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Abstract

The Smoluchowski equation is a nonlinear integro-differential equation
describing the evolution of the concentration u:(dz) of particles of mass
in (z,z + dz) in an infinite particle system where coalescence occurs. We
introduce a class of algorithms, which allow, under some conditions, to
simulate exactly a stochastic process (X;):;>0, whose time marginals are
given by (zp:(dz))i>o.
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1 Introduction

The Smoluchowski coagulation equation describes the evolution of an infinite
particle system in which coalescence by pairs occurs. We assume that each parti-
cle is entirely characterized by its mass. We consider the concentration measure
pt(dzx) of particles having their masses in (x, z + dz) at the instant ¢ > 0. If one
considers that two particles of mass x and y coalesce at rate K(z,y), for some
coagulation kernel K, then (u;):>o satisfies the coagulation equation.

In [4], a pure jump nonlinear stochastic Markov process (X;);>0 has been asso-
ciated with the coagulation equation, in the sense that for each ¢ > 0, the law of
X, is given by zus(dz). This process may be seen as the evolution of the mass
of a “typical” particle.

Our aim in this paper is to give a new existence proof of (X;)¢c[0,00) (and thus
of a solution to the Smoluchowski equation), by exhibiting an exact simulation
algorithm. Our construction is thus explicit and direct. No approximation will
be done. To our knowledge, the only existence proof not relying on successive
approximations is due to Melzak, [11], and treats the case where K is bounded



(he also allows some fragmentation, and his proof relies on the use of series).
Note that we do not obtain new existence results: our assumptions are, for ex-
ample, stronger than those of Norris, [12].

We will treat in this paper both discrete case (i.e. when the particles have their
mass in N*) and continuous case (i.e. when the particles have their mass in
(0,00)). We will cover the case where K(z,y) grows at most linearly at infin-
ity. We do not allow fragmentation for simplicity, but the method could clearly
be extended, at least in the discrete case and with a “reasonnable” fragmenta-
tion kernel. On the contrary, we do not deal with gelling kernels (for example
K(z,y) > (zy)* with a > 1/2), because our method would probably break
down.

This study naturally leads to a new Monte-Carlo numerical scheme for the
Smoluchowski equation, which we will compare to the stochastic finite particle
method of Eibeck-Wagner [5].

The paper is organized as follows. In Section 2, we introduce the definitions of
solutions to the coagulation equation, and of the nonlinear process (X¢);>o. In
Section 3, we describe a simulation algorithm for the discrete case. Section 4 is
dedicated to the extension of the previous method to the continuous case. We
finally present some numerical simulations in Section 5.

The whole work is inspired by papers on the Boltzmann equation, especially
those of Tanaka, [13], Graham-Méléard, [7], and Chauvin, [3].

2 Definitions

We first of all introduce some notations. For a subset A of (0, 00), we denote by
M;F(A) (resp. P(A)) the set of nonnegative finite measures (resp. probability
measures) on A. For a measure v and a function f, we denote by (v, f) or
(v(dz), f(z)) the integral [ fdv. Next we introduce some assumptions on the
coagulation kernel K and on the initial condition pg, inspired by Norris, [12].

Assumption (L):

Let E = N* or E = (0,00). The initial condition uo belongs to
M}"(E) and satisfies (uo(dz),z) = 1. The coagulation kernel K is a
measurable map on E x E. There exists a continuous nonnegative
function ¢ : E + [1,00) such that z — ¢(z)/z is nonincreasing on
E, and for all z,y € E,

0 < K(y,z) = K(z,y) < ¢(2)¢(y) (2.1)
Furthermore, {uo(dz),2z? + ¢?(z)) < oo and
either x — ¢*(x)/x is nonincreasing on E (2.2)

or  forallz,y € B, K(z,y) < ¢(z) + ¢(y)  (2.3)

The advantage of such (complicated) assumptions is that it allows the coagu-

lation kernel to explode at 0 in the continuous case. For example, the kernel
K(z,y) = (/3 + y'/3)(z~1/3 4+ y=1/3) fullfils (L).



Remark 2.1 If E = N*, one may assume (2.3) and choose ¢(x) = Az for
some constant A > 1 without loss of generality. Thus assumption (L) reduces
to (po(dz),x) = 1, {po(dx),2>) < o0, and 0 < K(y,z) = K(z,y) < Az +y).

We now give a definition of weak solutions to the Smoluchowski equation.

Definition 2.2 Assume (L). A family (p:)i>0 of measures of M}"(E) solves
the Smoluchowski equation (S) if

(a) for all t > 0, {u(dz),z) <1 and supy 4 (ps(dz), p(z)) < oo,

(b) for all test function f € Cy((0,00)), all t >0,

o 1) = Gon )+ 5 [ Galda)ie () 1z + ) = £(@) = F@) K o) ds
(2.4)

Condition (a) ensures that under (L) (see (2.1)), every term is finite in (2.4).
The integral in the right hand side counts coagulation by pairs of particles of
masses ¢ and y at rate K (x,y). We now define a related stochastic equation.

Definition 2.3 Assume (L). A stochastic process (Xi)i>0 solves (SDE) if
there exists a filtered probability space (0, F, (F¢)¢>0, P) such that

(i) (X¢)e>o0 s a cadlag E U {oo}-valued nondecreasing (Fy)¢>o-adpated process,
(i) Xo is zpo(dz)-distributed,

(iii) there exists an (Fy)i>0-adapted Poisson measure N(ds,dy,dz) on [0, 00) x
(EU{o0}) x Ry with intensity measure dsQs(dy)dz, where for each s > 0, Qs
is the law of Xs, such that a.s., for allt >0

t o]
X, = Xo + / / / V[ s Do V(s dydz) - (25)
0 JEU{co} JO = y

Since the integrand of the Poisson integral in (2.5) is nonnegative, the Poisson
integral is well-defined as a Stieljes finite or infinite integral. The process (X¢)¢>0
describes the evolution of the mass of a typical particle (see [4]). We collect in
the following lemma some a priori estimates and the link between (SDE) and

(S).

Lemma 2.4 Assume (L). Consider a solution (X;)i>o to (SDE). Then a.s.,
for allt >0, X; < co. For any T < oo, supyy ) E[X; + ¢(X;)] < co. For each
t > 0, denote by Q¢ = L(X}), and define the nonnegative finite measure p; on
E by pe(dz) = 271 Qu(dz). Then (ut)i>o solves (S) and is conservative: for all
t Z O: <,ut(dw)7$> =1

Proof We give the main steps of the proof assuming (2.3), the case of (2.2)
being similar.

Step 1 Note that thanks to (L), there exists a constant a such that ¢(z) <
az as soon as z > 1. Next, since X is nondecreasing and thanks to (L),

E[¢p(Xe)1x,<13] < Elp(Xe)/Xe] < E[$(X0)/Xo] = (o, §) < o0.



Step 2 We first check that for all T, there exists a constant C7 such that for
all t < T, E[X; + ¢(X;)] < Cr. Thanks to step 1, it remains to prove that
E[X;] < Cr. For any A € [1,00), a simple computation shows that a.s.,

t oo
XiNA<L< Xo+ / / / (y A A)]]. K(Xg_,y) II.{XS_<A}N(dS, dy, dz) (26)
o JEJo {25 Y } B
Using Step 1, (L), and the expression of the intensity of N, we obtain

t
E[Xy A A] §a+a/0 {E [p(Xs)1(x,<a}] + AE [¢(;(s)

Lpcon] fds @)

8

the constant a being independent of A. Using Step 1, we deduce first that
E[d’(Xs)]l{ngA}] < a+aE[X;s A A], and next that AE[]I{XSZA}(ﬁ(Xs)/Xs] <
aAP[X; > A] < aE[X;s A A]. The Gronwall Lemma allows to conclude that for
some constant Cr, all t < T, all A > 1, E[X; A A] < Cr. Making A grow to
infinity ends Step 2.

Step 3 We now prove that (yu)¢>0 solves (S). It is clear from Step 2 that we
may write, for any ¢ > 0, any g € C¢((0,00)),

K(Xsy)| (2.8)

E[g(Xy)] = E[g(XO)]+/0 dS/EQs(dy)E [Q(Xs + Z/; — 9(X,)

For any f € Cl((0,00)), we may apply this formula to the function g(z) =
f(z)/z. Using the fact that £(X;) = Qs(dz) = zus(dz), we deduce that (2.4)
holds with f. Formula (2.4) can be extended to any f € Cy((0,00)), using Step
2 and the Lebesgue Theorem. Finally, (u¢)¢>0 is of course conservative, since
for each t > 0, X; < 00 a.s.

O

3 The discrete case
Our aim in this section is to build a solution to (SDE) in the discrete case.

Assumption (LD): (L) holds with E = N*. For z,y € N* we set
A(z) = sup,cp[K(z,2)/2] and C(z,y) = supzeE,zZy[K(az,z)/z].

Note that A and C are clearly well-defined, and that for each z € N*, the map
y — C(z,y) is nonincreasing. Following carefully the proof below, one can check
that:

Remark 3.1 If explicit computations of A and C are impossible, one may re-
place them by any other functions A and C such that for some constant a, for
all z,y € N*, Mz) < A(z) < az, and C(z,y) < C(z,y).



Algorithm 1: The terminal time T is fixzed. For anyt > 0, any v € (0,1) and
any z € E, we build the following (recursive) random function.

function mass(t,v,z2):

{
.. Simulate a zpg(dr)-distributed random variable zg.
Set s=0 and z =xzo.

While s <t and v < C(z,z)/A(z), do

{
.. Simulate an exponential random variable u with parameter A(z).
Set s=s+u.

If s<t

{

Choose w uniformly in (0,1).

Set y =mass(s,w, ).

Set z=z+y.

;

If v <[K(z,2)/z]/A(2), set mass(t,v,z) =z.
Else set mass(t,v,z) =0.

.

Then the way to build the process X; on the time interval [0,T] is the following.
Simulate a zpuo(dr)-distributed random variable zg.

Set s=0 and z =xg.

While s< T, do

{
.. Simulate an exponential random variable u with parameter A(z).
Set X; ==z for all t€[s,(s+u)AT).

Set s=s+u.

If s<T

{

Choose w uniformly in (0,1).

Set y =mass(s,w,z).

Set r=z+y.

.
}

The main idea of this algorithm consists in noting that the mass of a typical
particle is obtained by adding, with well-chosen rates and acceptance-rejection
procedures, the mass of other typical particles. The mass of these other typical
particles will be obtained by adding, with well-chosen rates and acceptance-
rejection procedures, the mass of other typical particles, and so on... This
explains why the algorithm we propose is recursive.

Proposition 3.2 Assume (LD), and let T < co. Denote by Cr the total num-
ber of times that Algorithm 1 calls the function mass. Then E[CT] < co. In



particular, Algorithm 1 ends a.s. Denote by (Xi)ico,1) the obtained process.
Then (Xt)iepo, 17 satisfies (SDE).

Proof Let T be fixed. Recall that £ = N*.

Step 0 First note that in the third line of function mass, the expression
“While s <t and v < C(z,2)/A(z)” can be replaced by “While s < ¢”. This
increases the time of computation, but does not change the result, since we
anyway set mass(t,v,z) = 0 if v > [K(z,z)/z]/A(z). We handle the proof with
this modification.

Step 1 For any ¢ > 0, any v € (0,1), any z € E, we denote by P;,, .(dz,dc) the
law of a couple of random variables (X; ., Ctv,z), Where: Cy,, . is the (possibly
infinite) number of times that mass(¢,v, z) calls the function mass, and X; , ,
is the result of the function mass(¢,v, z), with the convention that Xy, , = 0 if
Ct,v,z = 0.

For each t > 0, we denote by C; the (possibly infinite) total number of times that
algorithm 1 calls the function mass to obtain X;. Then C; is a nondecreasing
N U {oo}-valued process. We set X; = oo if C; =

Then, since X; ,, , is simulated essentially in the same way as X, in law,

(d)
(Xt,2, Ct,z) = (Xel <[k (2,0 /X /A(2) L{X <00} Ct) (3.1)

We finally denote, for each ¢t € [0,7], by Q: the law of the E U {oo}-valued
random variable X;.

Step 2 The process (X¢);e[o,r] is now well-defined as a cadlag, EU{oc}-valued,
nondecreasing process, and X has the law zuo(dz). We denote by F' the set
(EU{0}) x (NU {oo}). One may check that for each ¢ € [0,T],

Xo—}-/ot Al/lg‘xM(ds,dv,d(m,c)) (3.2)
/01t AIA(1+C)M(ds,dU,d(m,c)) (3.3)

where M (ds, dv, d(x, ¢)) is a random integer-valued measure (see Jacod-Shiryaev,
[8]) on [0,T] x (0,1) x F with compensator \(X;_)dsdvP; , x,_(dz,dc).

Step 3 We now show that (X;):cjo, 1) satisfies (SDE). Using (3.1), one may
rewrite (3.2) using a random integer-valued measure O(ds,dv,dz) on [0,T] x
(0,1) x (E U {o0}) with compensator A(X;_)dsdvQ;(dx), in the following way:

Xy

Cy

X, = X0+/ // x]l KXo 2) 13«00} O(ds,dv,dx) (3.4)
Eu{cc} ”

SX(xX, e

which can finally be rewritten, using a Poisson measure N (ds, dy, du) on [0, 7] x
(E U{oo}) % [0,00) with compensator dsQs(dy)du, as

t [e’e]
Xy = X +/ / / yl kxoe— Liycoort N (ds, dy,du) (3.5
! 0 0 JEu{co} Jo {ug ( ] )} {y<oo} ( ) 35)



Thus (X¢)epo,7] satisfies (SDE) in the sense of Definition 2.3. Thanks to
Lemma 2.4, (LD), and since A(z) < C(1 + z) for some constant C, we de-
duce that

ap = sup E[X; + A(X;)] < o0 (3.6)

[0,7]

This implies in particular that Cr < oo, and thus that Algorithm 1 ends a.s.
Step 4 One finally needs to show that E[Cr] < co. First of all denote, for each
t € [0,T], by R; the law of the (N U {oo})-valued random variable C;. Using
(3.1), one may rewrite (3.3) as

Cy :/0 /N(l + c)v(ds, dc) (3.7

where v is a random integer-valued measure with compensator \(X;_)dsRs(dc).
For each A € (0,00), we get Cy A A < fot S5l + ¢) A AJv(ds, dc).  Taking
expectation and using (3.6), we obtain

E[CinA] < /Ot dsE[A(Xs)] /N[(1+c)/\A]Rs(dc) <ar+ar /OtE[C’s/\A]ds (3.8)

Using finally (3.6) and the Gronwall Lemma, we deduce that E[Ct A A] < Br
for some constant Bt not depending on A. Making A grow to infinity concludes
the proof. O

4 The continuous case

We now consider the possibly continuous case. The main difficulty comes from
the fact that the function A\(z) = sup,cg K(2,y)/y can be infinite, because of
small particles.

Assumption (LC): (L) holds with E = (0,00). We set ag = (o, ¢)
and, for each z,y € E, C(z,y) = sup,cp .>, K(z,2)/z.

Note that C is well-defined thanks to (L).

Remark 4.1 If C cannot be computed explicitely, one may replace it by any
other function C such that for all z,y € (0,00), C(z,y) > C(z,y).

The main idea is that problems due to small particles are problems that “de-
crease” when time increases, since all the particles have nondecreasing mass.
The algorithm below consists in biasing the choice of initial particles.

Algorithm 2: The terminal time T is fixzed. For anyt >0, any v € (0,1) and
any z € E, we build the following (recursive) random function.
function mass(t,v,z2):

{



Simulate a ay'¢(y)po(dy)-distributed random variable -
Set s=0 and z = xzo.

While s <t and v < C(z,2)/[¢(x)d(x0)/z0], do

{
.. Simulate an exponential random variable u with rate agd(z).
Set s =s+u.

If s<t

{

Choose w uniformly in [0,1].

Set y =mass(s,w, ).

Set r=z+y.

.

If v < [K(z,2)/z]/[¢(2)d(x0) /0], set mass(t,v,z) ==x.
Else set mass(t,v,2) =0.

;

Then the way to build the process X; on the time interval [0,T] is the following.
Simulate a yuo(dy)-distributed random variable xg.

Set s=0 and z =x¢.

While s< T, do

{
.. Simulate an exponential random variable u with parameter ag¢d(z).
Set Xy ==z for all t€[s,(s+u)AT).

Set s =s+u.

If s<T

{
. Choose w uniformly in [0,1].
Set y =mass(s,w,z).

Set r=x+y.

}
Proposition 4.2 Assume (LC), and let T < co. Denote by Cr the total num-
ber of times that Algorithm 2 calls the function mass. Then E[CT] < oo. In

particular, Algorithm 2 ends a.s. Denote by (X¢)ico,1) the obtained process.
Then (Xt)icpo,m satisfies (SDE).

Proof We just give the main ideas of the proof, since it is essentially the same
as that of Proposition 4.2. Let T € (0, 00) be fixed, and recall that E = (0, c0).
We admit that Cr < oo a.s., and we show that the process (X;)¢>o built by
Algorithm 2 solves (SDE). First X is clearly E-valued, non-decreasing, and
the law of X is given by zpuo(dz).

Fort € [0,T],v € (0,1), and z € E, denote by P, , ,(dzo,dz) the law of a couple
of random variables (X7, _, X;, ), where X7  _is the initial value “xo” used
to compute mass(t,v, z), and X, . is the result of mass(t, v, 2).



For ¢ € [0, T, we also denote by P;(dzg,dz) the law of (Xy, X;), and by Q; the
law of Xj;.

On one hand, we may write P, , . (dzo,dz) = a51¢(m0)u0 (dxo)Ryv,2(x0,dz) and
Py(dxo,dzr) = zopo(dre)Re(xo,dz), and on the other hand, we have Q;(dz) =
fzo cE P,(dzg,dz). Then, since we simulate X, , essentially in the same way
as X;, we deduce that for each z¢ € E,

Iips01Repw,2 (w0, dx) = ]l{v< K(2.2)/e }Rt(Z'O:dw) (4.1)

= ¢(2)¢(z0)/=0

The process X can be shown to satisfy, for each ¢t € [0,T],

t 1
X =Xo +/ / / xM(ds, dv, dx) (4.2)
oJo JE

where M is an integer-valued random measure on [0, T x (0, 1) x E with compen-

sator ao(Xs-)dsdv [, . Ps0,x,-(dro,dz). Using (4.1), this can be rewritten
as

t 1
X; =X, +/ / / zl K(x,_,2)e 1 0(ds,dv,d(z,z0)) (4.3)
0 Jo Jexp  {vSax,Satarres )

the integer-valued random measure O having the compensator
aop(Xs_)dsdvag ™ ¢(x0) o (dzo) Rs(z0, dr). We deduce that

t 00
X = Xo + / / / m]l{ng(Xs_,x)/z}N(dS, dv, dz) (4.4)
0 Jo E

the integer-valued random measure N having the compensator v(ds,du,dz) =
P(Xs-)dsdu [, g (w0)pto(dwo) Rs (w0, dw)[w0/ (X s—)d(@0)]-

But v(ds,du,dz) = dsdu fmer Zopo(dro)Rs(xo,dx), and thus v(ds,du,dr) =
dsdu@s(dz). The proof is finished. O

We conclude with some possible extensions of Algorithms 1 and 2.

Remark 4.3 1. Assume (L) with E = N*. Then Algorithm 1 could be extended
to simulate a E-valued process (X¢)icjo,r) whose law is of the form zp(dz),
where pi(dz) satisfies a discrete coagulation-fragmentation equation, with any
reasonnable fragmentation kernel.

2. Algorithm 2 could not be extended to simulate a continuous coagulation-
fragmentation process: fragmentation would lead to create small particles, so
that biasing the choice of initial particles would not suffice.

3. Assume (L) with E = N* or E = (0,00), and with K(z,y) = zy (and thus
¢(z) = x). Then, using the fact that K(x,y)/y does not depend on y, one
may note that the acceptance-rejection procedures are inexistent in algorithms 1
and 2. One can thus use these algorithms to simulate (X; A A)cpo,1), for any
A € (0,00), where for each t € [0,T), the law of X; is of the form zus(dz) +



(1 = (ut(dz),x))d00(dx), (1t)icio,1] Deing a solution to the Flory coagulation
equation: for any reasonable f : E — R,

s 1) = b0, 1)+ 5 [ ) () 1o +3) = @) = F)] ) d

t
~5 | o). () (1= (o). a)) s

The principle is very simple: for example in the discrete case, use algorithm 1
with \M(z) = C(z,y) = z, and set X; NA = A as soon as the computation of X;
requires more than A calls to the function mass.

5. It is well-known that for some coagulation kernels, solutions to (S) cannot
be conservative: for exemple, it is shown in [6] that if K(z,y) = (zy)®, with
a € (1/2,1], then there exists to < oo such that (u,(dz),z) =1 for t < to but
(ue(dz),z) < 1 for allt > to. From the (SDE) point of view, this means that for
t > tg, P[X; = o0] > 0. In such a case, it seems clear that one may simulate,
using Algorithm 1 or 2, (Xi)icjo,1), for T < to. Under the assumption that for
all x € E, limy_,c K(x,y)/y = 0, it might be possible that Algorithms 1 and 2
allow to simulate (Xy A A)s>0, for any A < oo. This does not seem interesting
from the numerical point of view, but it is an interesting mathematical question.

5 About simulations

It is known (see Norris, [12]) that equation (S) has a unique solution (u)¢>0
under (L). Since we are able to simulate exactly the process (X;);>0, and
since for each ¢, the law of X; is exactly zu;(dz), one may exploit algorithms
1 and 2 to approximate numerically (i)¢>0: use n times Algorithm 1 (or
2) to simulate independent (X});c(0,17, -, (X{*)tc[o,1], and approximate j; by
al =n"1! Z:L:l(XZ)*l(SX:-.

Note that the convergence is straightforward from the standard law of large
numbers, and that confidence intervalls may be given thanks to the (classical)
central limit Theorem.

We would like to compare our algorithms with the so-called Mass Flow Algo-
rithm introduced by Eibeck-Wagner, [5], following an idea of Babovski, [2]. This
scheme, based on finite stochastic particle systems, is shown to be quite efficient
in [5], at least compared to the famous Marcus-Lushnikov scheme ([10], [9]). We
recall the MFA algorithm, exactly in the form presented in [5]. We use the no-
tations of (L).

Algorithm MFA: The terminal time T and the number n of particles are fized.
Simulate i.i.d. zp¢(dz)-distributed random variables zi,...,Zy.

Set t=0.

While t< T

{

Compute 7 =n"'3 " #(z;) 2?21 d(xj) /).

10



Simulate an exponential random variable s with rate 7.

Set t =1t +s.

Choose i according to the law {@(z;)/ >, (@) }iequ,....n} -
Choose j according to the law {[¢(x;)/x;] >, [d(x1)/xi]}jeqr, . n) -
.. With probability K(z;,z;)/¢(x;)p(z;), set z; = z; + ;.

}

Approximate pr(dz) by bE =n"1Y"  x7'0,,.

Note that »;_, ¢(z;) and 37, ¢(z;)/z; can be computed easily at each step
from the previous step. Note also that the simulation of i (or j) is simplified if
¢(z) is of the form ¢ (or cz).

In the numerical results below, we will sometimes use the following advantage
of our scheme: if one is only interested in particles smaller than A, for some A,
then we can stop the simulation when X becomes greater than A. This is of
course not the case in the MFA scheme.

In all what follows, we consider the following mean errors (in percent)

ny _ | <a§‘(dw),m2> - </‘l’t(dm)7x2> |
¢(a}) = E |100 (n(d2), 22) ] (5.1)

n _ | <a?(dx)a Il{zgz}> - <Nt(dx)7 Il{mﬁz}) |
&(af,z) = E|100 (o) ey ] (5.2)

and by ¢(b7), £(b}, z) the same quantities replacing a by b. The expectations
will be obtained by taking the mean over 10000 experiences.
In the 3 cases labelled (a), (b), (c) below, (u)¢>0 is explicit, see Aldous [1].

(a) Consider the (discrete) case where K(z,y) =1 and po = 6;. For t = 2, the
simulation of 53°%° using MFA with n = 1000 particles (and with ¢ = 1) requires
0.038u (second). For the same time of computation, one may use algorithm 1
to compute a3%?. Stopping algorithm 1 as soon as X becomes greater than 1
(resp. 5), one may simulate £(a38°%°, 1) (resp. £(a$°°?,5)) in 0.038u. We obtain
the following mean relative errors in percent:

| Relative error of | {(ps(dz),2®) | {pa(de), Niz<1y) | (p2(de), Niz<sy) |
MFA | C(b100) ~ 1.6 | £(b1000, 1) ~ 3.6 | £(01,5) ~ 1.5

Algo. 1] C(al®™) ~ 0.6 | £(al®0,1) ~ 1.5 | £(al®,5) ~ 0.6

Algo. 1 stopped at 5 £(a8%99 1) ~ 1.5 | £(a8%99,5) ~ 0.6
Algo. 1 stopped at 1 £(@d®%° 1) ~ 1.0

For t = 10, the simulation of b13%° (resp. af3°) requires 0.110u. Stopping

algorithm 1 as soon as X becomes greater than 1 (resp. 5), one may simulate

11



£(a3g0%,1) (resp. £(ald®,5)) in 0.110u. This gives, in percent:

| Relative error of | {p1o(dz),z?) | (p10(de), Liz<iy) | (p1o(de), Lip<sy) |
MFA | C(0100) ~ 1.8 | £(0100, 1) ~ 12.9 | E(100, 5) ~ 4.2

Algo. 1| ((aB00) ~2.0 | £@dP, 1) ~16.7 | £(a,5) ~ 5.8

Algo. 1 stopped at 5 §(a1800 1) ~10.9 | £(alf®,5) ~ 3.9
Algo. 1 stopped at 1 £(ald®%,1) ~ 4.5

(b) Consider the (continuous) case where K (z,y) = 1, where o (dz) = 4e~2%dz.
For t = 2, the simulation of 5}°%0 using MFA with n = 1000 particles (and with
¢ = 1) requires 0.085u (second). For the same time of computation, one may
use algorithm 2 (with ¢ = 1) to compute a3**°. Stopping algorithm 2 as soon
as X becomes greater than 1 (resp. 5), one may simulate (a8 1) (resp.
£(a37°°,5)) in 0.085u. We obtain, in percent:

| Relative error of | (pa(dz),2®) | (pa(dz), Niz<1y) | (po(da), Li,<5) |
MFA | C(b10) ~ 1.8 | £(b1090,1) ~ 9.6 | £(b10%0,5) ~ 4.7

Algo. 2 | ((a3™0) < 0.9 | £(a™,1) ~ 64 | £(a3™0,5) ~ 3.0

Algo. 2 stopped at 5 f(a3700 1) ~6.4 | £(a37°,5) ~ 3.0
Algo. 2 stopped at 1 £(a3®%9. 1) ~ 4.0

(c) Finally consider the (discrete) case where K(z,y) = z + y and po = 6;.
For t = 2, the simulation of b3°%° using MFA with n = 1000 particles (and with
¢(x) = 2z) requires 2.58u (second). For the same time of computation, one may
use algorithm 1 to compute a1®%°. Stopping algorithm 1 as soon as X becomes
greater than 1 (resp. 5), one may simulate £(a8%0%° 1) (resp. &(a33°%°,5)) in
0.038u. We obtain the following mean relative errors in percent:

| Relative error of | {ps(dz),z%) | (p2(dz), Lp<iy) | (p2(dw), Liz<sy) |
MFA | ¢(b1%99) ~ 6.3 | £(b100 1) ~ 9.5 | £(b1°%0 5) ~ 5.9

Algo. 1| ¢(a3®%) ~ 2.5 | £(ad®,1) ~ 7.6 | £(al8%0,5) ~ 4.6

Algo. 1 stopped at 5 E(aZ0%0 1) ~ 2.1 | £(a23000 5) ~ 1.3
Algo. 1 stopped at 1 £(a8%9%9, 1) ~ 1.1

Of course, the above numerical results deal with cases where Algorithm 1 (or
2) is efficient. It seems numerically clear that MFA is better for large times.
The main interest of our algorithms is theoritical. They might however be used
for precise small-time computations. They seem also quite efficient from the
small particles point of view. An advantage of our method is that we can give
(theoritical) confidence intervalls.
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