ) dλ, (16)

where ϕ̂ (λ) =
∫

R e
iλxϕ (x) dx is the Fourier transform of ϕ and Ŝ (λ) is the Bartlett

power-spectrum density

Ŝ (λ) = ρ+ ρ2ĥ (λ) =: ρŝ (λ) ≥ 0. (17)

Here ŝ (λ) = 1+ ρĥ (λ) is the structure factor and ĥ (λ) =
∫

R e
iλrh (r) dr, the Fourier

transform of the total correlation function h (r). The function ρ2ĥ (λ) is also called
the Cramér power-spectrum. When ϕ (X) = 1

(
X ∈

[
−x

2 ,
x
2

])
is the indicator of

the window interval
[
−x

2 ,
x
2

]
, ψ :=

∑∞
N=1 1

(
XN ∈

[
−x

2 ,
x
2

])
counts the number of

points in this interval and so ψ is Nx and σ2
ψ coincides with σ2

x, the number of points

variance in the window. In this case, ϕ̂ (λ) = x
sin(λ x

2 )
λ x

2
and

σ2
x =

x2

2π

∫
R

{
sin
(
λx2
)

λx2

}2

Ŝ (λ) dλ. (18)
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After the change of variables u = λx2 , this is also

σ2
x =

ρx

π

∫
R

{
sin (u)
u

}2

ŝ

(
2u
x

)
du.

Large x behavior of σ2
x is governed by the behavior of the structure factor ŝ (.) in

a neighborhood of zero. Recalling ηx = ρx is the expected number of points in the
interval of length x, we also have

σ2
x

ηx
=

2
π

∫ ∞

0

{
sin (u)
u

}2

ŝ

(
2u
x

)
du

and large x behavior of σ2
x/ηx is also controlled by the behavior of ŝ (.) in a neigh-

borhood of zero.

Super-homogeneous point processes with sub-linear variance growth with volume
x may be characterized by ŝ (λ) ∼|λ|↘0 C |λ|γ e−|λ|/(2λ∗) where C, γ and λ∗ are
positive constants. Adapting the considerations of [GJL] (who rather consider the
3−dimensional case), to our 1-dimensional case, we indeed have:

• If γ ∈ (0, 1), with K some finite positive constant

σ2
x ∼x↗∞ C

2γ+1ρx1−γ

π

∫ ∞

0

{sin (u)}2 uγ−2du < Kρx1−γ ,

so that σ2
x

ηx
∼ Kx−γ → 0 (as x↗∞). The number variance grows algebraically but

slower than interval length x.

• If γ > 1

σ2
x ∼x↗∞ C

2γ+1ρx1−γ

π

∫ ∞

0

{sin (u)}2 uγ−2e−u/(λ∗x)du.

Since
∫∞
0
{sin (u)}2 uγ−2e−u/(λ∗x)du <

∫∞
0
uγ−2e−u/(λ∗x)du = Γ (γ − 1) (λ∗x)

γ−1, as
x↗∞

σ2
x < Cρ

2γ+1

π
λγ−1
∗ Γ (γ − 1) = K ′

and the number variance saturates. Recall that a super-homogeneous PP with
bounded variability is called hyper-uniform.

• If γ = 1, with K ′′ some finite positive constant

σ2
x ∼x↗∞ K ′′ log x

with logarithmic variance growth. Indeed, when γ tends to 1 from above, slowly
enough, from the previous estimates,

Γ (γ − 1) (λ∗x)
γ−1 ∼ λγ−1

∗

γ − 1
(1 + (γ − 1) log x) ∼ log x,

showing that K ′′ = 4ρC
π .
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Additional remarks:
(i) Assume the point system is super-homogeneous. Defining the direct correla-

tion function c (r) from the ‘renewal’ equation

h (r) = c (r) + ρ

∫
R
h (r − r′) c (r′) dr′

and taking the Fourier transform, with ĉ (λ) =
∫

R e
iλrc (r) dr, we get:

ĉ (λ) =
ĥ (λ)

1 + ρĥ (λ)
=
ŝ (λ)− ρ

ρŝ (λ)
.

Since ŝ (λ) ∼|λ|↘0 C |λ|
γ where γ > 0, ĉ (λ) ∼|λ|↘0 − |λ|

−γ diverges in a neighbor-
hood of wave-length λ = 0. For super-homogeneous systems, the direct correlation
function is long-ranged.

(ii) It may happen that ŝ (0) = C for some positive constant C. For example, this
was the case for finite variance renewal point processes with ŝ (0) = 1+2ρI = σ2

µ2 > 0.
In these cases, σ2

x/ηx →x↗∞ C and variance grows like volume x, just like for Poisson
PP. RPP systems with finite spacings variance possess a bona fide correlation length
ξ.

(iii) Sub-homogeneous or critical systems: For some PP, it may finally happen
that ŝ (λ) ∼|λ|↘0 C |λ|

−δ for some δ ∈ (0, 1) and C > 0. The structure factor diverges
in a neighborhood of wave-length λ = 0. If this is so, as x↗∞

σ2
x =

2ρx
π

∫ ∞

0

{
sin (u)
u

}2

ŝ

(
2u
x

)
du ∼ κx1+δ,

where κ = 21−δρC
π

∫∞
0

sin2 (u)u−(δ+2)du < ∞ is well-behaved because δ ∈ (0, 1) . In
this case, the variance grows algebraically and faster than volume x (but still slower
than volume squared x2). This class of PP corresponds to the one of ‘critical’ systems
for which the total 2-point correlation function h itself is long-ranged with power-law
decay with exponent in (0, 1). We shall give an example of a critical PP in the sequel
which is in the class of permanental (boson) PP. In the process, we shall also see that
it is possible to have ŝ (λ) ∼|λ|↘0 −C log |λ| with a logarithmic divergence of ŝ (λ)
at λ = 0. In this case, σ2

x still grows faster than x but with a logarithmic correction.
Critical PP for which σ2

x/ηx →x↗∞ +∞ may as well be called ‘sub-homogeneous’:
they exhibit large disorder.

An immediate first example of such sub-homogeneous point processes is an RPP
with infinite spacings variance σ2 and finite mean µ. More precisely, let F (x) =∫ x
0
f (z) dz be the cumulative probability distribution of spacing ∆1 in the above

construction of a RPP. It may easily be shown that, with δ ∈ (0, 1), if 1−F (x) ∼ x↗∞
x−(2−δ)L (x) for some slowly varying function L, we have:

(
µ = 1/ρ <∞; σ2 = ∞

)
and

σ2
x

ηx
∼ 2ρ2xδL (x)

δ (1− δ2)
→∞, as x↗∞.
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In this case, one can indeed check that, with ĝ (s) and f̂ (s) the respective Laplace
transforms of g (r) and f (x) satisfying ρĝ (s) = f̂ (s) /

(
1− f̂ (s)

)
, Tauberian theo-

rem gives f̂ (s) ∼s↘0 1− µs+ Cs2−δL (1/s) so that:

ŝ (λ) := 1 + ρ (ĝ (|λ|)− 1/ |λ|) ∼|λ|↘0 C |λ|
−δ
L (1/ |λ|) .

See [DV] for additional details. These authors call this property the long-range count
dependence; parameter δ is related to the Hurst index through H = (δ + 1) /2 ∈
(1/2, 1); see [DV] and [H2]. The origin of ‘Hurstiness’ clearly is to be found in the
heavy-tailed character of consecutive point spacings distribution. It is also shown in
[DV] that this long-range property is shared by the output of some suitably chosen
queueing processes. ♦

We now focus on the class of DPP and consider the conditions under which they
can be super-homogeneous: In this specific DPP case, we have ŝ (λ) = 1 + ρĥ (λ)
where

ĥ (λ) =
−1
f (0)2

∫
R
eiλrf (r)2 dr =

−1
2πf (0)2

f̂∗2 (λ) (19)

is given in terms of f̂ (λ) =
∫

R e
iλrf (r) dr, the Fourier transform of f (r) which is

essentially definite-positive.

Illustrative examples:

1./ With ρ, ξ > 0, we had f (r) = ρe−|r|/(2ξ), with f̂ (λ) = ρξ−1

(2ξ)−2+λ2 . Thus

h (r) = −e−|r|/ξ and using stability of Cauchy densities under convolution

ĥ (λ) =
−8ξ2

π

(
1

1 + (2ξλ)2

)∗2
= −2ξ

(
1

1 + (ξλ)2

)

ŝ (λ) = 1− 2ξρ
1 + (ξλ)2

.

As announced, ĥ (0) = 2I =
∫

R h (r) dr = −2ξ. Here ŝ (0) = C where C = 1− 2ξρ ≥
1/2. This determinantal point process is neither super-homogeneous nor ‘critical’,
but rather has a large scale Poisson-like behavior. Recall this determinantal model
may also be viewed as a nearest-neighbor renewal point process. Its range R is ex-
actly (0, 1/ (4ξ)]

2./ With ρ ∈ R ⊆ (0, ρc := 1], we had f (r) = ρ sin (πr) / (πr), for which f̂ (λ) =
ρ · 1 (λ ∈ [−π,+π]). Thus, h (r) = −{sin (πr) / (πr)}2 and

ĥ (λ) =
−1
2π

(1 (λ ∈ [−π,+π]))∗2 =
∣∣∣∣ λ2π

∣∣∣∣− 1

ŝ (λ) = 1 + ρ

(∣∣∣∣ λ2π
∣∣∣∣− 1

)
.

Since ŝ (λ) = 1 − ρ ≥ 0 for all ρ ∈ (0, 1] , we conclude that in this case, R =
(0, ρc := 1] . As announced, we have ĥ (0) = 2I =

∫
R h (r) dr = −1. When ρ = ρc = 1,
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ŝ (λ) =
∣∣ λ
2π

∣∣ with a linear behavior in a neighborhood of λ = 0. At critical density
(corresponding to Dyson gas), as announced, σ2

x ∼x↗∞ K ′′ log x.

5./ For ρ ∈ R ⊆ (0, ρc := 1], we had f (r) = ρ {sin (πr) / (πr)}2 with f̂ (λ) =
ρ
(
1−

∣∣ λ
2π

∣∣)
+
. Thus, h (r) = −{sin (πr) / (πr)}4 and, using Theorem 1a of [F], page

28, it can easily be checked that

ĥ (λ) =
−1
2π

(
1−

∣∣∣∣ λ2π
∣∣∣∣)∗2

+

=
−1

3! (2π)3

4∑
m=0

(−1)m
(

4
m

)
(λ+ (4− 2m)π)3+ .

We have ĥ (0) = 2I =
∫

R h (r) dr = −2/3.
Although f̂ (λ) has compact support, there is no value of the density at which

this determinantal point process is super-homogeneous. Indeed, if this were the case,
there should be a ρ∗ at which 1 + ρ∗ĥ (0) = 0 but since ĥ (0) = −2/3, ρ∗ = 3/2 is
outside the range ρ ∈ R = (0, ρc := 1] for which the DPP is well-defined.

6./ With ρ ∈ R ⊆ (0, ρc := 1], we had f (r) = 2ρ
π2r2

{
sin(πr)
πr − cos (πr)

}
, for which

f (0) = (2ρ) /3 and circular spectral density: f̂ (λ) = ρ
(
1−

(
λ
π

)2)
+
. Thus, the total

correlation function is h (r) = −
{

3
π2r2

(
sin(πr)
πr − cos (πr)

)}2

and

ĥ (λ) =
−9
8π

((
1−

(
λ

π

)2
)

+

)∗2
.

After scaling, we get
((

1−
(
λ
π

)2)
+

)∗2
= πk (λ/π) where

k (x) =
∫ min(1;x+1)

max(−1;x−1)

(
1− z2

) (
1− (x− z)2

)
dz

which can be integrated to give an exact expression of ĥ (λ) and then of the structure
factor ŝ (λ) . From this computation, we easily obtain ĥ (0) = −9

8 k (0) = −6/5. Thus
1 + ρĥ (0) vanishes at density ρ∗ = 5/6 which is inside the admissible domain for
ρ, namely inside the interval (0, ρc := 1]. This shows that, for this DPP, the actual
range of ρ for which the PP is well defined is (0, ρ∗ := 5/6]. Further, this DPP is
super-homogeneous at ρ = ρ∗. When ρ = ρ∗ and when λ is close to 0, we obtain

ŝ (λ) = 1 + ρ∗ĥ (λ) ∼ 3
2
|λ|2 ,

which is locally quadratic. It follows that, in this case, variance saturates with
σ2
x < K ′, as x↗∞. This DPP actually is hyper-uniform at ρ = ρ∗.When ρ ∈ (ρ∗, ρc]

this DPP is not defined.

The merits of these examples, if any, are:

Point 1 (from Example 5./). The condition that f̂ (λ) is compactly supported is
necessary but not sufficient for a translation invariant DPP to be super-homogeneous
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at some admissible value of the density. The DPP of this example is ‘essentially Pois-
sonian’ in the whole range ρ ∈ (0, 1] for which it is well-defined.

Point 2. (from Example 6./) The condition that f̂ (λ) ∈ [0, 1] is necessary but
not sufficient for a translation invariant DPP to be well-defined. A translation in-
variant DPP can start being super-homogeneous at some value of the density which
lies inside the admissible domain (and not necessarily at its upper critical bound as
in the Dyson gas). This shows that the range R for which the DPP is well-defined
can be strictly included in the admissible domain (0, ρc].

Point 3. (from Example 6./) There exist translation invariant hyper-uniform
DPPs for which the variance saturates. The DPP of Example 6./ at saturation
density ρ = ρ∗ = 5/6 is one of them. We could find no such example in the literature.

5 Related point processes of interest

Let f (r) be a continuous real positive-definite function satisfying f (r) = f (−r)
with 0 < f (0) = ρ <∞ and |f (r) /f (0)| ≤ 1. It follows that f̂ (λ) :=

∫
R e

−iλrf (r) dr
(which is real) is non-negative for almost all λ and that f (r) = 1

2π

∫
R e

iλrf̂ (λ) dλ
is the Fourier transform of the bounded positive spectral density f̂ . Let W (xn) :=
[f (xm − xm′)]n1 denote the usual n × n definite-positive weight matrix and let now
Per(W (xn)) stand for its permanent. Then, considering permanents instead of de-
terminants, the point process with correlation functions

ρn (xn) = Per (W (xn)) , n ≥ 1 (20)

is well-defined and translation invariant, see [HKPV]. It is called a permanental
(Boson) point process (PPP).

The generating functional of a permanental point processes reads

E

N (B)∏
N=1

(1 + zφ (XN ))

=
∑
n≥0

zn

n!

∫
Bn

n∏
m=1

φ (xm) · Per (W (xn)) dxn

= : |I − zWφ|−1
L2(B) .

With Wφ is the operator on L2 (B) with kernel W (xm, xm′)φ (xm′), the expansion
reduces to the inverse of a Fredholm determinant. PPPs may also be seen as doubly
stochastic (Cox) point processes with random intensity given by the squared modulus
of a Gaussian process (see [M] and [DVJ], page 172).

Remark:

Both permanental and determinantal PP are particular cases of α−permanental
PP where α ∈ {..,−2,−1} ∪ (0,∞). Indeed, define the α−permanent of W (xn) by

Perα (W (xn)) :=
∑
σ∈Sn

αn−cy(σ)
n∏

m=1

W (xn)m,σ(m) , (21)

where Sn stands for the set of permutations of [n], cy (σ) the number of cycles of
σ ∈ Sn. The generating functional of a α−permanental point processes (for which
ρn (xn) = Perα (W (xn)), n ≥ 1) reads formally
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E

N (B)∏
N=1

(1 + zφ (XN ))

=
∑
n≥0

zn

n!

∫
Bn

n∏
m=1

φ (xm) Perα (W (xn)) dxn

= : |I − zαWφ|−1/α
L2(B) ,

giving respectively permanental and determinantal PP when α = +1 and α = −1.
Conditions under which α−permanental PP are well-defined for all α > 0 seems to
be an open problem. 3

Consider then a PPP with permanental correlation functions (α = 1). With
r > 0, g (r) := 1 + {f (r) /f (0)}2 ∈ [1, 2] now is the two-point correlation function of
this PPP. The total correlation function is h (r) := g (r)− 1 = {f (r) /f (0)}2 which
is positive with values in [0, 1]. In sharp contrast to DPP, translation invariant per-
manental point processes exhibit clumping as points on the line are now positively
correlated. We now give an Example of a ‘critical or sub-homogeneous system’ for
which the structure factor diverges at the origin.

A critical PPP example:

Let α ∈ (0, 2] and ζ > 0. Let f (r) = ρ (1 + rα)−ζ/2 whose Fourier transform
is easily seen to be a positive integrable function. So f is doubly positive. Next,
the total correlation function is h (r) = (1 + rα)−ζ , which is also doubly positive.
Its Fourier transform ĥ (λ) has known closed-form expression depending on αζ < 1,
αζ = 1 or αζ > 1. It is known to be a (infinitely divisible) Linnik probability density
function (see [H1] and [LL]), which is positive and integrable. From this, following
[LL] for example, with γ the Euler constant, we have

ŝ (λ)∼ |λ|↘0
ρ

cos (αζπ/2) Γ (αζ)
|λ|−(1−αζ) , if αζ < 1

ŝ (λ)∼ |λ|↘0 − ρ

π
log |λ|+ 1− γρ

π
, if αζ = 1

ŝ (λ)∼ |λ|↘0 1 +
2πρ

sin ((ζ − 1/α)π)
Γ (1 + 1/α)

Γ (ζ) Γ (1− ζ + 1/α)
, if αζ > 1.

When δ := 1− αζ ∈ (0, 1), the structure factor diverges algebraically in a neighbor-
hood of wave-length λ = 0. Consequently, as x↗∞

σ2
x =

2ρx
π

∫ ∞

0

{
sin (u)
u

}2

ŝ

(
2u
x

)
du ∼ κx2−αζ .

Thus, the variance grows algebraically and faster than volume x (but always slower
than x2). This PPP is a ‘critical’ or sub-homogeneous system for which the total
2-point correlation function h is long-ranged with h (r) ∼|r|↗∞ |r|−αζ with exponent
smaller than 1.

When αζ > 1, this PPP is ‘essentially (sub-)Poissonian’. When αζ = 1, σ2
x ∼

κx log x. Variance grows faster than volume with logarithmic corrections to the usual
Poisson behavior.

24



Tuning down continuously parameter ζ, the status of this PPP shifts from es-
sentially Poissonian to sub-homogeneous with very large window fluctuations, when
it crosses the critical value ζc := 1/α. We may legitimately ask for the exact role
played by parameter ζ. It is related to the infinite divisibility character of the Linnik
pdf. In this respect, the following remark may prove helpful.

Remark: Consider a n×n weight matrixW (xn) withm×m′ entry: W (xn)m,m′ =
f (xm − xm′), defined from definite-positive function f as above. Assume f is also
non-negative (and so f is doubly positive). With ζ > 0, let W (xn)

◦ζ be the
Hadamard ζ−power of W (xn), with entries

(
W (xn)

◦ζ
)
m,m′

:= W (xn)
ζ
m,m′ , raising

each entry at the power ζ. This new matrix has non-negative entries and, in any
case, when ζ ≥ ζc := n − 2, it remains definite non-negative (see [FH]). However,
only under some peculiar circumstances is it still a non-negative definite matrix for
all ζ > 0 (although by Schur theorem it always is when ζ is an integer). Doubly
non-negative matrices whose Hadamard ζ−powers remain doubly non-negative for
all ζ > 0 are called infinitely divisible matrices (see [B]). In the above language
to construct definite-positive weight matrices W from doubly positive f , it can be
checked directly that W is infinitely divisible if and only if fζ (r) := f (r)ζ remains
a positive type function for all ζ > 0. This clearly is the case for the Linnik example
displayed above for which fζ (r) = ρ (1 + rα)−ζ/2. If f fulfills this property, then,
while considering its spectral density f̂ (λ), for each integer k, there is a spectral mea-
sure f̂k (λ) such that f̂ = f̂∗kk : In this context, infinite divisibility of W constructed
from f as above therefore is the eventual infinite divisibility property of the spectral
density f̂ (λ) or of ĥ (λ) (see [SVH]).

We finally observe that super-homogeneous point processes having compactly sup-
ported spectral measure, they do not possess this infinite divisibility characteristic. 3
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