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Abstract

In the context of parameter estimation and model selection, it is only quite
recently that a direct link between the Fisher information and information
theoretic quantities has been exhibited. We give an interpretation of this link
within the standard framework of information theory. We show that in the
context of population coding, the mutual information between the activity of a
large array of neurons and a stimulus to which the neurons are tuned is naturally
related to the Fisher information. In the light of this result we consider the
optimization of the tuning curves parameters in the case of neurons responding

to a stimulus represented by an angular variable.
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1 Introduction

A natural framework to study how neurons communicate, or transmit information, in
the nervous system is information theory (see e.g. Blahut 1988, Cover and Thomas
1991). In recent years the use of information theory in neuroscience has motivated a
large number of works (e.g. Laughlin 1981, Linsker 1988, Barlow et al 1989, Bialek et al
1991, van Hateren 1992, Atick 1992, Nadal and Parga 1994). A neurophysiologist often
asks in an informal sense how much information the spike train of a single neuron, or
of a population of neurons, provides about an external stimulus. For example, a high
activity of a CA3 hippocampal neuron may tell with good precision where a rat is in
an environment. Information theory provides mathematical tools for measuring this
‘information’ or ‘selectivity’: signals are characterized by a probability distribution,
and the spike train of a neuron, or of a population, is characterized by a probability
distribution conditioned by the signal. The mutual information between the signal and
the neural representation is then a measure of the statistical dependency between the
signal and the spike train(s).

A related domain, which also belongs to information theory, is the field of sta-
tistical parameter estimation: here one typically has a sample of observations drawn
from a distribution which depends on a parameter, or a set of parameters, that one
wishes to estimate. The Cramer-Rao inequality then tells us that the mean squared
error of any unbiased estimator of the underlying parameter(s) is lower bounded by
the inverse of a quantity which is defined as the Fisher information (Blahut 1988).
This means that the Fisher information is a measure of how well one can possibly
estimate a parameter from an observation with a given probability law. Thus in this
sense it is also an ‘information’ quantity.

In spite of the similar intuitive meanings of these two quantities, an explicit re-
lationship between the Fisher information and information theoretic quantities has
only been derived recently (Clarke and Barron 1990, Rissanen 1996), in the limit
of a large number of observations. This link has been exhibited first in the context
of parameter estimation (Clarke and Barron 1990) for the case of statistically inde-
pendent and identically distributed observations. Then it has been generalized to a
broader context within the framework of stochastic complexity, with as a result a
refined “minimum description length” criterion for model selection (Rissanen 1996).

The first goal of this paper is to show that, within the framework of information

theory, this link manifests itself very naturally in the context of neural coding:



e In the limit of a large number of neurons coding for a low dimensional stim-
ulus (population coding) the mutual information between the activities of the
neuronal population and the stimulus becomes equal to the mutual information
between the stimulus and an efficient Gaussian estimator, under appropriate
conditions, detailed in Section 3. Here ‘efficient’ means that the variance of this
estimator reaches the Cramer-Rao bound. Since this variance is related to the
Fisher information, the abovementioned equality provides a quantitative link

between mutual and Fisher informations.

e This equality is also shown to hold for a single cell in the case of a Gaussian

noise with vanishing variance, in Section 4;

e The mutual information between the stimulus and an efficient Gaussian estima-
tor reaches the mutual information between stimulus and the neuronal activities

asymptotically from below.

In the light of this relationship between Fisher and mutual informations, we then
examine in Section 5 several issues related to population codes, using neurons coding
for an angular variable with a triangular or bell-shaped tuning curve. Such neurons
are common in many neural structures. Cells of the postsubiculum (Taube et al 1990)
and anterior thalamic nuclei (Taube 1995) of the rat are tuned to its head direction.
Cells in MT cortex (Maunsell and Van Essen 1983) of the monkey are tuned to the
direction of perceived motion. Cells in motor cortex of the monkey (Georgopoulos
et al 1982) are tuned to the direction of the arm. We study the case of an array
of N neurons, firing as a Poisson process in response to an angular stimulus with a
frequency defined by the tuning curve of the neuron, in an interval of duration ¢. In
many cases Poisson processes are considered to be reasonable approximations of the
firing process of cortical neurons (see e.g. Softky and Koch 1993).

We calculate the Fisher information with an arbitrary density of preferred angles.
Next we address the question of the optimization of the tuning curves, making use
of the link between mutual information and Fisher information. The optimal density
of preferred angles (i.e. the one that maximizes the mutual information) is calculated
as a function of the distribution of angles, in Section 5.2. As shown by Seung and
Sompolinsky, the Fisher information, in the large N limit, diverges when the tuning
width of the neurons goes to zero. We show in Section 5.3 that a finite tuning width

stems from optimization criteria which consider a finite system in which only a small



number of spikes has been emitted by the whole population. We illustrate our results

using triangular tuning curves in Section 5.4.

2 General framework

2.1 Parameter estimation and population coding

In the general context of “parameter estimation”, one wishes to estimate a parameter
6 from a set of N observations {z;,i = 1,..., N} = Z (where the z;’s might be discrete
or continuous). § may characterize a model P(Z|#) which is expected to be a good
description of the stochastic process generating the observations {z;}. In the simplest

case, the z;’s are independent realizations of the same random variable, and

N

P(%|0) = [[ p(xil0) (1)

i=1
It may be the case — but this is not necessary — that the true process p*(z) belongs
to the family under consideration, so that p*(z) = p(z|f;) where 6, is the true value
of the parameter.

In the context of sensory coding, and more specifically population coding (see
e.g. Seung and Sompolinsky 1993, Snippe 1996) 6 is a stimulus (e.g. an angle), and
the information about this stimulus is contained in the activities {z;,7i =1, ..., N} of
a population of a large number N of neurons. In the simplest case x; represents the
activity of the 7th neuron of the output layer of a feedforward network with no lateral

connection, so that the probability density function (p.d.f.) P(Z|f) is factorized:

P(Z|0) = l:Ilpi(l“iW)- (2)

Here p;(z;|6) is the (neuron dependent) p.d.f. of the activity z; at neuron ¢ when the
input stimulus takes the value 6.

If the task of the neural system is to obtain a good estimate of the stimulus value,
the problem is a particular case of parameter estimation where there does exist a true

value — the one which generated the observed activity .



2.2 The Cramer-Rao bound

In general one can find different algorithms for computing an estimate 6(Z) of 6 from

the observation of Z. If the chosen estimator @ (algorithm) is unbiased, that is if
/ dNzP(Z0)6(7) = 0,

the variance of the estimator

o =((0-0)),,
in which (. ), denotes the integration over & given 6 (a sum in the case of a discrete
state vector) with the p.d.f. P(Z|#), is bounded below according to (Cramer-Rao
bound, see e.g. Blahut 1988):
1
2
Op 2 — 3
[ J(G) ( )

where J(0) is the Fisher information:

8% In P(9) > ”
0

‘7(9):< 0 62

For a multidimensional parameter, Eq. (3) is replaced by an inequality for the co-
variance matrix, with J(€), the ”Fisher information matrix”, being then expressed
in terms of the second derivatives of In P(Z|f) (Blahut 1988). For simplicity we will
restrict the discussion to the case of a scalar parameter, and consider the straightfor-
ward extension to the multidimensional case in section 3.2.

An efficient estimator is an estimator which saturates the bound. The maximum

likelihood (ML) estimator is known to be efficient in the large N limit.

3 Mutual information and Fisher information

3.1 Main result

We now give the interpretation of the Cramer-Rao bound in terms of information
content. First, one should note that the Fisher information, Eq. (4) is not, itself, an
information quantity. The terminology comes from an intuitive interpretation of the
bound: our knowledge (“information”) about a stimulus € is limited according to this
bound. This qualitative statement has been turned into a quantitative statement in

(Clarke and Barron 1990, Rissanen 1996). We give here a different presentation based



on a standard information theoretic point of view, which is relevant for sensory coding,
rather than from the point of view of parameter estimation and model selection.

We consider the mutual information between the observable # and the stimulus
f. It can be defined very naturally in the context of sensory coding because 6 is
itself a random quantity, generated with some p.d.f. p(f) which characterizes the

environment. The mutual information is defined by (Blahut 1988):

P(#|6)
570

16,7 = / d8d zp(9) P(7]6) lo (5)

where Q(Z) is the p.d.f. of 7

/d@p P(z£]0). (6)

Other measures of the statistical dependency between input and output could be con-
sidered, but the mutual information is the only one (up to a multiplicative constant)
satisfying a set of fundamental requirements (Shannon and Weaver 1949).

Suppose there exists an unbiased efficient estimator = T(&). It has mean 6 and
variance 1/J(6). The amount of information gained about # in the computation of

that estimator is
110,6) = #16) - [ dop(6)HI61) (7)

where #[f] is the entropy of the estimator,
H[A] = /d@ Pr(6) In Pr(0)

and H[0]0] its entropy given 0. The latter, for each 6, is smaller than the entropy of

a Gaussian distribution with the same variance 1/7(6). This implies

16,6 > H{o) - [ dﬁp(ﬁ)% In (;}T;)) (8)

Since processing cannot increase information (see e.g. Blahut 1988, pp. 158-159),
the information I[f, Z] conveyed by & about 6 is at least equal to the one conveyed
by the estimator: 1[0, Z] > I[0, ]. For the efficient estimator, this means

16,7 > H[] - / de(O)%ln (;T;) 9)

In the limit in which the distribution of the estimator is sharply peaked around its

mean value, (in particular this implies J(#) > 1), the entropy of the estimator

6



becomes identical to the entropy of the stimulus. The r.h.s in the above inequality

becomes then equal to Ipisper plus terms of order 1/7(0), with Ipisher defined as

riser = H(O) ~ [ dbp(6)} In ( %) (10)

In the above expression the first term is the entropy of the stimulus,

H(0) = — [ dbp(8) In p(0) (11)

For a discrete distribution this would be the information gain resulting from a perfect
knowledge of 6. The second term is the equivocation due to the Gaussian fluctuations

of the estimator around its mean value. We thus have, in this limit of a good estimator,
1[9, f] 2 IFz'sher (12)

The inequality (12), with Ip;sher given by (10), gives the essence of the link between
mutual information and Fisher information. It results from an elementary application
of the simple — but fundamental — theorem on information processing, and of the
Cramer-Rao bound.

Now if the Cramer-Rao bound was to be understood as a statement on information
content, /[, ] could not be strictly larger than Ig;spe, — if not there would be a way
to extract from Z more information than Ip;s,... Hence the above inequality would

be in fact an equality, that is:

16,7 = — [ doo(®) m p(0) ~ | de(H)% In (;?;) (13)

However, the fact that the equality should hold is not obvious: the Cramer-Rao bound
does not tell us whether knowledge on other cumulants than the variance could be
obtained. Indeed, if the estimator has a non Gaussian distribution, the inequality will
be strict, and we will give an example in section 4 where we discuss the case of a
single output cell (N = 1). In the large N limit, however, there exists an efficient
estimator (the maximum likelihood), and relevant probability distributions become
close to Gaussian distributions, so that one can expect (13) to be true in that limit.
This is indeed the case, and what is proved in (Rissanen 1996) within the framework
of Stochastic Complexity, under suitable but not very restrictive hypotheses.

In Appendix, we show, using completely different techniques, that Eq. (13) holds

provided the following conditions are satisfied:



1. All derivatives of G(Z|f) = In P(Z|f)/N with respect to the stimulus # are of

order one;

2. The cumulants (with respect to the distribution P(Z|f)) of order n of aG)+bGy
are of order 1/N"~! for all a, b, n.

The meaning of the last condition is that, at a given value of N, the cumulants
should decrease sufficiently rapidly with n. This is in particular true when z; given 6
are independent, as for model (2), but holds also in the more general case when the z;
are correlated, provided the above conditions hold, as we show explicitly in Appendix

using an example of correlated x;.

3.2 Extensions and remarks
Multi-parameter case and model selection

It is straightforward to extend Eq. (12) to the case of a K dimensional stimulus g with
p.d.f. p(§ ), and to derive the equality Eq. (13) for K < N. The Fisher information
matrix is defined as (Blahut 1988)

o 2P (z|0
7 () = < —ﬁ@.) >

0

The quantity Ip;sper for the multidimensional case is then

Irisher = — / d%9 p(6) In p(0) — / d*0 p % ( d(::;) (K)) (14)

The second term is now equal to the entropy of a Gaussian with covariance matrix
T~ ), averaged over § with p.d.f. p(6). In the large N limit (K << N), one gets
as for K =1 the equality I = Ir;sper-

One can note that formulae (13) and (14) are also meaningful in the more general
context of parameter estimation, even when 6 is not a priori a random variable: within
the Bayesian framework (Clarke and Barron, 1990), it is natural to introduce a prior
distribution on the parameter space, p(f). Typically, this distribution is chosen as the
flattest possible one which takes into account any prior knowledge or constraint on
the parameter space. Then I tells us how well # can be localized within the parameter
space from the observation of the data Z.

Within the framework of MDL (minimum description length) (Rissanen 1996) the

natural prior is the one which maximizes the mutual information, i.e. the one realizing
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the Shannon capacity. Maximizing I = Ip;sher With respect to p, one finds that this

optimal input distribution is given by the square root of the Fisher information:

p(f) = ﬂ
[do'\/ T (0"

(for the multidimensional case, J in the above expression has to be replaced by
det J). This corresponds to the stimulus distribution for which the neural system is

best adapted.

Biased estimators

The preceeding discussions can be easily extended to the case of biased estimators,

that is for estimators § with < § >g= m(f) # 6. The Cramer-Rao bound in such a

case reads ) .
Oy
> (15)
2 =
&) = 7O

This is a form of the bias-variance compromise. One can thus write an inequality
similar to Eq. (8), replacing J by J/(dm/df)?. In the limit where the estimator is
sharply peaked around its mean value m(f), one has p(0)dd ~ P(#)df, and 6 ~ m(6),
so that

HIO) = H10) + [ d0p(0) log |C;—7;"”

Upon inserting #[6] in the r.h.s of the inequality (8), the terms 4 cancel. The bound,
Eq. (12), is thus also valid even when the known efficient estimator is biased.

The Cramer-Rao bound can also be understood as a bound for the discriminabil-
ity d' used in psychophysics for characterizing performance in a discrimination task

between 6 and 6 + §6 (see e.g. Green and Swets, 1966). As discussed in (Seung and

Sompolinsky, 1993)
d <60/ T () (16)

with equality for an efficient estimator, and with d’ properly normalized with respect

to the bias:

dm 2
d? = (005) . (17)

%



4 The case of a single neuron

4.1 A continuous neuron with vanishing output noise

We consider the case of a single neuron characterized by a scalar output V which
a deterministic function of the input (stimulus) € plus some noise, with a possibly

stimulus dependent variance:

V=f(0) + za\/9(9) (18)

where f and g are deterministic functions, and ¢ is a parameter giving the scale
of the variance of the noise, and z is a random variable with an arbitrary (that is
not necessarily Gaussian) distribution Q(z) with zero mean and unit variance. We
are interested in the low noise limit, 0 — 0. It is not difficult to write the Fisher
information J(f) and the mutual information I[#, V] in the limit of vanishing o. One

gets, for sufficiently regular Q(.),

)L £2(9)
1[6,V] = H(6) + / Ap(0) 5108 55 — H(Z) (19)
where H(Z) is the entropy of the z-distribution Q:
= — [ d2Q(2) 10g Q(2) (20)
For the Fisher information one finds
_[() Q”(2)
= ) | 0 &)
so that
Trisher[0, V] =H +/d9 lo (0) +110 /szz() (22)
Fisher|Y, P g 2 9) 9 g Q

If the noise distribution @ is the normal distribution, one has H(Z) = { log 2re,
and the integral in Eq. (21) is equal to 1, so that one has I = Ip;gpe,. Otherwise one

can easily check that I > Ipisper, in agreement with the general result (12).

4.2 Optimization of the transfer function

The maximization of the mutual information with respect to the choice of the transfer

function f has been studied in the case of a stimulus independent additive noise, that

10



is ¢ = 1, by Laughlin (1981) and Nadal and Parga (1994). The expression (19) for
the mutual information, with g = 1, has been computed by Nadal and Parga (1994).
What is new here is the link with the Fisher information.

The mutual information is maximized when f is chosen according to the “equal-
ization rule”, that is when the (absolute value of) the derivative of f is equal to the
p.d.f. p: the activity V' is then uniformly distributed between its min and max values.
In the more general case in which g depends on the stimulus, the maximum of 7 is
reached when f defined by

f'=re

satisfies the equalization rule

f=af " dep(z) + B (23)

where A and B are arbitrary given parameters (for ¢ = 1, they define the min and max
values of f). An interesting case is ¢ = f, which is relevant for the analysis of a Poisson
neuron in the large time limit (see next subsection). In this case f'/,/g = 2/f, and
the maximum of I is reached when the square root of f satisfies the equalization rule.

The fact that the mutual information is related to the Fisher information in the
case of a single neuron with vanishing noise means that maximizing information
transfer is identical to minimizing the variance of reconstruction error. In fact, two
different qualitative lines of reasoning were known to lead to the equalization rule: one
related to information transfer (the output V' should have a uniform distribution, see
e.g. Laughlin 1981), and one related to reconstruction error (the slope of the transfer
function should be as large as possible in order to minimize this error, and this, with
the constraint that f is bounded, leads to the compromise |f'| = p — a large error
can be tolerated for rare events). We have shown here the formal link between these

two approaches, using the link between mutual and Fisher informations.

4.3 A Poisson neuron

Another but related interesting case is the one of a single neuron emitting spikes
according to a Poisson process (in the next section we will consider a population of
such neurons). The probability for observing k spikes in the interval [0,¢] while the
stimulus @ is perceived, is

(w(0))*

p(k|0) = —

exp(—v(0)t) (24)

11



where the frequency v is assumed to be a deterministic function v(f) (the tuning
curve) of the stimulus 6:
0 — v=uv(0) (25)

If the stimulus is drawn randomly from a distribution p(#), the frequency distribution
P(v) is given by
P(v) = [ dop(6) 6(v — v(0)) (26)
The information processing ability of such model neuron has been studied in great
details by Stein (1967). The results of interest here are as follows.
At short times (that is for ¢u small), the mutual information between the stimulus
and the cell activity is, at first order in ¢ (Stein 1967)

I(t) ~ t / dvP(v)v logz = L(t) (27)

where p is the mean frequency. One can easily check that I (¢) > I(t) for any duration
t. In fact at long times (¢u large) information increases only as logt: in the large time
limit, one gets (Stein 1967)

2mev
1(t) = [dvP()log (P(u) t ) (28)
From this expression, one gets that the optimal tuning curve is such that /v is
uniformly distributed between its extreme values v,,,;, and V... We can now analyze
this result in view of the relationship between Fisher and mutual information. Making

the change of variable v — 6, with

together with Eq (25), one can rewrite the mutual information at large times precisely

as
I(t) = IFisher (29)

where Ipisher is defined as in (10) whith J(#) the Fisher information associated to

this single neuron:

(30)

This result can be understood in the following way. In the limit of large ¢, the
distribution of the number of emitted spikes divided by ¢, V' = k/t tends to be a

12



Gaussian, with mean v(f) and variance v(6)/t, so that the properties of the spiking

neuron become similar to those of a neuron having a continuous activity V', given by
0 -V =uv(d) + z/v)/t

where z is a Gaussian random variable with zero mean and unit variance. This is a
particular case of Eq. (18) with o = 1/+/%, f(.) = g(.) = v(.).

5 Population of direction selective spiking neurons

5.1 Fisher information

We now illustrate the main statement of section 3 in the context of population coding.
We consider a large number N of neurons coding for a scalar stimulus, e.g. an angle.
Eq. (13) tells us that to compute the mutual information we have first to calculate
the Fisher information.

When the activities {z;} of the neurons given 6 are independent, P(Z|0) = IIp;(x;|0),

the Fisher information can be written

70=3; (7em (apig?m)? > 3!

=1 )

where (.), , is the integration over z; with the p.d.f. p;(z;|0).

We restrict ourselves to the case of neurons firing as a Poisson process with rate
v;(0) in response to a stimulus 6 € [—7, 7]. v;(6) therefore represent the ‘tuning curve’
of neuron 7. We make the following assumptions: v;(#) has a single maximum at the
‘preferred stimulus’ #;; the tuning curve depends only on the distance between the

current stimulus and the preferred one and is a periodic function of this distance
vi(0) = ¢(0 — 0y) (32)

through the same function ¢. The locations of the preferred stimuli of the neurons
are i.i.d. variables in the interval § € [—m, 7] with density 7(6).

Since our model neurons fire as a Poisson process, the information contained in
their spike trains in an interval of duration ¢ is fully contained in the number of spikes

x; emitted by each neuron in this interval. For a Poisson process we have the law

putaelf) = L o niioyt) (33)

7.

13
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Figure 1: Triangular tuning curve corresponding to a minimal frequency v,,;, = 0.5Hz,
Vmaz = 40Hz, a receptive field half-width ¢ = 40 degrees, a preferred angle 6; = 60

degrees.

From Eqgs. (31,33) we can easily calculate the Fisher information:

For N large we can replace the sum by the average over the distribution of preferred

stimuli, that is

F@y = [ 7; agr(e) 20 =)

¢(0 —0")
For an isotropic distribution r(#) = 1/(27) we recover the result of Seung and Som-
polinsky (1993).

To understand how the Fisher information depends on other parameters of the

tuning curve ¢ we redefine

a

¢(0 — 01) = Vmin -+ (VMGw _ ymzn)¢ <|0 — Oz|>

where v, and V., are the minimal and maximal frequency, a is the width of the
tuning curve, and ® is a decreasing function of | — 6;|/a such that ® = 1 for the

preferred stimulus 6§ = #;, and ® = 0 for stimuli far from the preferred stimulus,

14



|0 — 6; > a. In terms of these parameters we have

T(0) = ¢ Vmas = Vimin) - Vimin) [ dzr(@+a2) )’

Ymin + @(z) ’

Vmaz —VYmin

The particular case of a triangular tuning curve,

1—|z|) ze€|-1,1
sy { 01D eel-L1 a0
0. lz| > 1,
is shown in Fig. 1. It will be considered in more details below. For this tuning curve,
and for a uniform distribution of preferred stimuli, the Fisher information has the
simple form

._7(0) — N (Vma:c - Vmin) In Vmaw. (35)

ma Vmin

Thus, as already noted by (Seung and Sompolinsky 1993), the Fisher information
diverges in different extreme cases: when the maximal frequency v,,,, goes to infinity;
when the tuning width a goes to zero. Moreover, functions ® can be found such that
the Fisher information diverges (e.g. ®(z) = m) for any value of v,,in, Vimas, and
a. Thus the optimization of the Fisher information with respect to these parameters
is an ill-defined problem without additional constraints. Note that in these cases the
equation relating the Fisher information to the mutual information is no longer valid.

There is however a well-defined optimization problem which is the optimization
with respect to the distribution of preferred orientations. It is considered in Section
5.2. Then we show how finite size effects transforms the problem of the optimization
of both Fisher and mutual informations with respect to the tuning width a into a
well-defined problem, in Section 5.3. Last we present some numerical estimates of
these quantities inserting some real data (Taube et al 1990) in Eq. (13), in Section
5.4.

5.2 Optimization over the distribution of preferred orienta-

tions

We ask the question of which distribution of preferred orientations r(#) optimizes the
mutual information 7. Obviously the optimal » will depend on the distribution of ori-
entations p(). Optimizing Eq. (13) with respect to 7(6') subject to the normalization
constraint [ r(6')df' =1 gives

p(0) N _ ,
/dofde”r(e”)@z;(ﬁ—0”)w(0_0) =ct forall§

15



in which we have defined

Y(r) = (36)
This condition is satisfied when

[dor ()6 - 0)
S do(9)

Thus the optimal distribution of preferred stimuli is the one that, convolved with

p(0)

(37)

(i.e. a quantity proportional to the Fisher information) matches the distribution of
stimuli. Of course in the particular case of p(8) = 1/(27) we obtain r,,(0) = 1/(27).
Note that Eq. (37) is also valid for unbounded stimulus values.

One should note that this result, Eq. (37) is specific to the optimization of the
mutual information. Different results would be obtained for, e.g., the maximization
of the average of the Fisher information, or the minimization of the average of its
inverse. In fact, there is no optimum for the mean Fisher information, since it is

linear in r(.).

5.3 Finite size effects: the case of a single spike

We have seen that the Fisher information, in the large N limit, diverges when the
tuning width a goes to zero. To investigate whether this property is specific to the
large N limit we study the case of a finite number of neurons, in a very short time
interval in which a single spike has been emitted by the whole population in response
to the stimulus 6. In this situation, it is clear that the optimal estimator of the
stimulus (the ML estimate in that case) is given by the preferred stimulus of the
neuron which emitted the spike. For finite N the Cramer-Rao bound is in general not
saturated, and we have to calculate directly the performance of the estimator. It is
a simple exercise to calculate the standard deviation (SD) of the error made by such

an estimate for a triangular tuning curve given in Eq. (34):

471—3Vmin + a3 (Vmam - Vmin)

6(27Tl/min + af(ymaw - le'ﬂ))

SD(error) = \l

which always has a minimum for 0 < ¢ < 7. We show in Fig. 2 the SD of the
reconstruction error after a single spike as a function of a, for v,y /Vimin = 80.
It has a minimum for a about 50 degrees, for which the SD of the error is about

35 degrees.
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Figure 2: Left: SD of the reconstruction error after a single spike, as a function of
a. Right: mutual information between the spike and the stimulus as a function of a.
Note that minimizing the SD of the reconstruction error is in this case different than

maximizing the mutual information.

The mutual information, on the other hand, is

1 a VQ v, 1/2 . Vs 1
I =— maz | ( maz)_ min | ( mm)__ 2 _ .2
TV |f””a$ — Vmin ( 2 08 17 9 0g 7 4 (ymam me) +

+ (7 — @) Vi log (%;m)]

where
a
UV = Vpin + %(Vmaw ~ Vinin)

It also has a maximum for positive a. The width that maximizes I is different than
the width that minimizes the SD of the reconstruction error, as shown in Fig. 2. This
is the case in general for non-Gaussian tuning curves. In this case, the half-width
maximizing the mutual information is around 20 degrees. Note that in a wide range
of a the first spike brings about 2 bits of information about the stimulus.

Thus a finite optimal a stems from the constraint of already minimizing the error
when only a small number of spikes have been emitted by the whole neuronal array.
It implies that the largest receptive fields are most useful at very short times when
only a rough estimate is possible, while smaller receptive fields will be most useful at

larger times, when a more accurate estimate can be obtained.
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5.4 Application to the analysis of empirical data

In this section we use the experimental data of (Taube et al 1990) to show how
Eq. (13) can be used to estimate both Fisher and mutual informations conveyed by
large populations of neurons on an angular stimulus (in this case the head direction
of a rat). Taube et al (1990) have shown that in the postsubiculum of rats tuning
curves can be well fitted by triangular tuning curves, and that the distribution of
preferred orientations is consistent with a uniform distribution. They also determined
the distribution of the parameters of the tuning curve, v,,q;, a and the signal-to-
noise ratio (SNR) & = vz /Vmin over the recorded neurons. This data indicate these
parameters have an important variability from neuron to neuron. Eq. (35), in the case

of such inhomogeneities, has to be replaced by

N 1
J0) = N / AVazdada Pr(Vpeg, a, @) Ymaz (1 — —) In o (38)
0 a 1o

in which Pr(vez,a,a) is the joint probability of parameters vp,4;, ¢ and a. Under
global constraints, one may expect each neuron to contribute in the same way to the
information, that is (¥mez/a)(1 — 1/a)Ina is constant. This would imply that the
width a increases with vy,,,. Fig. 9 of (Taube et al 1990) show that there is indeed a
trend for higher firing rate cells to have wider directional firing ranges.

We can now insert the distributions of parameters measured in Taube et al (1990)
in Eq. (38) to estimate the minimal reconstruction error that can be done on the
head direction using the output of N postsubiculum neurons during an interval of
duration ¢. It is shown in the left part of Fig. 3. Since we assume that the number of
neurons is large, the mutual information conveyed by this population can be estimated
using Eq. (13). It is shown in the right part of the same figure. In the case of N =
5000 neurons, the error is as small as one degree already at ¢ = 10ms, an interval
during which only a small proportion of selective neurons has emitted a spike. Note
that one degree is the order of magnitude of the error made typically in perceptual
discrimination tasks (see e.g. Pouget and Thorpe 1991). During the same interval
the activity of the population of neurons carries about 6.5 bits about the stimulus.
Doubling the number of neurons or the duration of the interval divides the minimal

reconstruction error by V/2 and increases the mutual information by 0.5 bit.
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Figure 3: Left: minimal reconstruction error as given by the Cramer Rao bound for
N = 1000 (full curve), N = 5000 (dashed curve) postsubiculum neurons, using data
from (Taube et al 1990), as a function of time. Right: mutual information for N = 1000
(full curve), N = 5000 (dashed curve), using the same data and Eq. (13).

6 Conclusion

In this paper we have exhibited the link between Fisher information and mutual
information in the context of neural coding. This link had been first derived in the
context of Bayesian parameter estimation by Clarke and Barron (1990) and then
in the context of stochastic complexity by Rissanen (1996). We have shown that the
result of Rissanen applies to population coding, that is when the number of neurons is
very large compared to the dimension of the stimulus. Our derivation of the link uses
completely different techniques. The result is that the mutual information between
the neural activities and the stimulus is equal to the one between the stimulus and an
ideal Gaussian unbiased estimator whose variance is equal to the inverse of the Fisher
information. The result is true not only for independent observations, but also for
correlated activities (see Rissanen 1996 and the Appendix). This is important in the
context of neural coding since noise in different cells might in some case be correlated,
due to common inputs or to lateral connections.

This result implies that in the limit of a large number of neurons maximization of
the mutual information leads to optimal performance in estimation of the stimulus.

We have thus considered the problem of optimizing the tuning curves by maximizing
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the mutual information over the parameters defining the tuning curves: optimization
of the choice of preferred orientations, widths of the tuning curves. In the simple
model we have considered, the optimal value for the width is zero, as in (Seung and
Sompolinsky 1993). However, we have shown that finite size effects necessarily lead
to a non zero optimal value, independently of the decoding scheme.

We have discussed in detail the case of a one dimensional stimulus (an angle). A
similar relationship between mutual information and the Fisher information matrix
holds for any dimensionality of the stimulus, as long as it remains small compared to
the number of neurons. It would be straightforward to consider in that more general
case the optimization of the tuning curves. Zhang et al (1998) have computed the
Fisher information matrix for 2 and 3 dimensional stimuli. Their results imply that
optimal tuning curve parameters will depend strongly on the dimensionality of the
stimulus.

We have shortly discussed the cases of a finite number of neurons and of the short
time limit. In this case maximization of the mutual information leads in general to
different results than minimization of the variance of reconstruction error, as found
also in networks with the same number of input and output continuous neurons
(Ruderman 1994). We are currently working on these limits for which many aspects
remain to be clarified.

We have not addressed the problem of decoding. In the asymptotic limit, the
maximum likelihood (ML) decoding is optimal. Recently Pouget and Zhang (1997)
have shown that a simple recurrent network is able to perform the computation of
the ML estimate. This suggests that the optimal performance, from the point of
view of both information content and decoding, can be reached by a simple cortical

architecture.
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Appendix

Our goal is to derive (13), that is to compute the mutual information I = I[P, p]
between the random variables 7 and 6, working in the large N limit. We recall that
Z can be seen either as a set of N observations related to the measurement of an
unknown parameter 6, or as the set of responses of N neurons to a stimulus 6. The
mutual information I is defined by

I= / d6p(6) < In Péfg) >0 (39)

where Q(Z) is the pdf of 7

Q@) = [ dop(6)P(#6). (40)

In equation (39), ( . ), denotes the integration over & given § with the p.d.f. P(Z|6).

We define
1

G(30) =

In P(%|6) (41)
We will make the following hypothesis:

1. All derivatives of G with respect to the stimulus 6 are of order 1 in the large N

limit.

2. The cumulants of order n of zG) + yGj are of order 1/N™~! in the large N

limit.
Both properties are verified for the factorized models (1) and (2), but also in some
cases in which x; given 6 are correlated variables, as we show at the end of the
Appendix.

The large N limit allows us to use the saddle-point method (Bhattacharya and
Rao 1976, Parisi 1988) for the computation of integrals over #, in particular for the
computation of the p.d.f. Q(Z), using the fact that P(Z|@) will appear to be sharply
peaked around its most probable value, the maximum-likelihood (ML) estimator of
0. We will use standard cumulant expansions for the integration over ¥ in the equiv-

ocation part of I, and this will eventually lead to the announced result, Eq. (13).

Distribution of 7
The p.d.f. Q(Z) can be written

Q@) = [ dbp(6) exp NG(7)0) (42)
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For large N, the integral is dominated by the maxima of the integrand. These are
defined by the solutions of
G (#]0) = 0 (43)

which satisfy Gj(Z|f) < 0. Above we have denoted by Gj (resp.Gj) the first (resp.
second) partial derivative of G with respect to . Let us assume that G(Z|f) has a

single global maximum at 6,,(Z) The Taylor expansion around 6,,(Z) is

G(f|0):G(f‘0m(f))+%G”( [0m (%)) (0 — 0 (%))* +

Using standard saddle-point techniques we find

(1+0( )) (44)

with
Y=p a‘;’ 1 exp [NG, (45)
where
pm(T) = p(Om (), (46)
Gm(Z) = G(Z]0,,(2)) (47)
and
(%) = G4(%]0m (7)) (48)

Note that 6,,(Z) is the maximum-likelihood (ML) estimator of 6.

The mutual information: integration over 6

Let us start with the following expression of the mutual information:
S /dep(e) In p() + /de Q(7) /de Q(6)7) In Q()7)

with Q(0|%) = % The first term is the entropy of the input distribution. The

second term can be written

- / d¥z Q) In Q(Z) + / Nz / d6 P(Z)0)p(6) In P(Z|6) p(6) (49)
In the above expression, the first part is the entropy of & in which we can replace
Q(Z) by Q. (Z) as given in (45), leading to

N|[(Z)]
2T

1
—/de O(T) lNGm +1npp = 51n
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The last term in (49) can be written as

/ ANz / d6 A(Z|0) exp A(Z|0)
with
A(Z|0) = In P(£|0)p(6)
Now
/ dOA(Z|0) exp A(F|0) = O / df exp AA|yo1
which is again computed with the saddle point method,

- - 2m
/dﬁA(x\H) exp A(Z]0) = O0» mexp/\[NGm+lnpm]

1

A=1

Finally, putting everything together, the mutual information can be written

(1 NIP(@)
NG, —In————
exp NG ()] (310 €
(50)
It is already interesting to compare the above expression (50) with (13): as in (13) the
first term above is the entropy H[0] = — [ dfp(0) In p(f) of the stimulus distribution;

the second term, the equivocation, is in (50) given by the average over the Z p.d.f. of

[=— / d0p(6) In p(6) + / Az p(6m (7)) @

the logarithm of the variance of the estimator for a given 7.

The mutual information: integration over ¥

The last difficulty is now to perform in (50) the trace on Z. One cannot apply the
saddle-point method directly because the number of variables on which integration is
done is precisely equal to the number N which makes the exponential large. However,
the difficulty is circumvented by the introduction of a small (compared to N) auxilliary
integration variables, in such a way that the integration over the z;’s can be done
exactly. Then, we use again the fact that N is large to perform the integration over
the auxillary variables to leading order in V.

First we use the relation

F(0n(7)) = /dﬁF(é’)\GZ(f\f’)M(Gé(fle))
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in order to deal with 6,,(Z), which is valid for an arbitrary function F'. We then use

an integral representation of the delta function:

5(Gy(a10) = [ 52 exp (iyGy()0)

Similarly, in order to deal with Gy (Z|#) we introduce conjugate variables 7, 7: for any

function F' we can write
F(Gy(Z /deT— 7) exp (i7 (7 — Gy (£]0))) .

Putting everything together we get

I=H[0) + / dedydrdf%p(e) (% In (];176‘)) exp (i77 + K(0,y,7))  (51)

o L 0*G(Z10) . 0G(T|9)
K(0,y,7) =In < exp (—ZTW + W—pp 9

we recall that (...), = [d¥z exp[NG(Z|0)]...). We now make the cumulant expan-
0

in which

(exp A), = exp ((A)a + %(<A2>9 —(A)2) £ .. )
for
= —i7Gy + iyGy. (52)

The cumulant expansion will be valid if the cumulants of order n of A with the law

exp[NG(Z|0)] decrease sufficiently rapidly with n. A sufficient condition is
assumption: the cumulants of order n of A (n=1,2,...) are of order 1/N"=' (53)
Using the following identities obtained by deriving twice 1 = (1), with respect to 0,
0 = <Gle>e
0 = (G§),+N((G)?),,
one gets

A2A2 2 "Z
K =ijot2 VS v +0(—> (54)

2N 2N N
where J, A, Z are given by

J = —(Gpy=N((Gy)’),
a? = N (@), - (Ghy)
Z = N{(G,GY),
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Note that the Fisher information J(0) is equal to N J, and that A? and Z are of
order 1 because of assumption (53).

In these terms we have

! = o+ [anagarar YT f (2 n(zvm))

VN (2r 2me
AZAQ v:J  yrZ 1
#(r+J - 0(+2)
eXp(“ )=y Tt Nt N2>
Our last task is to integrate over the remaining auxilliary variables 7, 7, y. Using

the fact that A% — 272 > (, deduced from the Schwartz inequality

<Gy (Gh— <Gy >)>2< <Gy >< (G)— <G >)* >

the integration over y and 7 are simple Gaussian integrations, leading to:

I = H[0]+/d9p(0)/j;—7r \/IT @er‘) p( 2 (AT; J)—>

The integration over 7 is with a Gaussian weight centered at 7 = —J and with a

width going to zero as N goes to infinity:

T—i—J)2
" \/%\ A2 "oz =)

Using the fact that the Fisher information is J(#) = NJ, we obtain

—/d@p(ﬁ) In p(6 /d&p ( 27{;) (1+O(1/N)) (55)

which is the announced result (13).

The conditions (53) of validity of the calculation are satisfied when z; given 6
are independent, as in models (1) and (2), but can also be satisfied when they are
correlated. We discuss below these two cases.

Conditional independence of activities

In the case of independent neurons, model (2), one can easily check that the cumulant

expansion at order n gives terms of order 1/N"~!. Indeed, in that case one has

= % S, (56)
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so that

1 . . 0%gi(2:]0) | . Ogi(zi[0)
A= N ; AZ', with Al = —IT 962 +wy 90 . (57)
The cumulant expansion then reads
A;
(expA) = exp ) log <exp ﬁ>
= o (5 @)+ (4) - (@) +oa/NY)  (68)
—~\N YN '

Thus Eq. (54) holds, with J, A, Z given by
1 GQgZ- 1 ag,- >
1= 52(w), =52 {(3) ),
2

0
2 _ 1 8291 ? _ 3291‘
AT = ; 062 9 062

N
1 9g; 0°g;
Z = NZ<%602>9' (59)

Correlated neurons

The conditions on the cumulants of A, Eq. (53), do not imply that the z; are in-
dependant, but they do have the qualitative meaning that they convey of order N
independent observations. To see this, we give here an example of correlated activities
for which the conditons are satisfied.

We consider the following simple model. Each z; can be expressed in term of the

same N independant random variables, &,,a =1, ..., N, as
z; = Z Mi,a&a (60)

where M is a #-independent invertible matrix, and the &’s are, given 6, statistically
independent variables of arbitrary p.d.f. p,(£]0),a = 1,..., N. The factorized case is
recovered for M diagonal. In the case where the p’s are Gaussian and M is orthogonal,
(60) is the principal component decomposition of the z’s. We show now that the case
M invertible with arbitrary p’s satisfies the conditions (53).

First, it is obvious that the result (13) holds: with the change of variables ¥ —
M~'Z = £, one recovers the case of independent (given #) activities. One can then
apply (13) to I(0,€). Since P(€]#) = P(Z|0)|det M|, with M independent of 0,
1(0,%) = I(6,€) and the Fisher information associated to P(£]6) is equal to the one
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associated to P(Z|f), so that (13) holds for I(#,Z). Second, one can check directly
that conditions (53) holds. For our model, G is

1 1
G(Z|0) = —ﬁln\detM\ + NZlnpa(Z M, x;]6) (61)

so that the cumulants of 6G§§|0) and 625;6(,?‘0) with respect to the pdf P(Z|f) are equal
to the cumulants of aGégw) and 32%5‘”) with respect to the factorized pdf P({?|0) =
1, pa(&]0) for which (53) holds.
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