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PERIODICITY OF CERTAIN PIECEWISE AFFINE PLANAR MAPS

SHIGEKI AKIYAMA, HORST BRUNOTTE, ATTILA PETHé7 AND WOLFGANG STEINER

ABSTRACT. We determine periodic and aperiodic points of certain piecewise affine maps in the

Euclidean plane. Using these maps, we prove for A € {#,i\/ﬁ,i\/ﬁ} that all integer
sequences (ak)rez satisfying 0 < a1 + Aag + ax41 < 1 are periodic.

1. INTRODUCTION

In the past few decades, discontinuous piecewise affine maps have found considerable interest
in the theory of dynamical systems. For an overview, we refer the reader to , ﬂ, @, E, E,
[Lg], for particular instances to [Rd, [Ld, B] (polygonal dual billiards), [L5] (polygonal exchange
transformations), @, EI, @, E] (digital filters) and [E, , @] (propagation of round-off errors in
linear systems). The present paper deals with a conjecture on the periodicity of a certain kind of
these maps:

Conjecture 1.1. [H, @] For every real A with |\| < 2, all integer sequences (ay)rez satisfying
(1.1) 0<ag—1+Aar +ar <1
for all k € Z are periodic.

This conjecture originated on the one hand from a discretization process in a rounding-off
scheme occurring in computer simulation of dynamical systems (we refer the reader to @, @] and
the literature quoted there), and on the other hand in the study of shift radix systems (see ]
for details). Extensive numerical evidence on the periodicity of integer sequences satisfying ([L.1])
was first observed in [24].

We summarize the situation of the Conjecture @ Since we have approximately

() = (5 ) (8)

and the eigenvalues of the matrix are exp(460mi) with 8 € [0, 1], the sequence may be viewed as a
discretized rotation on Z?, and it is natural to parametrize —\ = 2 cos(f7). There are five different
classes of A of apparently increasing difficulty:

(1) 6 is rational and X is rational.

(2) 6 is rational and A is quadratic.

(3) 0 is rational and X is cubic or of higher degree.
(4) 6 is irrational and A is rational.

(5) None of the above.

The first case consists of the three values A = —1,0,1, where the conjecture is trivially true.
Already in case (2) the problem is far from trivial. A computer assisted proof for —\ = @ was
given by Lowenstein, Hatjispyros and Vivaldi [@]1 A short proof (without use of computers) of
the golden mean case A = # was given by the authors [E] The main goal of this paper is to
settle the conjecture for all the cases of (2), i.e., the quadratic parameters

+1++/5
)\:T\/_,i\/i, +V/3.

Date: July 30, 2007.
Hndeed, they showed that all trajectories of the map (z,y) — (|(—=A)z| — y, ) on Z2 are periodic.
1
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The proofs are sensitive to the choice of A, and we have to work tirelessly in computation and
drawings, especially in the last case =1/3. However, an important feature of our proof is that it
can basically be checked by hand. The (easiest) case 1+2‘/5 in Sectionﬂ gives a prototype of our
discussion and should help the reader to understand the idea for the remaining values.

For case (3), it is possible that Conjecture can be proved using the same method, which
involves a map on [0,1)2¢~2, where d denotes the degree of \. However, it seems to be difficult
in case d > 3 to find self inducing structures, which are essential for this method. In [@], a
similar embedding into a higher dimensional torus is used for efficient orbit computations. Goetz
[@, , @] found a piecewise 7/7 rotation on an isosceles triangle in a cubic case having a self
inducing structure, but we do not see a direct connection to our problem.

The problem currently seems hopeless for cases (4) and (5). However, a nice observation on
rational values of A\ with prime-power denominator p™ is exhibited in [E] The authors show
that the dynamical system given by (E) can be embedded into a p-adic rotation dynamics, by
multiplying a p-adic unit. These investigations were extended in [BJ]. Furthermore, in 7] the
case A = ¢/p with p prime was related to the concept of minimal modules, the lattices of minimal
complexity which support periodic orbits.

Now we come back to the content of the present paper. The proof in [@] is based on a
discontinuous non-ergodic piecewise affine map on the unit square, which dates back to Adler,
Kitchens and Tresser [f[l. Let A> = bA + ¢ with b,c € Z. Set z = {Xag_1} and y = {Aay}, where
{z} = z — | z] denotes the fractional part of z. Then we have ar11 = —ag—1 — Aag +y and

{Mari} = {-Aak_1 = Nap + My} = {—2 + (A = by} = {2 + ey/A} = {-2 — Ny},

where ) is the algebraic conjugate of . Therefore we are interested in the map T : [0,1)? —
[0,1)2 given by T(z,y) = (y,{—z — Ny}). Obviously, it suffices to study the periodicity of
(T*(2))kez for points z = (z,y) € (Z[\] N [0,1))? in order to prove the conjecture. Using this
map, Kouptsov, Lowenstein and Vivaldi @] showed for all quadratic A corresponding to rational
rotations A = %\/g, ++/2, ++/3 that the trajectories of almost all points are periodic, by heavy
use of computers. Of course, such metric results do not settle Conjecture EI, which deals with
countably many points in [0,1)2, which may be exceptional. The main goal of this article is to
show that no point with aperiodic trajectory has coordinates in Z[)], which proves Conjecture @
for these eight values of \.

This number theoretical problem is solved by introducing a map S, which is the composition of
the first hitting map to the image of a suitably chosen self inducing domain under a (contracting)
scaling map and the inverse of the scaling map. A crucial fact is that the inverse of the scaling
constant is a Pisot unit in the quadratic number field Q(A). This number theoretical argument
greatly reduces the classification problem of periodic orbits, see e.g. Theorem @ All possible
period lengths can be determined explicitly and one can even construct concrete aperiodic points
in (Q(\)N[0,1))2. We can associate to each aperiodic orbit a kind of B-expansion with respect
to the scaling constant. Note that the set of aperiodic points can be constructed similarly to a
Cantor set, and that it is an open question of Mahler [@} whether there exist algebraic points in
the triadic Cantor set.

The paper is organized as follows. In Section 2, we reprove the conjecture for the simplest non-
trivial case, i.e., where A\ equals the golden mean. An exposition of our domain exchange method is
given in Section 3, where the ideas of Section 2 are extended to a general setting. In the subsequent
seven sections we prove the conjecture for the cases A = —v, £1/v, £v/2, £1/3. Some parts of the
proofs for A = ++/3 are put into the Appendix. We conclude this paper by an observation relating
the famous Thue-Morse sequence to the trajectory of points for A = £+, +1/7, /3.

2. THE CASE A =~ = # = —QCOS%7r

We consider first the golden mean A = v = 1+2—‘/5, A2 = X\ + 1. Note that T is given by

(2.1) T'(z,y) = (z,y)A+ (0, [z —y/v]) with A= ((1) 1_/17) :
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FIGURE 2.1. The piecewise affine map 7" and the set R, A = v = -5

Therefore, we have T(x,y) = (z,y)A if y > vz and T(z) = zA + (0,1) for the other points
z €[0,1)2, see Figure R.1. A particular role is played by the set
R={(z,9) €[0,1)*: y <vz, z+y>1, 2 <yy}U{(0,0)}.
If z€ R, z # (0,0), then we have T**1(2) = T*(2)A + (0,1) for all k € {0,1,2, 3,4}, hence
T°(z) = 2A° + (0,1)(A* + A + A2 + A" + A%) =2+ (0,1)(A° — A")(A - A" =2

since A% = A°. It can be easily verified that the minimal period length is 5 for all z € R except
(5257, 5777) and (0,0), which are fixed points of T'. Therefore, it is sufficient to consider the
domain D = [0,1)? \ R in the following. According to the action of T, we partition D into two
sets Dy and D, with Do = {(z,y) € [0,1)? : y > vz} \ {(0,0)},

In Figure E, we scale Dy and D by the factor 1/4? and follow their T-trajectory until the
return to D/v2. Let P be the set of points in D which are not eventually mapped to D/4?, i.e.,

P =D,UT(D,)UDszUT(Dg)UT?*Dpg),

where D, is the closed pentagon {(z,y) € Do :y > 1/7%, 2 +y < 1,y < (1 +x)/v} and Dy is the
open pentagon R/v%\ {(0,0)}. (In Figure R.3, D, is split up into {T*%(Ds) : k € {0,2,4,6,8}},
and Dg is split up into {Tk(DB) 1k €{0,3,6,9,12}}.) All points in P are periodic (with minimal
period lengths 2,3,10 or 15). Figures @ and @ show that the action of the first return map on
D/~? is similar to the action of T on D, more precisely,

(2.2) T(z) { T(2/+%) if z € Dy,

v? T%(z/+?) if z € D.
For z € D\ P, let s(z) = min{m > 0: T™(z) € D/~?}. (Figure P.2 shows s(z) < 5.) By the map
S: D\P =D, zw2TE)(z),

we can completely characterize the periodic points. For z € [0,1)2, denote by 7(z) the minimal
period length if (T%(2))rez is periodic and set 7(z) = oo else.

Theorem 2.1. (T*(z))xez is periodic if and only if z € R or S™(z) € P for some n > 0.

We postpone the proof to Section E, where the more general Proposition @ and Theorem @
are proved (with U(z) = z/4%, R(z) = z, T(z) = T(2), #(z) = 7(z), and z € Dy or T(z) € D for
all z € D, |0™(1)| — oo, see below).

(R-2) and Figure P.9 suggest to define a substitution (or morphism) o on the alphabet A = {0, 1},
i.e., amap o: A — A* (where A* denotes the set of words with letters in A), by

c: 0—0 1+~ 101101

in order to code the trajectory of the scaled domains until their return to D/~% We have
T*=Y(D¢/~?) C Dyeypg and T17ON(z/~4?) = T(2)/~? for all z € Dy, where w[k] denotes the k-th
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FIGURE 2.2. The trajectory of the scaled domains and the (gray) set P, A = 7.
(8% stands for Tk(Dg).)

letter of the word w and |w| denotes its length. Furthermore, we have T*(D,/+?) N D/v? = () for
1 <k <|o(¢)|. Extend the definition of o naturally to words in A* by setting o(vw) = o(v)o(w),
where vw denotes the concatenation of v and w. Then we get the following lemma, which resembles
Proposition 1 by Poggiaspalla @}
Lemma 2.2. For every integer n > 0 and every ¢ € {0,1}, we have

o TIo"Dl(z /42" = T(2)/y*" for all z € Dy,

o T* Y (Dg/y*") C Don(pyi) for all k, 1 < k < |a" ()]

o TF(Dy/v*™)ND/y*" =0 for all k, 1 < k < |o"({)].

The proof is again postponed to Section E, Lemma . This lemma allows to determine the
minimal period lengths: If z € D, then
T\a”’(OlOlOlOlOl)\ (Z/’}/Qn) _ T\cf”’(lOlOlOlOl)\ (T(Z)/’}/Qn) — .= TlO(Z)/,y2n _ Z/’}/Qn

for all n > 0. The only points of the form T*(z/+?"), 1 < k < 5|0™(01)|, which lie in D/y?" are
the points T™(z)/v*", 1 < m < 9, which are all different from z/4?" if 7(2) = 10. Therefore, we
obtain 7(z/v*") = 5|0™(01)] in this case. A point Z lies in the trajectory of z/4*" if and only if
Sn(z) = T™(z) for some m € Z, see Lemma B.2. This implies 7(Z) = 5|0™(01)] for these Z as well.
The period lengths of all points are given by the following theorem.
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Theorem 2.3. If A\ = v, then the minimal period lengths w(z) of (T*(z))kez are
2

1 if 2= (0,0) or z = (5357, 7357)
5 zszR\{(OO (-4 +1’7’Y+1)}
(5-4"+1)/3  if S"(z m(,yl/:l, )for somen >0, m e {0,1}

(2)

5(5-4"+1)/3 if S™(z

(10-4™—1)/3  if S™(2
(
(2

(D a\{( 2+1"y +1)}) for somen >0, m € {0,1}
T’"( =T 2+1) for somen >0, m € {0,1,2}
5(10-4" —1)/3 if S™(z (DB \ {(’r 7T 57 —=)}) for some n >0, m € {0,1,2}
0 if S"(2) € D\ P for alln > 0.
The minimal period length of (ag)kez is T({yar—1}, {var}) (which does not depend on k).

) €
) =
) €
)

Proof. By Theorem @, Proposition @ and the remarks preceding the theorem, it suffices to
calculate |0™(0)| and |0™(1)|. Clearly, we have |[¢"(0)| =1 for all n > 0 and thus

lo™(1)| = [o"1(101101)| = 4|o™ (1) +2=4(5-4"" - 2)/3+2 = (5-4™ — 2)/3.
If S™(z) € T™(D,), then m(z) = |o™(01)] and w(z) = 5|0™(01)| respectively. If S™(z) € T™(Dg),
then 7(z) = |0™(101)| and 7w (z) = 5|c™(101)]| respectively. O
Now consider aperiodic points z € [0,1)2, i.e., S™(z) € D\ P for all n > 0. We can write
S(2) = 72T (2) = 12(245) 1 1(2))

for some #(z) by using (R.1)). Note that T(z) = zA for z € Dy and T(z) = zA + (0, 1) for z € D;.
For 2z € D/~2, we have s(z) = 0 and t(z) = 0. For z € T¥(D;/~%), 1 < k < 5, we have s(z) = 6—k,

(0,1) if 5(2) € 1,2},
t(z) =4 (0,1)A%+(0,1) = (1/7,1/9?) if 5(2) = 3,
(0, 1)A4% + (0,1)A% + (0,1) = (0,~1/7) if s(2) € {4,5}.
We obtain inductively
n—1
Sn(z) _ ,YQnZAs(z)-l-s(S(z))-f—...+s(S"*1(z)) + Z72("_k)t(5k(z))148(5k+1(Z))+‘“+S(S"71(Z)).
k=0

If z € Q(v)?, then we have
(zAS(Z)JrS(S(Z))-F‘“+S(S"71(Z)))/ -1 (t(Sk(z)) As<sk+1<z>>+m+s<5"*1<z>>)'

n I __
n—1 h
" maxpez ||(zA") ]| o maxpez wep\P [|(H(w)A") ||
(8" () e < =52 43 T ,
k=0

where 2/ = (2/,y’) if z = (z,y) and 2’,y" are the algebraic conjugates of x,y. Since

t(Z>Ah € {(07 O)a (Oa 1)7 (L 1/7)7 (1/7a 71/7)) (71/’% 71)7 (71, 0)7
(1/’% 1/72% (1/72’ _1/72% (_1/’72a _1/’7)a (_1/’% O)’ (0’ 1/7)3
(07 71/7)7 (71/77 71/72)7 (71/727 1/72)ﬂ (1/727 1/7)ﬂ (1/77 0)}

and zA" takes only the values z, zA, zA2%, zA3 and zA*, we obtain

(S < Pzl A e S22 C(2)

0o — ,-y2n ,72(71—19) ,-y2n +7

k=0
for some constant C(z). If z € (éZ[fy])2 for some integer @ > 1, then S™(z2) € (%Z[’y])? Since
there exist only finitely many points w € (%Zh] N[0,1))? with ||w'|l« < C(2) + 7, we must have

[[(S™(2))||oo < 7 for some n > 0, which proves the following proposition.

Proposition 2.4. Let z € (%Z['y] N[0,1))? be an aperiodic point. Then there exists an aperiodic
point Z € (%Z['}/])2 ND with ||Z']cc < 7.
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1 . . . . . . . . . 1 . . . — . —_—
09 f 1 ook ]
0.8 - 0.8 -
07 f 1 o7k _
06 4 06 | : 4
05 1 osf ~ -
04 ~ 04 .
03t {1 o3p . ‘ -
0.2 e 0.2 N 4
0.1 F - 0.1 : 4

0 . . . . . L L L . 0 X - . . . . . T

0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
FIGURE 2.3. Aperiodic points, A = 7. FIGURE 2.4. Aperiodic points, A = —1/7~.

For every denominator @ > 1, it is therefore sufficient to check the periodicity of the (finite set

of) points z € (5Z[])> ND with [[2/[|c < 7 in order to determine if all points in (5Z[y]N[0,1))

are periodic.

For @ = 1, we have to consider z = (z,y) € D with z,y € Z[y] N [0,1) and |2'],|y’| < 7, hence
(z,y) € {0,1/~4}2. Since (0,0) and (1/7,1/~) are in R, it only remains to check the periodicity of
(0,1/7) and (1/7,0). These two points lie in P, thus Conjecture [.] is proved for A = .

For Q = 2, a short inspection shows that all points z € (3Z[y] N [0,1))? are periodic as well.
The situation is completely different for @ = 3, and we have

8(0,1/3) = (0,7°/3),  5(0,7%/3) =*((0,7%/3)A° + (0, ~1/7)) = (0,2/3),

5(0,2/3) =~%((0,2/3)A% + (0,—1/7)) = (0,1/(3+*)), S5*(0,1/3) = S(0,1/(3v%)) = (0,1/3).
This implies S™(0,1/3) € D\ P for all n > 0 and 7(0,1/3) = oo by Theorem P.3.
Theorem 2.5. 7(z) is finite for all points z € (Z[y] N [0,1))%, but (T*(0,1/3))rez is aperiodic.

3. GENERAL DESCRIPTION OF THE METHOD

In this section, we generalize the method presented in Section E in order to make it applicable
for A = —v,4+1/7, £v2, £V/3.
For the moment, we only need that 7': X — X is a bijective map on a set X. Fix D C X, let

R={zeX: T"(z) ¢ D for all m > 0}
set 7(z) = min{m > 0:T™(z) € D} for z € X \ R, and
R: X\R—D, R(z)=T"%(z).
Let T be the first return map (of the iterates by T') on D, i.e.,
T: D—-D, T(z)=RT(z) =T TE+ (),

in particular 7'(z) = T(z) if T(z) € D. Let A be a finite set, {Dy : £ € A} a partition of D and
define a coding map ¢ : D — A% by 1(z) = (tx(2))rez such that T%(z) € D,,(,) for all k € Z. Let
U:D—D,eec{-1,1} and o a substitution on A such that, for every £ € A and z € Dy,

UT(z) =TI (2),
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TFU(z) ¢ U(D) for all k, 1 < k < |o(¢)|, and

o0y = 1 0UE)u(U(z ))"'L\a(ﬂ)\ 1(U(z)  ife=1,
(6)_{ o) (U(2)) - 1—2(U(2)) -1(U(2)) ife=—1.

Then the following lemma holds.
Lemma 3.1. For every integer n > 0, every £ € A and z € Dy, we have
U™ (z) =T<"17"Olym(2),
T"kU™(2) ¢ UM(D) for all k, 1 < k < |o™(¢)|, and
(

w(U"(2)) 11 (U"(2)) -+ Yor (0 -1 (U" (2)) = 0™ (€) ife=1,
Lo(U”(Z))Ll( "(2) - Yor ey 1 (U™ (2)) = (o )”/2(5) ife=-1e"=1,
L fon ) (U™ (2)) -+ 12(U™(2)) 11 (U™ (2)) = (00) "D 20(0) if e = —1,e" = -1,

where 5(£) = by -+ oy if o(€) = b1ly -+ Ly,

Proof. The lemma is trivially true for n = 0, and for n = 1 by the assumptions on o. If we
suppose inductively that it is true for n — 1, then let () = l1lo -+ £, if e =1, 0(£) = £y, -+ - Lol
if e = —1, and we obtain (by another induction) for all j, 1 < j < m,

(3.1) Pet o T et )l () = "l T D g1 D () = U AP (2).

If e =1, then this follows immediately from the induction hypothesis; if € = —1, then this follows
by setting k = |o"~1(¢;)| in

(3.2) T(’l)nkU"’lT(T’jU(z)) = T(’l)n(k’W%I(lﬂ')‘)U”ﬂT’jU(z).
Therefore, we have
71" Oy (z) = 710" b abndlgn () = Un =T (2) = UM OU (2) = UM (2).
If e =1, then (@) implies that
(U™(2) -+ ton (o)1 (U™(2)) = (eo(U" U (2)) - tygn-1(61) 1 (U"HU(2))) - -
(LO(U"_lfm_lU(z)) . 'L‘o-nfl(gm)l_l(Un_lfm_lU(Z))) =" ) 0" ) = o™ (4);
if e = —1 and &” = 1, then (B.1) and (B.d) provide
(U™(2) - thon (1) -1 (U™(2)) = (t—jon-1(00y (U T7U(2)) -0 (UIT U (2)))
.. (L_|Un—1(gm)‘ (U”_lf_mU(z)) e L_1(Un_1T_mU(Z)))
= (00)" P25 (tr) - (00) " 2o (b)) = (06)"*(0);
ife=—1 and €™ = —1, then
Lo (U™(2)) - 121 (U™(2)) = (o(U" T T™™U(2) - tygn—1(0,)) -1 (U1 T "U(2)))
.- (LO(U”_lj“_lU(z)) e L‘o-nfl(gl)l(Un_IT_lU(Z)))
= (08)" V() - (02) V(1) = (5) "V 0 (1)

By (@), @) and the induction hypothesis, the only points in (TsnkU” (2))1<k<|on (0| lying in
Un=1(D) are U"T<I(2), 1 < j < |o(¢)|. Since T (z) ¢ U(D) for these j, the lemma is proved. [
Remark. If 2 = T=Y(2) € Dy, then U"T(2) = T<"1°"OIU™(2), thus UMT 1 (z) = T=<"17" Oy (2).

As in Section E, a key role will be played by the map S. Assume that U is injective, let

P={zeD: T™(z) ¢ U(D) for all m € Z},

fix (z) = min{m > 0 : 7™(z) € U(D)} or §(z) = max{m < 0 : T™(z) € U(D)} for every
2z € D\ P, let 5(z) € Z be such that T5(*)(z) = T5(*)(2), and define

S: D \ P — 'D, 2 — U*lj“é(z) (Z) _ U*lTs(z) (Z)

Remark. Allowing s(z) and §(z) to be negative decreases the ¢ in Proposition @ in some cases.



8 S. AKIYAMA, H. BRUNOTTE, A. PETHO7 AND W. STEINER

Lemma 3.2. If S"R(z) exists, then we have some m > 0 such that U"S™R(z) = T™(z), and
Z=T"™(2) for some m € Z if and only if S"R(Z) = T*S™R(z) for some k € Z.

Proof. Suppose that S™R(z) exists. Then we have

U'S™R(z) = U~ V3" T RE)I G R () = Tyl gnTIR(z) = - = Tt e R(2) = T (2)

for some my,.. Sy My, M > 0.
If S"R(2) = TkS"R(z) for some k € Z, then let my, ma > 0 be such that U"S"R(z) = T™(z),
U"S™R(z) = T™2(Z), and we have

Tme2 (2) = U”S”R(E) = UnTkSnR(z) _ TklUnSnR(Z) _ Tkz—i-ml (Z)
for some k1, ko € Z, hence Z = T™(z) with m = ky + mq — ma.

If 2 = T™(z) for some m € Z and n = 0, then we have S"R(%) = 1% S"R(z) for some k,, € Z.
If we suppose inductively that this is true for n — 1, then

S"R(Z) = ST*»—1S" ' R(z) = §Tkn—1—3S" " REIY ST R(2) = SUT*"S"R(z) = T*" S"R(z)
for some k,,_1,k, € Z, and the statement is proved. [l

If T is constant on every Dy, £ € A, then we can define 7 : A — N by 7(¢) = r(T(2)) + 1 for
z € Dy (cf. the definition of T) and extend 7 naturally to words w € A* by 7(w) = D veq lwler(£).

Let (), #(2) be the minimal period lengths of (T%(2))rez and (T%(2))rez respectively, with
m(z) = oo, #(z) = oo if the sequences are aperiodic. Then the following proposition holds.

Proposition 3.3. If #(S™R(z)) =p and {1 --- £y, = 1o(S"R(2)) - - - tp—1(S"R(2)), then we have
T(R(2)) = |o"(l1ls---Lp)| and w(z) =7(c"(l1le---Ly)) (if T is well defined).
Proof. Since U"S™R(z) = T™(z) = T™R(z) for some m,m € Z, and
Tl Bl Dy g R(z) = TI" () IynSn R(2) = UMTPS"R(z) = U"S™R(2),

we have 7(R(z)) < |6" (41 ---£p)| and 7(2) < 7(6" (41 ---£p)) (if T exists). Since p is minimal, we
can show similarly to the proof of Lemma @ that these period lengths are minimal. O

We obtain the following characterization of periodic points z ¢ R. Note that all points in PUR
are periodic in our cases, hence the characterization is complete.

Theorem 3.4. Let R, S,T,D,P,R,0 be as in the preceding paragraphs of this section. Assume
that 7t(z) is finite for all z € P, and that for every z € D\ P there exist m € Z, { € A, such that
T™(z) € Dy and |a™(£)| — oo for n — oco. Then we have for z ¢ R:

(T*(2))rez is periodic if and only if S"R(z) € P for some n > 0.

Proof. If S"R(z) € P, then we have 7(R(z)) = #(S™R(z)) < oo, which implies 7(z) < co.
Suppose now that S"R(z) € D\ P for all n > 0. Then we have m, € Z and ¢, € A
such that 7™ S"R(z) € Dy, and |0"({,)] — oo for n — oo (because A is finite). We have
UnT™nS"R(z) = T™U"S"R(z) € U™(Dy,) for some m,, € Z, hence T ++/"S"R(z) & U™ (D)
forall k, 1 < k < |0™(¢y,)|, which implies 7(z) > #(R(2)) = #(U"S"R(z)) > |o™({,)] for all n > 0,
thus 7(z) = co. O

Assume now \ € {£v/2, %‘/5, +1/3}, let X be its algebraic conjugate, T : [0,1)% — [0,1)?,

. -1
(3.3) T(z,y) = (z,9)A+ (0, [z + N'y]) with A= ((1) /\’) ’
U(z) =V~ (kV(2))
with 0 < k < 1, k € Z[N], |sK/| = 1, and V(2) = ££"(2 — v) some v € Z[\]?, n € Z. Let

t(z) = V(53 (2)) — V(2)A**)
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for 2 € D\ P. Since U~1(2) = V=1V (2)/k), we have

$(z)=UT'T*P(2) =V (M) .

K
Note that A" = A° for some h € {5,8, 10,12},
Y
T o) = (o)A (N 41,0) wih a7 = ()Y
and T~ Y(z,y) = (Z,9) with (§,%) = T(y,z). Since |5(z)| < maxse4 |0(¢)], there exists only a

finite number of values for ¢(z), and we obtain the following proposition.

Proposition 3.5. Let T, V, k be as above and the assumptions of Theorem be satisfied. Suppose
that w(z) = oo for some z € (éZ[)\] N1[0,1))2\ R, where Q is a positive integer. Then there exists
an aperiodic point Z € (%Z[)\])2 ND with

max{[|(t(z)A") | : 2 € D\ P, 7(2) = 00, h € Z}
W] =1 '

IV(Z) |loo <6, whered =

Proof. First note that § exists since #(z) and A" take only finitely many values. If 7(z) = oo for
some z € (%Z[)\] N[0,1))2\ R, then S"R(z) € D\ P for all n > 0 by Theorem B.4. In particular,
S™R(z) is aperiodic as well. We use the abbreviations s, = s(S™R(z)) and t,, = t(S™R(2)). Then
we obtain inductively, for n > 1,
VS IR(2) A1 4 t,_ VR(z)Aso+sit-+sn—1 "1y Asipittsaa
VS"R(z) = &) i VAG) D

K K™

K
k=0

If we look at the algebraic conjugates, then note that |«’| > 1, and we obtain

H (VR(Z)A50+51+~--+STL71)’
[(VS"R(2))']l o, < =+ 4,

oo
|~/

thus ||(VS™R(2))'||,, < ¢ for some n > 0 (as in Section []), and we can choose Z = S"R(z). O

Remarks.
e The last proof shows that, for every z € (Q(A\)N[0,1))? \ 'R with 7(z) = oo, there are only
finitely many possibilities for V.S™R(z), hence (S™R(z))n>0 is eventually periodic.

e For every z € D with 7r(z) = 00, we have

V( ) (VSn Zt ASk+1ttsn—1 k)A S0—"—=Sn—1 _ *ZtkA Z S(Sj(z))nk,
k=0
which is a k-expansion (H < 1) of V(2) with (two-dimensional) “digits” —t A=%0 517" 5k,

e As a consequence of Lemma @ and the definition of U, for every aperiodic point z €
[0,1)2\ R and every ¢ > 0, there exists some m € Z such that [|T™(2) — v||s < c.
e In all our cases, we have ¢ = kr'.

4. THE CASE A = —1/y =158 = 2cos 22

Now we apply the method of SectionE for A = —1/~, i.e., N = ~. To this end, set
D={(z,y)€[0,1)*: 2+y >3-~} =DoUD;

with Dy = {(z,y) € D: & +~yy > 2}, D1 = {(z,y) € D : x4 yy < 2}. Figure [i.] shows that T is
given by T'(z) = T (2) if z € Dy, £ € A= {0,1}, with 7(0) = 1 and 7(1) = 4. The set which is
left out by the iterates of Dy and Dy is R = {(0,0)} U D4 U Dp, with

Dy={2€[0,1)2:T*1(2) = T*(2)A + (0,1) for all k >0},
Dp ={2¢€[0,1)*: T (2) = T*(2)A + (0,2) for all k > 0}.
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FIGURE 4.2. The trajectory of the scaled domains and P, A = —1/7. (¢* stands for T*U(Dy).)

As in Section [, we have T°(z) = z for all z € R. If we set

U(,z)zipt(l 1) = (1,1) -

vy

(Ll) -z
v:
V(z)=(1,1) -2,k =1/4% e=1, and
o: 0— 010 1+— 01110

then Figure [.d shows that o satisfies the conditions in Section [, and P = D, U Ds with D, =
U(Da), Dg = U(Dg). All points in P are periodic and |0™(f)] — oo as n — oo for all £ € A.
Therefore, all conditions of Proposition @ and Theorem @ are satisfied, and we obtain the
following theorem.

Theorem 4.1. If A = —1/~, then the period lengths 7(z) are

1 ZfZ € {(070)5(7214’,177214,1)7(7224’,1;7224,1)}
5 for the other points of the pentagons D and Dp
2(5-4" +1)/3  if S"R(2) = (547, 257) for some n > 0

10(5-4™ +1)/3  for the other points with S"R(z) € Dy, for some n > 0
(5-4"—-2)/3 ifS”R(z):(ﬁ,ﬁ) for somen >0
5(5-4" —2)/3  for the other points with S"R(z) € Dg for somen >0
00 if S"R(z) € D\P for alln > 0.
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Proof. We easily calculate

(omioe) = (17a) + () (i) =+ Ca) + (575):
hence 7(0™(0)) = 34™ — 2, 7(0™(1)) = L4n 4 2. If S”R(z))i o, then m(z) = 7(6™(1)) and

m(z) = T(a"(lllll)) respzétwely, if S"R(z) € Dgg, then m(z) = 7(c™(0)) and 7 (z) = 57(c™(0))

respectively. O

For z € U(D), we have §(z) = s(z) = 0 and ¢(z) = (0,0). For the other z € D\ P, we choose
5(z) as follows and obtain the following s(z), t(z):

2 € T?U(Do) UT?U(Dy) : 8(2) = =2, s(z) = =5, t(z
zeTU(Dy) : 3(2) = —1, 5(2) =
2 €T (D) 5(2) =1, s(2) = 1, t( ):v
2 e TU(Do) UT3U(Dy) : 5(2) =2, s(2) =5, t(z) =V

) = V(z) = (-1/7%,0)
“t=01/7,0)
(
(T%(2)) = V(2) = (0, =1/7%)

Observe the symmetry between positive and negative §(z) which is due to the symmetry of T'(z,y)
and T~!(y, ) and the symmetry of D. With

{(1/7’ O)Ah 2 h € Z} = {(1/’7) 0)7 (07 _1/7)7 (_1/’% 1)) (17 _1)7 (_15 1/7)}7
we obtain § < max{||(t()A")|lec : 2 € D\ P, h € Z}/y = (1/7%)'/y = 7, as in Section Pl The
following theorem shows that aperiodic points with ¢(z) = (—1/42,0) exist, hence § = v
Theorem 4.2. 7(z) is finite for all z € (Z[y] N[0,1))%, but 7(1 —1/(37),1—2/(37)) =

Proof. By PropositionB.g, we have to show that all z € Z[y]2ND with ||V (2)/||e < 7 are periodic.
Since V(D) = {(z,y) : 2 > 0,y > 0,2+ y < 1/~}, we have to consider z,y € Z[y] N (0,1/v) with
|2'|, |y'| < ~. No such z,y exist, hence the conjecture is proved for A = —1/~. Note that 7 (z) is
finite for all z € (3Z[y] N [0,1))? as well. If V() = (1/(37),2/(37)), then we have

1N
VS(z) =~v*(V(2)A° + (0,*1/7 ) = (7v/3,1/(3v%))
VS (z) =2 (VS(2) A% + (—1/9%,0)) = (2/(37),1/(37))
VS3(z) = (VS?(2)A7° + (0,-1/9%)) = (1/(3+*),7/3))

VSH(z) = 7*(VS*(2)A° + (0, -1/4%)) = (1/(37),2/(37)) = V(2),
hence S™(z) € D\ P for all n > 0 and 7(2) = oo by Theorem 1. O

5. THE CASE A = V2 = —2cos %TW
Let A =2 N = —1/2) and set
_ 2. _ _ — — =
D={(z,y)€[0,1)*:V2-2<2—-V2y<0, 0<V2r—y<V2-2} UeeA:{O,Lm} Dy,

Do={(z,y) €D:x<vV2-1}, Di={(z,y)€D:x>vV2-1,y<V2-1},

Dy={(z,y) €D:x>V2-1,y>vV2—-1}, D3={(z,y)€D:x=V2-1}.
Figure f.1] shows that T'(2) = T7()(2) if 2z € Dy, with 7(0) = 5, 7(1) = 9, 7(2) = 3, 7(3) = 11,
and R = {(0,0)} UU;_o T*(Da) UUs_, TH(Dp) with Dy = {(0,y) : 1 —1/v/2 < y < 1/v2},
Dp = {(0,1/v2)}. If weset U(z) = (V2 - 1)z, V(2) =2, k =21, e = —1, and

c: 0—010 1+~ 000 2—0 3 — 030,
then Figure @ shows that o satisfies the conditions in Section E, and
P={(z,y) €D 2,y >V2—-1} =D, UDs UT(Dg) U Dy

with D, = Do, Dg = {(z,v/2 1) : V2 -1 <2 <2—+2}and D; = {(v2 - 1,vV2 - 1)}. All

points in P are periodic and |0"(¢)| — oo as n — oo for all £ € A. Therefore, all conditions of
Proposition E and Theorem @ are satisfied, and we obtain the following theorem.
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FIGURE 5.1. The map T and the set R, A = /2. (£* stands for T*(Dy).)

FIGURE 5.2. The trajectory of the scaled domains and P, A = v/2. (¢* stands for T-*U(Dy).)



PERIODICITY OF CERTAIN PIECEWISE AFFINE PLANAR MAPS 13

Theorem 5.1. If A = /2, then the minimal period length 7(2) is

1 if z = (0,0)

4 if 2 =T"(0,1/2), 0 <m < 3

8 for the other points of T™(D4), 0 <m <3
6 if 2 =T"(0,1/v/2),0<m <5

2-3" 4 (=1)" if S"R(z) = (1/v/2,1/3/2), n >0
8(2-3"+ (=1)")  for the other points with S"R(z) € D
43" 14+ (1)) if SPR(2) € {(1/2,vV2 - 1),(vV2—-1,1/2)}, n >0
8(3" L + 14 (=1)") for the other points with S"R(z) € Dg UT(Dg)
2.3" 44 (=) ifS"R(z)=(V2-1,v2-1),n>0
00 if S"R(2) € D\P for alln > 0.

Proof. We easily calculate
()= () »om (32

(o) = () + o (),

and obtain 7(c™(0)) = 2 - 3" — (f )", T(0™(3)) = 7(0™71(030)) = 23" T 4+ (=)™ If
S™R(z) € Dy and n > 1, then ﬂ'( = 1(0™(2)) = T(a" 1(0)) and 7(z) = 87(c"1(0)) respec-
tively; if S"R(z) € Dg, then 7(2) (o "(13)) = 7(¢"~1(000030)) and 7(z) = 27(¢™~1(000030))
respectively; if S"R(z) = (v2 — 1, \/_ — 1), then w(z) = 7(¢™(3)). The given 7(z) hold for n =0
as well. g

For z € D\ (U(D) UP), we choose §(z) as follows and obtain the following s(z), t(z):
2eT2U(DyUDyUDs): 5(z) = —1,5(2) = =5, t(z) =T (2) —247° = (vV2—1,2 - V2)
2eT'U(DyUDLUDs): 5(z) =1, s(z) =5, t(z) =T(z) — 24° = (2 —V2,V2 - 1)

This gives 6 = (2 + \/5)/\/5 =+/2 + 1 since

{t(z)A" : 2 € D\P,h € Z} = £{(0,0), (2—V2,v2-1),(vV2-1,0),(0,1-V2),(1-V2,vV2-2)}.

Theorem 5.2. 7(z) is finite for all z € (Z[v/2]N[0,1))?, but (Tk(%ﬁ, %))kez is aperiodic.

Proof. We have to consider z € Z[v/2]> N D with ||2/||cc < = v/2+ 1. The only such point is
(vV2—1,v/2—1) = D¢, hence Conjecture EI holds for A = /2. It can be shown that all points in

(3Z[v2] N [0,1))? and (3Z[v2] N [0,1))? are periodic as well. For z = (M M) we have

S(z) = (A% + (2= V2,V2 - 1)) /n = (V2 + )(9 V2 5 ) (3\/_4 - 374\[)7

S2(2) = (S(2)A° + (2= V2, V2 — 1)) /s = (V2 + 1)( ’f\f,ﬁ— Z) = (2\/%[ L 3*4‘/5),

$3(2) = (S()AT + (V2= 1,2= V2)) /s = (32, 223 and §4(z) = (352, 28-1) = >, [

6. THE CASE A = —v/2 = —2cos T
Let A = —v/2 (X = v/2) and set
D={(z,y) €[0,1)?:V2r+y>20rz+v2y>2} =

U DEa
e A={0,1,2}

with Do = {(z,y) € D: x + 2y > 2} and Dy = {(z,y) € D : = + 2y < 2}. Figure .1 shows
that 7(z) = T70(2) if z € Dy, with 7(0) = 1, 7(1) = 21, 7(2) = 31, and
R:{(O,O)}UDAUDBUU2 T*(Dr) UU TH(Da),
Dy ={(z,y):0<zy<3—-2v2}\{0,0),(3 —2\f 2,3 - 2v2)},
Dp={z€[0,1)%: T*1(2) = T*(2)A + (0,1) for all k € Z},
Dr ={z¢€[0,1)%: T*(2) = T*(2)A + (0,2) for all k € Z},
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FIGURE 5.3. Aperiodic points, A = v/2. FIGURE 5.4. Aperiodic points, A = —v/2.

={(1/v2,0)}. Set k =v2—1, V(2) = ((1,1) — 2) /s = (V2 + 1)((1,1) — 2), i.e.,
Uz) = (1,1) = (V2= 1)((1,1) —2) = (V2 - 1)z + (2 — V2,2 - V2).
Then Figure [6.d shows that the conditions in Section [] are satisfied by
o: 0010 1+~000 2 020
with e = —1 and P = D, UJ,_, T*(Ds) UUi_, T*(D¢) with
Do ={z€0,1)%: TF(2) = T*(2)A + (0,3) for all k € Z},
Dg = {(2,2—+2z):5-3v2 <2 <2y2 -2} and D¢ = {(8 — 5v/2,8 — 5v/2)}. All points in P

are periodic and |o™(¢)] — oo as n — oo for all £ € A. Therefore, all conditions of Proposition B.3
and Theorem @ are satisfied, and we obtain the following theorem.

Theorem 6.1. If A\ = —/2, then the minimal period length 7(2) is

1 ifze{(0,0),(l/\/i,l/\/i),(Q—\/5,2—\/5)}

4 if 2 =T™(3/2 —\/2,3/2 —\/2) for some m € {0,1,2,3}
10 if 2 =T™(1/\/2,0) for some m € {0,1,...,9}

8 for the other points in R

2.3 —5(—1)" if S"R(z) = (3 —3/v/2,3 —3/v/2) for somen >0
8(2- 3" —5(—1)")  for the other points with S"R(z) € D,
A(B"2 45— 5(—=1)")  if S"R(z) = T™((9 — 5v/2)/2,5 — 3v/2) for some m € {0,...,5}, n >0
8(3"t2 45— 5(—1)") for the other points with S*R(z) € T™(Dpg)
2372190 — 5(—1)" if S"R(z) = T™(8 — 5v/2,8 — 5v/2) for some m € {0,1,2},n >0
00 if S"R(2) € D\P for alln > 0.
Proof. As for \ = \/5, we have

o™ (0)o) _ an (3/4 1/4 0" (Do) _ an (3/4) _(_qyn (—3/4
(oeiot) = (Ga) ~ oo (A0 (et = (a) +oor (5.
hence 7(6™(0)) = 2 - 3"t — 5(=1)" and 7(0™(2)) = 7(c"~1(020)) = 2 - 3" + 20 + 5(—1)". For
S™R(z) € D, we have 7(z) = 7(6™(0)) and 7(z) = 87(c™(0)) respectively; if S”R(%) € T™(Dg),
then 7(z) = 7(¢™(002000)) and 7(z) = 27(¢™(002000)) respectively; if S"R(z) = T™(D¢), then
m(z) = 7(c™(020)). O
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FIGURE 6.2. The trajectory of the scaled domains and P, A = —v/2. (¢* stands for T-*U(Dy).)

For z € D\ (U(D) UP), we choose §(z) as follows and obtain the following s(z),t(2):
5(z) = 1, 5(z) = 1, H(z) = V(T }(2)) = V(2)A™" = (1,0)

zeT2U(DyU Dy UD,):
Y=1,5(2) =1, t(z) = V(T'(z)) — V(2)A = (0,1)

zeT7W(DyUDyUDy): (2
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FIGURE 7.1. The map T, A = 1/v. (¢* stands for T*(Dy).)
This gives § = v/2/y/2 = 1 since
{t(z)A": 2 e D\ P,h € Z} = £{(0,0), (1,0),(0,1), (1, —V2), (—v2,1)}.

Theorem 6.2. (z) is finite for all z € (Z[V2] N [0,1))2, but (T*(3, 2))rez is aperiodic.

Proof. Since V(D) = {(z,y) : = > 0,y > 0,z + 2y < lor \/iac + y < 1}, there exists no
z € Z[V2]? N D with |[(V(2))||lsc < 1. Therefore Conjecture holds for A\ = —v/2. Tt can

be shown that all points in (3Z[v/2] N [0,1))? and (3Z[v2] N [0,1))? are periodic as well. For
2= (1,55), we have V(2) = (4, 7),

VS(z) = (V24 D)(V(:)A

), V83 (2) = (2

(0,

<f+1><1 ) - (),

VS (2) = (1 1) and V.S4(z) = (¥2E

7. THE CASE A = 1/y = —2cos 3L
Let A\ =1/ (N = —v) and set

_ 2. _
D={@y el yz-1<y<e/vt =, 00 P0

with Dy, D1, Da, D3 satisfying the (in)equalities
Dy | D, | Dy | D3
y>a—1/42[0<y<a—-1/4*|y=2—-1/7"|y=0,1/7*<a <1/y
Figure []] shows that T'(z) = T7()(2) if z € Dy, with 7(0) = 6, 7(1) = 4, 7(2) = 7, 7(3) = 5, and
R =1{(0,0)}. If weset U(z) = z/+%, V(z) =2,k =1/9% e =1, and
o: 0— 010 1+— 01110 2012 3— 01112

then Figure .9 shows that o satisfies the conditions in Section E and
P =D, UDgUU Dg)uDﬁuU T%(D,) U D,

with D, = {z € D : T%(z) € Dy forallk € Z}, Dg = {z € D : T*(z) € D; for all k € Z},
D¢ = {(z,0) : 1/v* < 2 < 1/4*}, D, = D3, Dy = {(1/42,0)} and D, = {(1/4%0)}. Al
points in P are periodic and |0"(¢)| — oo as n — oo for all £ € A. Therefore, all conditions of
Proposition E and Theorem @ are satisfied, and we obtain the following theorem.
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FIGURE 7.2. The trajectory of the scaled domains and P, A = 1/~. (¢* stands for TkU(Dg).)

Theorem 7.1. If A = 1/, then the minimal period length 7(z) is
1 if 2 = (0,0)
2(5-4"+4)/3  if S"R(z) = (711,7 +1) for somen>0
10(5-4" 4+ 4)/3  for the other points with S"R(z) €
4(5-4m —2)/3 ifSnR(z):(,Y;—il,ﬁ) for somenZO
20(5 - 4™ — 2)/3 for the other points with S"R(z) € Dg
54"t —1)/3  if S"R(z) = (0,1/2) for somen >0
10(4"*tt —1)/3  for the other points with S"R( ) € Dy
5(2-4m1 4 7)/3  if S"R(z) = T™(1/(27),0) for some m € {0,1,2,3} and n >0
10(2- 4™+ +7)/3  for the other points with S"R(z) € T™ (D)
(10-4" +11)/3  if S"R(2) = (1/4%,0) for some n >0
(54711 419)/3  if S"R(z) = T™(1/~3,0) for some m € {0,1} and n > 0
00 if S"R(z2) € D\P for alln > 0.
Proof. As for A = —1/, we have

(ntoie) = ()« () () - G) = (3):
hence 7(0"(0)) = 4" + 8, 7(0"(1)) = L4 — £, 7(0™(2)) = 47 + L 7(o7(3)) = D4 - 3

T(o™(1)) = , 2,
For S"R(z) € D, we have 7(z) = 7(¢™(0)) and w(z) = 57(c™(0)) respegctively; if S"R(z) € DZ,
then m(z g = 7(c™(1)) and 57(c™(1))
) =

respectively; if S"R(z) € D,, then 7(z) = 7(¢"(3)) and
27(0™(3)) respectively; if S"R(z) € D¢, then n(z) = 7(¢™(0002)) and 27(c™(0002)) respectively;
if S"R(z) = T™(1/+3,0), then m(z) = ( 7(02)); if S"R(2) = (1/42,0), then 7n(2) = 7(¢™(2)). O

Note that 7"™U (Ds) plays no role in the calculation of § since U(Ds) € U(P) and thus 7(z) < co
for all z € T™U(Ds3). For the other z € D\ (P UU(D)), we choose §(z) as follows:

2 e T?U(Dy U Dy U Dy) : 5(2) =10, t(2) =T72(2) — 2 = (=1/7,—1/9?)
zeTU(DyUDs) : 3(2) = —6, t(z) = T Y2)+ 2471 = (1,1/9)
zeTU(Dy): 8(2) =1, s(2) =6, t(z) =T(2) +z4 = (1/7,0)
2 € TU(Do) UT?U(Dy) : 3(2) ) =10, t(z) = T2(z) — z = (=1/42,0)
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1 T T T T T T T T T 1 T T T T T T T T T
09 | g 09 | 4 4
0.8 B 0.8 : 3 9
0.7 4 0.7 F 4
0.6 1 0.6 4
05 F B 05 4
04 A 04 N
03 F B 03+ 4
0.2 - 0.2 F ’ ’ 4
0.1 4 0.1 £ & 4
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
FIGURE 7.3. Aperiodic points, A = 1/7. FIGURE 7.4. Aperiodic points, A = —~.

This gives again § = 72/ =  since
{(1/7.004" s he Z} = £{(1/7.0), (0,1/7), (/7. 1), (1,1), (1, 1/7)}.
Theorem 7.2. w(z) is finite for all z € (Z[y] N [0,1)), but (T*(1/4, 1/(473)))kEZ is aperiodic.

Proof. Conjecture [L.1 holds for )\ = 1/ since no z € Z[y]?>ND satisfies ||| < 7. It can be shown
that all points in ($Z[y] N [0,1))? and (3Z[] N [0,1))? are periodic as well. If z = (1/4,1/(47?)),
then we have S(z) = (7%/4, 1/(47) S2(z) = 3(S(2) — (1/4%,0)) = ((3y — 2)/4,v/4) and
B (2) =72 (8%(2) = (1/7.1/7%) = (1/4,1/(47%)) = =. D

8. THE CASE A = —y = —2cos §
Let A= —y (M =1/v) and set
D={(z,y) €[0,1)?: x <y, yr+y>4—~}=DyUD;
with Do = {(z,y) € D:2 >1—-1/9°}, Dy = {(2,y) € D: 2 <1 —1/+°}. Figure B.1] shows that
T(z) = T™O(2) if z € Dy, with 7(0) = 42, 7(1) = 28, and
R:{(O,O)}UDAUDBUU;O (Dr) UU ¥(Da) UU *(Dg) UU

with Da = {z: TF*1(2) = TF(2)A + (0,1) for all k € Z}, D = {z : T*1(2) = T*(2)A + (0,2)},
DA = {z € [0,1)? : T?*+1(2) = T?*(2)A + (0,2), T?*(2) = T?*"1(2)A + (0,1) for all k € 7Z},
Dr = {(,y) : 0 < 2,y < 1/4'}\ {(0,0), (1/7", 1/7 )}, Dp = {(z,2) : 1-1/7° <z < 1},
Dz ={(1—1/4"1-1/7%)}. Set & = 1/2 V() = 7H((1,1) = 2), Le.
U(z) = (1,1) = ((L1) = 2) /7" = 2/7* + (1/7, 1/7).
Then Figure shows that the conditions in Section E are satisfied by € = 1 and
oc: 0~ 010 1+—01110.

All points in P = D, U Dg are periodic, with D, = {z € D : T"(z) € Dy for all k € 7},
={z€D:T"z) € Dy forall k € Z}. Since |0"({)] — oo as n — oo for all £ € A, all
conditions of Proposition @ and Theorem @ are satisfied, and we obtain the following theorem.



PERIODICITY OF CERTAIN PIECEWISE AFFINE PLANAR MAPS 19

N

FIGURE 8.2. The trajectory of the scaled domains and P, A = —v. (£* stands for T*U(Dy).)
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Theorem 8.1. If A = —~, then the minimal period length 7(z) is

1 i = € {(0,0),(1/7%1/72), (2/.2/7%)}

2 if z € {(35, 2, (32, 500}

5 if 2 =T™(1/(2v*),1/(2v%)) for some m € {0,1,2,3,4}

10 for the other points of Da, Dg, T™(Dr), T™(DAa)

11 if z=T™(1 —1/45,1—1/%%) for some m € {0,1,...,10}

25 if z=T™(1 —1/(27%),1 — 1/(27%)) for some m € {0,1,...,24}
50 for the other points of T™(DEg)

2(35-4™+28)/3 if S"R(z) is the center of D,
10(35 - 4™ + 28)/3  for the other points of Dy
4(35-4™ —14)/3  if S"R(z) is the center of Dg
20(35-4™ —14)/3  for the other points of Dg

00 if S"R(z) e D\P for alln >0
Proof. As for A= —1/v and A = 1/~, we have

(8- (8 (5 (8- ()+(0)
hence 7(0™(0)) = (70 - 4" + 56)/3, 7(c™(1)) = (140 - 4" — 56)/3. For S"R(

) z
7(z) = 7(6™(0)) and 57(0™(0)) respectively; if S™R(z) € Dg, then 7(z) = (™ (
respectively.

) € D,, we have
1)) and 57(c™(1))
(|

We choose §(z) as follows and obtain the following s(z),t(2):

2eT?U(DyUDy): §(z) = =2, s(z) = =70, t(z) = V(T %(2)) = V(2) = (=1/4%, —1/~?)
zeTU(Dy) : 8(2) = —1, s(2) = =42, t(z) = V(T71(2)) = V(2)A™2 = (1/,1/)
zeTU(Dy): 8(2) =1, s(2) = 42, t(2) = V(T(2)) — V(2)A% = (1,0)
2 € TU(Do) UT?U(Dy) : 3(2) = 2, s(2) = 70, t(z) = V(T?%(2)) — V(2) = (=1/~,0)

This gives again § = v%/y = v since
{(1,0)A" : he Z} = £{(1,0), (0,1), (1, =1/7), (1/7,1/7), (1/7, ~1)}.
Theorem 8.2. w(z) is finite for all z € (Z[y] N[0,1))2, but 7(1 —1/(3v%),1 —1/(37")) = .

Proof. Since V(D) = {(z,y) : > y > 0,yx +y < v}, we have no point z € Z[y]?> N D with
[V(2)|lso <7, and Conjecture [ holds for A = —v. If V(2) = (7%/3,1/(37)), then we have

VS(z) =2 (V(2) - (%0)) = (% 1), VS2=) =2 (VS(2) - (% %)) _ (723; L %)

VS3(z) =4*(VS2(z) — (712, 712)) = (373 3y L:) and V.S*(2) = 43(VS3(z) — (%,0)) =V(z). O

9. THE CASE A = /3 = 72COS5%

The case A = /3 is much more involved than the previous cases. Therefore we show only
that all points in (Z[v/3] N [0,1))? are periodic and refrain from calculating the period lengths.
Furthermore we postpone the determination of 7" and R to Appendix @ Let

D = {(z,y) : 20—V3y < 2—V3,2y—V3zx < 2—V3,y—V3zx < 195-113V/3,2—/3y < 195-113V3}
and D1 = D\ Dy, where Dy is defined by the inequalities
2z — /3y > 267 — 154V/3, 2y — V/3z > 267 — 154V/3, y — V3z > 98 — 573, & — /3y > 98 — 57V/3.

The sets D1 and Dy have to be treated separately because their trajectories are disjoint, and
both sets contain aperiodic points. The trajectories of aperiodic points in D; come arbitrarily
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(17 1)

0-{'1601,173‘3}

(724.— 414/3,72 — 411/3)
(73/2 - 41V/3/2,73/2 - 41V3/2)

20 {3175.3307}
J4Q ' PEEE
20 T 115524
00 ({19327,19459}

(72 — 41y/3,72 — 411/3)
FIGURE 9.1. The first return map on D; and Ds respectively, A = v/3. (¢ stands for T#(Dy).)

close to (1,1), whereas (72 — 41/3,72 — 414/3) is a limit point in Dy. (Note that 72 — 41/3 =
1—(V3+1)(2 - v3)* = 0.9859.) The scaling maps are

Ui(z) = (2—=V3)z+ (V3—-1,V3—-1) =V (kVi(2)) for z € Dy,
Us(z) = (2 — V3)z + (113V/3 — 95, 113\f— 195) = V; Y(kVa(z))  for z € Dy,
with & =2—+/3, Vi(2) = ((1,1) — 2)/k*, Va(z) = (2 — (72— 41/3,72 = 411/3)) /x®. Then we have
Vi(D) = {(z,y) : 22 > V3y, 2y > V3x, . > V3y — 2, y > 3z — 2},
Va(Da) = {(z,y) : 2¢ > V3y, 2y > V3z, > V3y — 2 — V3, y > V3z — 2 — V3}.

)
(
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The first return map T induces a partition of D into sets Dy, ..., Dg and a partition of Dy into
sets Do, ..., Dy, as in Figure @ These sets are defined by the following (in)equalities:
Vi(Do) | Vi(D1) | Vi(D2) | Vi(Ds) | Vi(Dy4)
T > \/gy -1

z>\/§y1‘2x>\/§y+\/§1

2y>\/§z+\/§1‘2y>\/§x+\/§1

r <2 r>2 r>2 y<2v3-1 y>2v/3—1
Vi(Ds) | Vi(Ds) | Vi(D7) | Vi(Ds) | Vi(Dy)
x:\/gy—l T =2 y:2\/§—1 2x:\/§y+\/§—1 2y:\/§x+\/§—1
r<3-1/V3 r>2 T > 2
Va(Do) | Va(D1) | Ve(D2) | Va(D3) | Vo(Da)

y>\/§x—1|y<\/§x—1,x<\/§+1|x>\/§+1|y:\/§x—1|x:\/§+1

The return times of z € Dy to D are given by the following tables.

Do | Di | Dy | Dy | Dy | Ds | D¢ | Dr | Ds | Dy
1601, 1733 | 3175, 3307 | 3230 | 7406 | 9771 | 3021 | 3593 | 9799 | 11473 | 7907
Do | Di | Dy | Ds | Dy

19459 | 15524 | 3175, 3307 | 18171 | 3593

Note that the return times are not constant on all Dy. E.g., the return time for z € Dy is 1601
if Vi(z) = (1,y) and 1733 else, see Appendix @ for details. Since we do not calculate the period
lengths, it is not necessary to distinguish between the parts of D, with different period lengths.

9.1. The scaling domain D;. Figure shows the trajectory of the open scaled sets in Dj.
Here, V(D) is split up into the three stripes z < v/3 — 1, v/3 —1 < x < 2 and = > 2, and D;
denotes the set given by Vi(D;) = {(x,y) € Vi(D) : x > /3y — 1,z < 2}. We see that

0 — 010 3 ~— 012100001210 5 ~— 01510 7 ~ 01210000500001210
op: 1 ~ 01110 4 ~ 01210000000001210 6 +~ 01610 8 +~ 01210012621001210
2 — 01210 9 +— 0121005001210

codes the trajectory of Uy(Dy), £ € {0,1,2,3,4}, with T171OIU, (z) = U,T(2) for z € Dy. All
points in D, Dg and D, are periodic. Flgure @ shows that Dg, DC~, D5 and the grey part of
U1(Dj) split up further, but all their points are periodic as well.

The trajectory of the scaled lines is depicted in Figure @, where again V(D7) is split up into
the stripes < V3 —1, vV3—1 <z < 2 and > 2. Here, D7 denotes boundary lines of D1,
and Dj is given by Vi(Dg) = {(2,y) € Vi(D)}. We see that o1 codes the trajectory of Uy (Dy),
¢ e€{5,6,7,8,9}, as well and satisfies the conditions in Section I with respect to D1). All points in
D,,D,Dx,D,,D,,D¢,D,,Dr,D, (and their orbits) are periodic. The finitely many remaining
points in P1 = {z € D; : Tm(z) ¢ Uy(Dy) for all m € Z} are clearly periodic as well. Since
o7 (€)] — oo for all £ € {0,...,9}, we can use Proposition B.5 to show the following proposition.

Proposition 9.1. 7(z) is finite for all z € Z[v/3]*> N Dy, but 7(V; (V3 +1/4,7/4)) = oo

Proof. First we show that only Dy and D; contain aperiodic points: D3, Dy, D7, Dg, Dg lie in P;.
The only part of Dy which is not in P; or TmUl(Pl), lies in T2U1(D2). By iterating this argument
on 12U, (D3), the possible set of aperiodic points in Dy becomes smaller and smaller, and converges
to Vl_1 (2, V3) & Dy. A similar reasoning shows that all points in D5 and Dg are periodic.
Therefore it is sufficient to determine ¢(z) for points in the trajectories of Uy (Do U Dy).

z € TU (Do) UT3UL(D1) : 8(2) = 2, s(z) = 0mod 12, ¢(z) = (1 — V/3)(V/3,2)
ze T*UL(Dy) : 3(2) =1, 5(2) = 5 mod 12, t(2) = Vi(T(2)) — Vi(2)A® = (V/3,2)
zeTU (D) : 3(2) = —1, 5(2) = =5 mod 12, t(z) = (2, V3)
2 € T2U (Do) UT?U (Dy) = 3(2) = —2, s(z) = 0mod 12, t(z) = (1 — v3)(2,V3)
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FIGURE 9.2. T}le trajectory of the~open scaled sets in D; and the set Py, A = /3.
(€% stands for T*U,(Dy) if £ € {0,1,2,3,4}, for T*(Dy) else.)

23
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FIGURE 9.3. Tlhe trajectory of the s~caled lines anq the set P, A = v/3.
(€% stands for T*U,(Dy) if £ € {1,5,6,7,8,9}, for T*(Dy) else.)
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44

FIGURE 9.4. Small parts of P1, A = v/3. (¢* stands for T*(Dy) for ¢ & {1,6}.)

We have 6; = (v/3 +1)2/(v/3 4+ 1) = 2 since
{(V3,2)A" . h e Z} = £{(V3,2), (2,V3), (v3,1), (1,0), (0,1), (1,V3)}.

The only point z € Vi (Z[v/3]2 N Dy) with ||| < 2is (1,1) € Vi(D,).
If Vi(z) = (/34 1/4,7/4), then we have

ViS(2) = 2+ V3)(Vi(2) + (1 — V3)(2,V3)) = (3/2 + V3/4,3V3/4 + 1/2),
ViS2(2) = (2+ V3) (ViS(2) + (1 — V3)(2,V3)) = (7/4,V3 + 1/4),
V183(2) = (2+V3) (ViS%(2)+(1-V3)(V3,2)) = (3V3/4+1/2,3/2+/3/4), V1S*(2) = Vi(z). O
Remark. The primitive part of o; is again 0 — 010, 1 — 01110.

9.2. The scaling domain D,. Figure @ shows the trajectory of the the scaled domains in Ds.
Here, V5(D3) is split up into z < V3+1land z >3+ 1. With ey = 1 and

0 — 01222222210 3 — 012242210
oy: 1 — 012210 4 — 030
2 — 0
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FIGURE 9.5. TAhe trajectory of the scaleai domains in D5 and the set Pa, A = V3.
(€% stands for T*(Dy) if £ € {1, w}, for T*Us(Dy) else.)

the conditions in Section ] are satisfied. The set Py = {z € Dy : T™(2) & Us(Dy) for all m € Z}
consists of the orbits of D, D,, Dy, D,, and several isolated (periodic) points. Since |5 (£)| — oo
for all £ € {0,1,2,3,4}, we can use Proposition B.3 to show the following proposition.

Proposition 9.2. 7(2) is finite for all z € Z[v/3]> N Da, but ©(Vy *(5/7,3v/3/7)) = co.
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FIGURE 9.6. Aperiodic points, A = v/3. FIGURE 9.7. Aperiodic points in D; U Dy, A = /3.

Proof. Similarly to Dy, we see that all points in D3 and D4 are periodic. Choose §(z) as follows:

2 € T™U (Do) UT Us(D1) : 8(2) = 1, s(2) = 7 mod 12, t(z) = (2,V/3)
2 € TUy(Do) UT*Us(D1) : 8(2) = 2, 5(2) =3 mod 12, t(z) = (1 —V3,V3 - 1)
2 € T8U(Do) UT?Us(Dq) : 8(2) = 3, s(z) = 10 mod 12, £(z) = (1 — /3, —3)

2 € T™Us(Do) : 3(z) =4, s(z) =5 mod 12, t(z) = V3(V/3,2)

2 € TOUy(Do) : 5(2) = 5, s(z) = 0mod 12, t(z) = —2(V/3,2)

For the remaining z € T™Us(Do U D1), 3(2),s(z) and ¢(z) are obtained by symmetry. The sets

{(1-V3,V3—-1)A" :h € Z} and {(V3 —1,3)A" : h € Z} are
+{(1-V3,V3-1),(V3-1,2),(2,V3+1),V3+1,vV3+1),(vV3+1,2),(2,V3 - 1)},
+{(v3-1,3),(3,2V3+1),(2v3+ 1,3+ v3),3+V3,2+V3),(2+V3,V3), (V3,1 — V3)},

hence 65 = 4/(v/3+1) = 2(v/3—1). The only = € Z[v/3] with 0 < z < 5 and |2/| < 2(v/3 — 1) are
1,14 /3,24 /3 and 3 + /3. Therefore the only z € Va(Z[v/3]? N Dy) with ||2']le < 2(V3 — 1)
are (1,1), the center of VaUs(Dy), (1++/3,1+/3), the center of Dy, (2++/3,24+/3), the center
of Dy, and (3 + /3,3 + v/3), a fixed point of T°3.

If Va(z) = (5/7,3+/3/7), then we have V25(2) = (2 + v/3)Va(z) and
VS52%(2) = (24 V3) (VaS(2) A3 + (1 — V3,V3 — 1)) = (5/7,3V3/7) = Va(2).

By combining Propositions @ and @ and the fact that all points in R are periodic (see
Appendix @), we obtain the following theorem.

Theorem 9.3. Conjecture holds for A = /3.

O

Remark. The eigenvalues corresponding to the primitive part of oo (¢ € {0,1,2}) are 5,—2 and 1.

10. THE CASE A = —/3 = —2cos &

6
Let D = {(z,y) € [0,1)? : 2 + /3y > 5v3 — 6 or y + v3z > 5v/3 — 6}, Uy as in Section [§ and

U(z) =U%(2) = (2 V3)%2 + (4V3 — 6,4V3 — 6) = V" 1(kV(2)),
=(2—+3)% V(2) = ((1,1) — 2)/k. Then we have
V(D) ={(z,y): >0, y>0, z+V3y<lory+ 3z <1}.
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00

et

FIGURE 10.1. The map 7' on D, A = —/3. (¢* stands for T*(Dy).)

Figure shows the first return map T on D, which is determined in Appendix E The sets
Dy, ..., Dg satisfy the (in)equalities

V(Do) | V(D) | V(D2)
\/§$+y<1 | \/§x+y>1,x<\/§—1|x>\/§—1,2x+\/§y7é\/§
V(Ds) | V(Dy) | V(Ds) | V(Ds)

V3rt+y=12<1/2|V3z+y=12>1/2|z=V3-1|22+3y=3

The remaining point z = V~1(1/2,1 — v/3/2) has return time 183 and satisfies 71°(z) = z.
Figure shows that the first return map on U, (D) differs from U;7U; ! on several lines.
Therefore we add the lines D7, Dg, Dy satisfying the following (in)equalities
V(D7) | V(Ds) | V(Do)
\/§z+y:1 | \/§z+2y:1,x>27\/§| \/§x+2y:1,z<27\/§

and define Dy = Do \ V"1 ({(z,y) : V3x + 2y = 1}), D5 = D2 U Dg. For z € D;, £ € {0,2} and
z € Dy, £ =1, we have T/ (2) = Uy T(z) with

0 — 020 1 — 01020 2 — 010°10

5 +— 010%0 7 +— 050 8 +— 060*10 9 +— 060730°40

Figure shows that the substitution o given by o(¢) = o102(¢) with

0 — 020 1 — 01010 2 ~— 010°10
3 +— 050°90°80 4 +— 050*10 5 +~— 010*70*10 6 +— 010%30

satisfies the conditions in Section | (with e = 1). The coding of the return path of the remaining
point is a1 (05047080).

Theorem 10.1. 7(2) is finite for all z € (Z[v/3] N [0,1))?, but 7(V=1(2/7,+/3/7 4+ 1/7) = cc.

Proof. First we show that all points on the lines U*(Dy), £ € {3,...,9}, n > 0, are periodic. The
only possibly aperiodic part of Ds is TU; (D7), and the only possibly aperiodic part of Uy (D7) is
T2U2(Ds). Inductively, the set of aperiodic points in D5 converges to V="' (v/3—1,1—1/v/3) & Ds
and is therefore empty. Therefore, all points in U"(Dj5) and U"U; (D7) are periodic. Similar
arguments show that all points in U™(D3) in UMU;(Dg) are periodic, then the same holds for
U™(Dy4) and U™Uy(Ds), for U™(Dg) and U™Uy(Dsg), and finally for U™ (Ds) and U"U;(Dg). Then
it is clear that all points in U"U; (D3 U Dy) and U™ (D7 U Dy) are periodic as well.

g1 .

o9
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FIGURE 10.2. Trajectory of U; (D) and large parts of P, A\ = —/3. (£* stands for T*U, (Dy).)

Therefore we can limit our considerations to Uj*(Dg U Dy U D), and consider the scaling map
U; instead of U. If we define $1(z), s1(2) and ¢1(z) accordingly, we obtain:

ze T D) : 51(2) =1, 51(2) = 11 mod 12, t1(2) = V(T (2 )) V(2)A™t = (1,0)
2 € TOUL(Dy) UTM UL (Dy) : 51(2) = 2, s1(z) =5 mod 12, t1(2) = (—1,V/3 — 1)
2 € TU(Dy) UTYU(Dy) : 51(2) = 3, 51(2) = 4mod 12, t1(2) = (V3 — 1, \/_ 2)
z € T (D) UT U (Ds) : 81(2) =4, s1(2) = 3mod 12, t1(z) = (V3 —1)(—V3,2)

2z € TPUL(Dy) : 81(2) =5, s1(2) = 2mod 12, t;(2) = (2 f f —2)

2e TTUL(Dy) : 31(2) =6, 51(2) = 1 mod 12, t1(2) = (2v/3 — 4,3V3 — 4)
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016

FIGURE 10.3. Trajectory of U(D) and small parts of P, A = —/3. (£* stands for TFU(Dy).)

For the remaining z, §1(2), s1(z) and ¢1(z) are given symmetrically. By looking at the following
sets {t1(2)A" : h € Z}, we obtain §; = (3v3+4)/(vV3+1) = (5+ v/3)/2:

+{(1,0), (0,1), (1,=V3), (=v3,2), (2,-V3), (-V3,1)},
H{(1,1-V3), (1-v3,2-V3), 2-v3,2-V3), 2-v3,1-V3), (1 -v3,1), (1,-1)},
+{(2v3 —4,3V3 —4), 3V3 - 4,2V3—5), (23 —5,2V/3-2),
(2v3-2,-1), (-1,V3-2), (2—V3,4—2V3)}.

The only # € Z[v/3] with 0 < # < 1 and |2/| < (5 + v/3)/2 is /3 — 1. Therefore no point
z € V(Z[V/3]> N D) satisfies ||2'||oo < 61, and Conjecture [[.] holds for A = —/3.
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FIGURE 10.4. Aperiodic points, A = —v/3. FIGURE 10.5. Aperiodic points in D, A = —/3.

IfV(z) = (
VSi(2) = 2+ V3)(V(2)A® + (V3 — 1)(—V3,2) = (3V3/7 — 5/7,5V3/7 — 3/7),

VS3(z) = (2+V3)(VSi(2)AM + (1,0) = (V3/T +2/7,V3/7 - 1/7),

VS (2) = 2+ V3)(VSF(2)A® + (—1,V3 — 1) = (V3/7 — 1/7,3V/3/7),

VSH(z) = (24 V3)(VSP(z)AM + (1,0) = (2/7,V3/7T+1/7) = V(2). 0

Remark. The eigenvalues corresponding to the primitive part of o1 (¢ € {0,1,2}) are 5, —2 and 1.

2/7,7/3/7 4 1/7), then we have

11. THE THUE-MORSE SEQUENCE, THE GOLDEN MEAN AND \/§

We conclude by exhibiting a relation between the Thue-Morse sequence and substitutions we
used in golden mean cases (see [E] for a survey on links between fractal objects and automatic
sequences). The Thue-Morse sequence is a fixed point of the substitution 0 — 01, 1 +— 10:

01101001100101101001011001101001 10010110011010010110100110010110 - - -
It can be written as
By subtracting 1 from each term of the sequence of exponents (the run-lengths of 0’s and 1’s) we
obtain the sequence
0100111001001001110011100111001001001110010 - - -

which is easily shown to be the fixed point of the substitution 0 — 010, 1 + 01110 (see [{]), which
is equal to o in the cases A = =1/, A = 1/y, A = —v, and to o1 in the case A = V3. In case

A = v, we have that 0°°(1) is the image of this word by the morphism 0 — 10, 1 — 110 since
o(10) = (10)(110)(10) and o(110) = (10)(110)(110)(110)(10).
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FIGURE A.1. The first return map T3 and large parts of R, A = v/3. (¢* stands for T#(Dy).)

APPENDIX A. THE MAP T' FOR \ = V3.

As the scaling domain D is very small in case A = /3, the determination of T is done in several
steps. Figure EI shows the action of T3, which is the first return map on the domain

{>4V3-6,2y < V3z+2—V3,y > V3z+1-V3 U{z < 1,y > 12/32—20,y > V3z+6v3—11},
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9
AN 924ﬁ W2 E_zr%'gﬁ' AS o0

FIGURE A.2. Trajectories of long lines in R and Dy, Dy, Dy, Dy, A = V3. (Kk
stands for T%(Dy).)

on sets Dy, ..., Dy. To this end, we first determine the trajectory of sets Dg, Dy, ..., Dy, which
partition a symmetric version of this domain. Figure @ shows the trajectory of the open sets
D, Dy, D¢, Dg, D, Dy, Dj, Figure @ completes the picture with the trajectories of the lines
Dy,Dgy, Dy, Dy. All points which are not on these trajectories are periodic. ;From the symmetric
first return map, it is easy to determine Tg.

Next, we consider the first return map on

{(x,y): 2y <V3Bx+2—3, 26 <V3y+2—3,z>30V3—-51ory>30/3—51}

in Figures @ and @, partitioned into open sets Dy, Dy, , Dy, , Dy, D and lines Dy, D,, Dj, Dj.
JFrom this map, we easily obtain the first return map Ty on {(z,y) : 2y < v3z +2 — /3, 2z <
V3y +2— /3, 2 > 30V/3 51 and y > 30v/3 — 51}, which is partitioned into the sets Dy, ..., D,.
Observe that the return time on D; is not constant since the trajectories of the three parts
Dy, Dy,, Dy, are different. This implies that the return times on Dy, D; and Dg are not constant.
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FIGURE A.3. An intermediate first return map, A = v/3. (¢* stands for T5(Dy).)
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FIGURE A.4. The trajectory of the lines, A = v/3. (¢¥ stands for T%(Dy).)
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S(1,1)

Tk = AT

" {655,787}

(30v/3 — 51,303 — 51)
FIGURE A.5. The map Ty, A= /3. (¢% stands for T*(Dy).)

Finally, we consider in Figure @ the first return map on
{(z,y): 2y <V3Bx+2—V3,2e <V3y+2—+3,2>72—41V3 or y > 72 — 413},
partitioned into sets Dy, Dy, ..., Dg, Dg, Di, D3, from which it is easy to deduce T on D.
APPENDIX B. THE MAP T FOR \ = ,\/g_

For A = —/3, we consider in Figure EI the first return map on
{(z,y) €[0,1)%: 2z +V3y > 3V3 — 2 or V3z + 2y > 3v/3 — 2},

37

partitioned into sets D,,...,D;. Figure provides the first return map T on D. Again, all

points in R are periodic.
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FIGURE A.6. Almost the map T, A = /3. (¢* stands for TF(Dy).)
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FIGURE B.1. A first return map and large parts of R, A = —/3. (¢ stands for T*(Dy).)
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The map 7' and small parts of R, A = —/3. (€% stands for T*(Dy).)



