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Dominant residue classes concerning

the summands of partitions
Cécile Dartyge (Nancy) and Mihély Szalay (Budapest) *

To Jean-Marc Deshouillers on his 60-th birthday

1. Introduction

Recently Andréas Sarkozy and the authors [3] proved that for almost all partitions of an
integer n, the parts are well distributed in arithmetic progressions modulo d for d < n'/2=¢.
This range for d is large if we compare it with the largest parts of almost all partitions.
Indeed, Erd6s and Lehner [6] proved in 1941 that for almost all partitions of n (with
at most o(p(n)) exceptions) the biggest part is (1 + 0(1))@log n. However this well
distribution is limited by some phenomenon of preponderance of parts with small module.
For example, it is well known that for almost all partitions the number of parts equal to
1is = /n (see [11]).

In order to some applications, the aim of this paper is to study precisely the distribution
of the parts congruent to j modulo d. Let d > 2 and R = {Ny,...,Ng} a set of some
positive integers.

We denote by II;(n, R) the number of partitions of n with exactly N, parts congruent
tor moddforl<r<d.

We immediately remark that I1;(n,R) > 1 if and only if n = R (mod d) with

d

(1-1) R:=) rN,.

r=1

It is the reason why we will compute IIz(n + R, R) for n = 0 (modd). In the following
result we give an asymptotic formula for IIz(n + R, R) in a large range of Ny,..., Ny.

Theorem 1.1. Let 0 < ¢ < 1072. There exists ng such that for n > ng, d < né_a, d|n
and

(1.2) (i—i—e);/glogngNréTi; (1<r<d
we have
o+ R, R) = (1+ o(1))p(m)a ™ (=) T
2v/6n.
(1-3)

Vén d dN,m
= exp(_m)).

r=1

xexp(—

The condition d < ns~¢ is a consequence of the use of saddle point method. This
condition is probably not optimal. It is clear that we must have d < +/nlogn but
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perhaps another approach could give some significative result in some part of the range
[n&=¢ na—e].

The error term (o(1)) in (1-3) depends mainly on the computation of the term S; (see
paragraphs 4 and 5). We could replace it by O(n=%/%). In fact if we take a smaller range
for Ny,..., N4 than the one given in (1-2), then we can obtain a more precise error term
in (1-3).

The first part of the paper (the paragraphs 2,3,4,5,6,7) is devoted to the proof of this
theorem by the saddle point method.

In the second part of the paper we derive many results on the distributions of the parts
in residue classes. Some of these results solve problems posed in [1], [2] and [4].

We first obtain a statistical result on the size of all N,. for 1 < r < d.

Corollary 1.2. For 0 < ¢ < 1072, n > nay(e), and d < ns~¢, in almost all partitions

of n the number of summands = r(modd) are between [(3 + ¢) V6 Vvnlogn]d and

2nd?
L@ZZ/SJCZ — 1 simultaneously for r = 1,...,d.

It should be noted that, for d = o(log® n), Corollary 1.2 is implied by the Theorem 1 and
Corollary 2 of the article of Andréds Sarkozy with the two authors [3]. Next we will state
a corollary which shows that for almost all partitions, two given residue classes doesn’t
contain the same number of summands.

Corollary 1.3. For 0 <e <1072, n > ns(e), d <ns ¢, and 1 < a < b < d, the number
of partitions of n with the same number of summands in the residue classes a and b (mod

a) is o(p(n)).

In [1] and [2] Dartyge and Sarkozy proved that for a positive proportion of partitions
some residue classes are much more represented than others. For a given partition II of
n and for any 1 < j < d, we denote by N; = N;(II) the number of parts congruent to j
modulo d. Dartyge and Sarkozy [2] showed that, for d fixed, n large enough (n > nq(d))
and any 1 < a < b < d, the inequality N, — N, > %ﬁl is satisfied for at least p(n)/12
partitions of n. In the introduction of [1] and in the end of [4] it is conjectured that for
1 < a < b < d there exists C = C(a,b,d) > 1/2 such that N, > N, for at least Cp(n)
partitions of n.

In the following theorem we prove this conjecture. In fact, we obtain an asymptotic
estimation of the number of such partitions.

Theorem 1.4. For any 0 < & < 1072, n > ny(e), d < ns€and1<a<b< d, we have
the three following properties.

(i) The number of partitions of n in which there are more parts = a (mod d) than parts
= b(modd) is

(14) 1 +O(1))p(n)r(g)1r(g) / T aites( / e dy) da,

(ii) The number of partitions of n in which there are at least as many parts = a (mod d)
as parts = b(mod d) is

(15) (1 *‘J(”)p(")r(;)lr(g) / T aites( / e dy) da,

(iii) For fixed d, 1 < a < b < d, and large enough n, the number of partitions of n in
which there are more parts = a (mod d) than parts = b(mod d) is

(16) . p(n)(% + %i“) > p(n)(% + é—d)
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On the other hand, this number is less than
(1-7) p(n)27 (1 + o(1)).

When b = d in the above theorem, it is possible to compute the integrals in (1-4) or in
(1-5). We obtain that for 1 < a < d, the number of partitions of n such that N, > Ny (or
such that N, > Ny) is (14 o(1))2~%p(n).

In [2], Dartyge and Sarkozy proved by combinatorics arguments that for at least p(n)/d
partitions of n, we have N; > N; for any 2 < j < d. In [4], it is conjectured that there
are at least (% + ¢)p(n) such partitions for some ¢ = ¢(d) > 0. We state this for fixed d in
the following theorem.

Theorem 1.5. For fixedd > 2 and 1 < a < d, the three following assertions are satisfied.

(i) The number of partitions of n in which there are more parts = a (mod d) than parts
=b(modd) for allb e {1,---,d} ~ {a} is

1 a1 —m 51—y
(1+0(1))P(”)1M/0 E/ Yy dy)d

(ii) The number of partitions of n in which there are at least as many parts = a (mod d)
as parts = b(modd) for all b € {1,---,d} ~ {a} is

1 = 24 1g 51,y
(1+0(1))P(n)w/() g/ Yy dy>d

(iii) For n large enough, the number of partitions of n in which there are more parts
= 1 (modd) than parts = b(modd) for allb € {2,...,d} is

> p(n )<d+ﬁ(l_é>)'

In [2], Dartyge and Sarkozy proved that for at least £ (”)( 1+ O(dld*/\/n)) we have
Ny > Ny > --- > Ny. In [4] we conjectured that this holds in fact for at least Cp(n)
partitions with C > 1/d!. In the following result we solve this conjecture for fixed d.

Theorem 1.6. For fixed d > 2, the number of partitions of n in which there are more
parts = a (mod d) than parts = b(modd) for any 1 < a < b<dis

1+0(1)) 01 2 o0 g
(1+0o(1)) / x{ 1ex/ g 62 /x3 Le—aa, / x] Lo dzg--- dxy.
ey e LA LA

For n large enough this is

p(n)

> a
We won’t give the details of the proof of this theorem because it is an adaptation of
the proof of Theorem 1.5. In fact, the proof of Theorem 1.5 may be also adapted easily

to obtain the more general result :
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Theorem 1.7. For fixed d > 2 and any permutation o on the set {1,...,d}, the number
of partitions of n in which there are more parts = o(a) (mod d) than parts = o(b) (mod d)
forany 1 <a<b<dis

1 1 X o) X o2 _ a3 0 o
f + 02( ))p(n) y / xl d 1ea:f $2d éwg/ de 167963, / 1 fzd H dxr
TOROREIC IS

d d d

With much more computations some results could be more precise. Some estimations are
obtained only for d fixed mainly because in some steps we apply many times Corollary 1.3.
It is probably possible to improve this corollary by a more direct use of the saddle point
method.

2. A lemma on some generating function

In order to use the saddle point method we define the generating function :

G(z) := Z IMg(n, R)z"
=R (b d)
We will prove that this function is a finite product.

Lemma 2.1. For z € C and |z| < 1, we have

SIN1+-+dNg

1 T (1 — 299)

We will give two proofs of this result. The first one uses a multi-variable generating
function and a formula of Euler, the second is more combinatoric.
First proof of Lemma 2.1. According to Euler’s theorem, for |[t| < 1 and |¢| < 1, we have

" b 1
(21) “Z o a e Ui

(1—q)(

G(z) =

for example, see [10] Theorem 349 p. 280.
For z,w, € C,|z| < 1, and |w,| < |2|7", (1 < r < d) we have

d oo d -
[I11 mz T T 0+ wee+hed o w2a2thed 4oy
T

r=1k,=0 r=1k,.=0
§ § E n N N,
= ( {Nl)"'de})Z )wll. wddv
Ni=1 Ng=1 neN

where * indicates that the sum is over the n € N such that n = R (mod d).
On the other hand, for 1 < r < d, we write w, 2" *4 = (w,.2")(2%)*" and we apply (2-1)

with t = w,2", ¢ = 2% :
d o0
(wrz’")NT
1 )
IR E—— +z(1_Zd)(1_zzd)...<1_w)
r=1k,=0 r=1 N,=1
d

(2:3) = H1 Z e Z]d)

= d N, : )
Nico Nao—o L=y T2 (1 —299)

N1 Ng
wl n--wd .
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We finish the proof by comparing the coefficient of wl'* - - - wN* in (2-2) and (2-3).
Second proof of Lemma 2.1. Let II be a partition of n counted in II(n, R). This partition

is of the form :
d N,
Min=> Y (r+A;d),

r=1j=1
with

Thus we have

r=1

d N,
n= R+d2mr, with m, = Z)‘W (I1<r<d).
j=1

For each 1 <r <d, A\r1,..., AN, is a partition of m, in at most N, parts. Let pn, (m,)
denote the number of such partitions. We have

o0

Gz)==" ) > Py (1) - iy, (mg) 2 40mt+ma)

-R
my+-Fmg="7

m;eN

n=0
n=R (mod d)
d 0o
= B H ( Z 2y, (m))
r=1 m=0

SR

d N, N
[ Hj:l(l —z%)

where we have used the formula for |z| <1

00 - 1

J=1

3. The saddle point method
For v € C, |v| < 1, it follows from Lemma 2.1 that

o) d N,
Z IIy(dm + R, R)v?™ = H H(l e
m=0 r=1j=1

For d|n, and some 0 < ¢ < 1, we obtain by the Cauchy formula that

d N,
1 r .
II RR)=— _”_1||||1—9d_1d.
idn+ R, R) 21_7T/U|:gv r:1j:1( /) v

Let >0, po=¢7%, z=x + 1y, v =e *. Then we have :

1 [ 1 .
IIyn+ R,R) = o _ﬂ{gjl;[l 1—exp(—jd(az—i—z’y))}exp(n(x—i_Zy)) dy

d w/d d Ny 1 .
T or —r/d { H H 1 — exp(—jd(x + iy)) } exp(n(z +iy)) dy

r=1j=1
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since the integrand is periodic in y and has period 27 /d. For ftw > 0, we set

f(w) = H(l — exp(—vw)) !
and B}
gk (w) := H(l —exp(—vw)) "t = f(w) H (1 — exp(—rw))
v=1 v=k+1
With this notation,
d [ 2
My(n+ R,R) = Py /_Tr/d { Tl_IlgNr (d(z + zy))} exp(n(z + iy)) dy.

Fore >0,0<e<1072,d< ns=¢ and n > ng, we consider the interval

3 V6 ns
I = In7d78 = [(Z =+ €)ﬂ\/ﬁlogn, 7] .

We will estimate IIz(n + R,R) for Ny,...,Ng € I and d|n. Choosing x = xg =

3 5 .
y1 =n"115 yo =n"515 and y3 = mxo, we write IIz(n + R, R) as

d
mm+anp:{/ +/ +/ +/ }
(3-1) 21 Llyicn Juilyi<ee Jweslyi<us  Jus<lyi<asd
=51+ 85+ 853+ 85,

_T_
Vén’

Theorem 1.1 will be derived by the following lemma :
Lemma 3.1. Under the hypotheses of Theorem 1.1, we have

d—1 d
(3:2) S1=(1+oW)pmdF (1) 7 exp (- Cfmzem—dm@));
r=1
(3-3) S;i=o0(51) (i=23,4).

In the next paragraph we state some estimates of g; and in the paragraphs 5, 6, and 7
we prove (3-2), (3-3) respectively.

4. The function gy,

By elementary arguments we will prove the following lemma which compares g5 with
f.
Lemma 4.1. (i) For k € I and |y| < w/d we have

exp(—dk(xg + iy)) }

gr(d(zo -+ iy) = f(d(zo +iy) exp { = =

(41)
X exp {O(exp(—dkxo)) + O(\/Zexp(—2dk$0)) },
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and
4.2
X exp {O(l) exp(—dkwo)(v/nkly| +1 + \if exp(—dkxo))}.

(ii) For k € I and |y| < y; we have
(4-3)

gk (d(zo +1iy)) = f(d(xo + iy)) exp (

w|m

— exp(—dkx0)> exp (O(n§+

dzo exp(—dkxo))>

= (1t ofd ™)) f(d(ao + i) exp ( - dio exp(~dkz)).

Proof. Consider gi(dz) for k € I and |y| < w/d. If v > k + 1 then

0ol

(ML)

|exp(—vd(zg +iy))| = exp(—vdxo) < exp(—kdxg) < n~

Therefore (here log denotes the principal determination of logarithm defined on C \R™),

gk (d(zo +iy)) = f(d(zo + 1y)) exp{ Z log(1 — exp(—vd(zo + zy)))}
v=k+1

= f(d(zo + iy)) exp{ - Z (exp(—vd(zo + iy)) + O(exp(—2udm0)))}
v=k+1

exp(—dk(zo + iy)) ( exp(—2dkzxg) )}
exp(d(zo +1y)) — 1 exp(2dxg) —1/J°

= f(d(xo + iy)) exp{ —

Here, |d(z¢ + iy)| < dzo + 7 < 6. Thus

1 L + O
exp(d(zo +iy)) —1  d(xzg +iy)

This yields that

gr(d(zo + 1y)) = f(d(xo + iy))
exp(—dk(xzo + iy))
d(zo + iy)

+ O(exp(—dkxo)) + O(\{lﬁ exp(—2dkz)) }7

xexp{—

this ends the proof of (4-1).

To prove (4-2) we remark that

exp(—dk(zo +1y))  exp(—dkzo) exp(—dkxo) | exp(—dkiy) — 1 — iyzy*

d(zo + iy) dxo d o + 1y
(4-4) o &xp(=dkxo) (dkly| + lylzg )
= d Zo

= O(v/nk|y| exp(—dkxy)),

since x5 ' = O(dk). It remains to insert (4-4) in (4-1) to obtain (4-2).
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Now we prove (4-3). For k € I and |y| < y1 = n~17¢, the different factors in the error
term of (4-2) become :
n nd/8
Vnklyl +1+ \df exp(—dkxo) < /n

n’® d
d d d
and

nst n=é 1
(4-5) 7 exp(—dkzp) < =o(=).

Consequently, for k € I and |y| < y1,

w|m

gr(d(zo +iy)) = f(d(zo + iy))exp{ _ ‘W N O<n8;3 eXp(—dkx0)>}
— (1 + O(d_l))f(d(xo + Zy)) exp{ _ W}’

this ends the proof of (4-3).

5. The main term Sy

By (3-1) and Lemma 4.1 we have

d Y1 d . .
si=y. | {Emd(xo +iy)) } exp(n(zo + iy)) dy
d 1<
% exp ( — T% ; exp(—dNr$0)>
Y1
X

s 4

f(d(zo + iy)) exp {n(xo +iy) + O(n y Z exp(—dNTxo)) } dy

Y r=1
1<
= dexp ( ~ e ;exp(—d]\fra:o)>
Y1
% F4d(zo + iy)) exp (n(zo + iy) + O(n 7)) dy.
—U

Next we use the well-known formula (see for example [7] or [8])

2 1 w

= 2L oe — )
f(w) = exp (£ + S log o + O(|ul)
for w — 0 in |argw| < K < 7/2 and Rw > 0.

For ‘y| < Y3 = mxo,

— m? To +1
fld(zo +iy)) = exp (6d(wozy) + %log (W) O(d:z:o)),
— 7w’ To +1
fHd(zo + iy)) = exp (6(1‘01?;) + glog (M

. )+ O(dzl‘o))

. d d—1 To + 1
= f(xo + iy) exp <§logd+ 5 log OQWy—i-O(dza:o)).
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For |y| <y, = n=¥+5,

d—1 1 <
= f(xo + iy)dd/Q(g—O) 2 exp(O(dn~5715)).
T
Finally by (5-1) and (4-5),

d—1 d
_ +d (P02 1
Sy =d T2 (277) exp < e ;exp( dero))
1 Y1
X {2— f(zo +iy) exp(n(xzo + iy)) dy
T —Y1
Y1
+oll) [ (o + ig) expln(zo + )] dy}.
—Y

For |y| < y1, --- as it is well known ---

2 1 (950 + 1y

f(zo + iy) exp(n(zo + iy)) = exp (m T3

(W Ty 11g(%)+0(1)+nw0>

= (L4 o(1))|f (xo + iy) exp(n(xo + iy))l,

and
o | Fan+ i) expnteo + i) dy = (1~ o(1))p(n).

This ends the proof of (3-2).

6. The term S5

We write

Y2 —Y1
Sy = / +/ =S5 +5;.
Y1 —Y2

Thus we have
n d Y2 d . .
SE = o /yl { 71;[1 gn, (d(zo + zy))} exp(n(zo +iy)) dy.

From Lemma 4.1 we have for k € I and |y| < 7/d

exp(—dk(xo + iy))
d(xo +iy)

+ O(exp((—dkxo)) + O(\{f exp(—2dkz)) }

lgr(d(zo + iy))| = | f(d(wo +iy))] exp{ R
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Ifkelandy, <y<ys=n"5+35 then

—dk —dki
v+ i) = | F (o + i) exp { - ZLEARE) XD

1_
—1-¢

+0m =75 +0(*—)}

(61) = |fdlan + i) exp { ~ LI g ki) 1+ 0(L2))) + o(a™))

dmo i)

{-
{ exp( dkxo) _1.e _ }
-

= |f(d(xo + iy))| exp d:co (cos(dky) + O(n"5735)) +o(d™ ")

f(d(xo + )] exp exp( dkx0)<1—2sin2(d§y))+o(d_1)}.

If k < g\/ﬁlogn then

exp(d—dk:vo)Q sin? (@) = O(\Zﬁ)(dkyg)zexp(—dkazo)
(62) 0
= O(\Zlﬁ)n_g_g(log2 n)n‘i‘*'%e =o(d™)
Ifk > m logn then
(6:3) eXpS;””m)zgnz(dgy)zzo(fjjexppﬂuwo):()(if)n—lzuxd—w.
0

By (6-1), (6-2), (6-3), and (5-1) we have

d.??o

d Y2
551 < o exp (= 3 SREIION) [ (g i) expnao + o(1)) dy

r=1

d Y2
= O(d) exp ( _ Z exp(—aﬁll\hxo))d (xo) / |f(xo + 1y)| exp(nxo) dy.

T 2w
r=1 0 1

Here the usual estimation :

’/T2

6(%0 + iy)
2 2

@
O(l

|f(zo +iy)| = exp {éR —I—O(logn)}

yields that S5 = 0(S;) and the same goes for S .

7. The terms S3 and Sy

Like in the previous paragraph we write

&:/ +/ =S5 +S;5
Y2<Y<Ys —Y3<SY<—Y2
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and in the same way we write Sy = S} + S, . Similarly, for v, < |y| < y3 = T,

74w + i) = | w0 + iy)ld? (32) T exp(O(dlogn))

and

exp(—dk(zo +iy)) ~1
Tty o)

exp(—dkxg) N o(dfl)}

exp(—dkxg) n

lg6(d(o + )| = | (d(ao + iy))] exp { R

< If(dwo + i) exp { + 25

< If(awo + i) exp { = 25

yield that |S3| = o(S7) since
m a < m ( Y3 )
6z 22 +y3 620 212

2

s
61’0

|
S
[N

<

Finally, for y3 < |y| < 7/d, we obtain again that

exp(—dkxg) ng

lge(d(wo +ig))] < | F(dlao +iy))] exp { — =22

Since

1w =0 (3 =)

m=1
for w > 0, we have

oo

R e S ——

A=, mlem — 1|

1 1 72
< (5 1)
eXp<|ew—1|+§Rw(6 )
1 1,72

+—(% -1))

2 Imw|  Rw

if |Imw| < 7. Thus

F o + )] < exp (57— + (= 1)),

1,72 ™ 1
4(d ' < S — (-1 < 6xy 2xo’
e+ i) < exp (g o+ 20 (= 1)) <emp (g = 5)
Observing that
_d /2T %
d (?0) = exp(O(dlogn))

we see that Sy = 0(S7), this ends the proof of Lemma 3.1 and Theorem 1.1 is proved.



12 CECILE DARTYGE AND MIHALY SZALAY

8. When n = R (modd)

We are going to apply Theorem 1.1 for n — R instead of n when n = R (mod d). In this
section we will derive from Theorem 1.1 the following result :

Corollary 8.1. For 0 <e <1072, n > ny, d < (n —n**)57¢, n = R (mod d), and
3 Von V6 /8
1 2 <20 (r= 7
(8:1) (4+€)2dlog SN < ——(r=1,....d)
we have
24d 1 st TR Von d dN,
II4(n,R) = (1+o(1 n)d 2z e - — = — e - .
(. R) = (1 o™ (7)™ e { = 7= = T Y e (- )}
Proof. Under the hypotheses of Corollary 8.1, we have
ni d(d+1) 3

5 3_
7 5 <dns <n*" % <n=,

thus n — R > n —n?/4, §n5/8 < (n— R)®8, and

R <

n—R=n(14+0(n _1/4)) = nexp(O(n_1/4))
V= R= VRe(O(n ™) = i+ Ol

\/nl—iR fexp(O( n~YV4)) = \f +0(n=%%)
% (L) exp(O(dn~1*)) = L T(l +o(1)).
(m Vn vn

Next we compute the argument of the exponential in Theorem 1.1 :

(57 - 5D S (- i) =o€ Sy - )

wd 6(

In the same way we have for 1 <r < d:

aN-m N\ _ _ 1 ~3/4
exp(— 6(n—R)) —exp< dN,nr(\/(Tn—i-O(n )))
B dN,m n5/8 —3/4
exp ( — Jon O(dTn ))
— (14 O(n /%)) exp ( dfg )
It remains to sum this equality over 1 < r < d:
Vén d dN,w B V6n ~1/8 d dN, T
w2 (= inigy) = g 0T N e (- TET)
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We apply Theorem 1.1:

244 =N Von & P
(82) Ty(n,R) = (1+0(1))p(n — R)d™ (2\/1671) esxp (- WZ ;exp<— %))
From the asymptotic formula
pln) = (14 (1), Lz exp (2747
of Hardy and Ramanujan [9] we obtain for 1 < ¢ < ni=¢, that
(8-3)
P — (o) exp (- T (v - V=)
s 2w
— (1+0(1))exp<— \/Gin> exp(— \/6(\/ﬁ+i/m — Q\t/ﬁ)>
T 2t n—+vn—t
= (1—1—0(1))exp(— \/f%> exp(— \/g2ﬁ(ﬁ+\/%)>
=(14o0(1))exp < - \;1%) exp (O(t2n_3/2)) = (14 o0(1))exp ( — ;6%)

The equalities (8-3) and (8-2) give Corollary 8.1.

9. Local stability of IT;(n,R).

The next corollary says that if we take two sets R = {Ny,..., Ng} C Z¢ verifying (8-1)
and R* = {Ny,...,N5} C R? such that the N} are near the N, on average, then in
the estimation of II;(n,R) we may replace the N, by the N in cost of an admissible
error term. This will be very useful for the proofs of the different results announced in
the introduction.

Corollary 9.1. For 0 < e <1072, n > ny, d < (n —n3/4)57¢, n = R(modd), and two
sets R = {Ny,...,Ng} C Z%, R* = {N7,...,N;} C R such that:

(i) R satisfies (8-1);

(ii)) R and R* verify

d
(9-1) >IN, - N < d,
r=1

we have

Mt R) = (4 o) (5 1) T e { - T YO jp (- myy

Proof. Let F' be the function defined by :

(9-2) F(Nl,...,Nd):exp{—%—ﬁiexp(—d\]/\[g)}.



14 CECILE DARTYGE AND MIHALY SZALAY

If R* satisfy (9-1), then in Corollary 8.1, F'(Ny,...,N,) ~ F(N{,...,N}) since

1 . 1 . d4 B
‘n;T(Nr N;) <\/ﬁ;dm ]
and
¢ d
n dN,m dN*r NG dNym
% ‘1—6Xp(— d(Nr*_Nr)ﬂ')’

This ends the proof of Corollary 9.1.

10. Partitions without abnormally represented residue classes;
proof of Corollary 1.2

If we shall sum over certain choices of Ny,..., Ny then the product in

arN, 6n b ( B dNTTF)}

— —ex
Vén md V6n

would be useful for an “independent” computation but we have the condition

d
F(Nl,...,Nd):Hexp{—

r=1

d
(10-1) Ni=n-— ZTNT (mod d).
r=2
For Ny = L%Jd (or [%]d) and N = N, (r = 2,...,d), Corollary 9.1 implies that in
an asymptotic sense, we can substitute the condition (10-1) by the condition d|N;. Let
A=[(2+ 5)%\/ﬁlogn1d and B := L‘/%z/gjd.
Thus d|A, d|B, and

3 V6én V6n®/8
= < < .
(4+€)2ﬁdlogn\A<B\ —

In the following lines, for each A < Np,...,Ng < B, R is the associated set R =
{N1,...,Ng} and the integer R is Zle rN,.. By Corollary 9.1,

24d 1 a5+
> M R) = (L4 o(1)p(m)d (=) S F(Mi,..., N
A<N;,.. . Ny<B 2v6n ALNy,...,Ng<B

R=n (mod d) d|Ny

Here the sum is

S = > F(dN],Ns,...,Ny)

AJd<N|<B/d
ALN,,...,N4<B

Ni+1 N2+1 Ng+1
2

’
AJd<N|<B/d "M N, Na
A<Na,,...,Nqy<B
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Next we apply Corollary 9.1

o= / [ [ A pat

A/d<N <B/d
A<Ns,...,Ng<B

since (dt’l—dN{)—i—(tQ—Ng)—i—---—i—(td—Nd)<d+d—1<d3.
By dt} = tq, it is

S = 1+0 / / / tl,...,td)dtl--'dtd
mrt Von dtm
(1 - dt.
+o(h)g H/ Jon  nd eXp( @))

We set t = uv/6n/md in the integral :

\/6 Bﬂ'd/\/% ur e ¥ n
S=1+ (1))d< de) / e e T du.

1/ Amd/+/6n

Vén —u

Next we write £ = Y Re
wd

exp(—n'/8+0(1))v6n/(nd)
xdle® dx:/

0

\/ﬁdflexp(—n%) . d
< / riatdr = - (\/ﬁ exp(—nl/s))
0 T d

/AN
|
VN
O
0]
3
3
~
[oe]
SN—
=
~
[sH
('D
]
ol
T
‘3

where v is the Euler constant.

ditg,

15
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For the other side, we have:

0 [o@)
/ zile ™ dr = / zi e ™ dx
Y51 exp <73ifd) exp (*(%4»%) log n+o(1)) Von

wd

[oe)
= R A
(1+0(1) 8 252

&

since F(g) > 1.
Finally we obtain that

> Ma(n,R) = (1+o(D)p(n)d ™ (

ASNy,...,Ng<B

R=n (modd)
d
JI{r@) +eGrG)}
d—1 d ,
= (1 +o()pm)Vd(5-) T (1+o(d R IE
1)...p(d=1
= (4ot L)
Vid

11. Partitions with equilibrated residue classes: proof of Corol-
lary 1.3

For 1 < a < b < d, we can estimate the number of partitions of n with the property that
the residue classes a and b (mod d) contain the same number of summands. Let F(a,b)
denote the set of such partitions. By Corollary 1.2, apart from o(p(n)) partitions of n we
may assume that A < Ny,..., Ng < B. Thus we have:

E(avb) = z Hd(n7R) + O(p(n))
A<Ny,..,Na<B
n=R (mod d)
No=N,
We can follow the proof of Corollary 1.2 to make the Ny, ..., Ng independent.
There is a technical difficulty when d is small (when ¢(d) < 3). We would like to replace
for some convenient j € {1,...,d} \ {a,b} the condition

JN; =n— Z r N, (mod d)
1<r<d
]
by d|N 7. But in this way, when d is small we are not sure that the correspondence between
the corresponding sets R and R* is one-to-one.



Dominant residue classes concerning the summands of partitions 17

We will choose our set R* in the following way. If a # 1 then we take Nj = dL%J.

Ifa=1,b#d—1andd >3 then weuse j =d—1, Nj_, =d| Y1),

Ifa=1b=d-1and d ¢ {2,3,4,6} we use j = ¢, N} = d|2¢] with ¢ minimal
satisfying 1 < ¢ <d—1 and (¢, d) = 1.

If (a,b,d) = (1,5,6), we use Ny = SL%J, N; = 2L%J (thus in this case we have
R* = {N1,N5, N3, Ny, N5, No}).

The cases (a,b,d) € {(1,2,2),(1,2,3),(1,3,4)} are to be investigated separately. Later
we have to substitute

/ABeXp (_“ata_{gnexp (_%» dta/ABeXp <—¢%btb—{r%exp (JZLW)) dty

by .
/A exp ( — \/ﬁ(a
I'(3) by

moreover, I’ ( o )

0o +b
md P le=2 g — md F(aTb)
von Jo Vén 9%

The complementary integrals change unessentially.
Thus the final result is

we have used the facts that F(%)F(%) > 1, I‘(“T”’) < F(%) = dF(é + 1) <d.

This result is valid for (a,b,d) = (1,2,2) too. For (a,b,d) € {(1,2,3),(1,3,4)} we can
obtain similar expressions weighted by constants depending on the residue of n mod d:
0,0,3;0,2,0,2.

12. Comparison between the number of summands in two
residue classes: proof of Theorem 1.4

12.1.  Proof of the propositions (i) and (ii) of Theorem 1.4

In this section, for 1 < a < b < d, we investigate the number of partitions of n in which
there are more parts = a (mod d) than parts = b (mod d), briefly the case N, > N,. We
shall consider the cases N, > N, resp. N, > N, together as N, > N, + A with A =1
resp. A = 0.

By Corollary 1.2 the N, belong to [A, B] for almost partitions :

S MR =opm)+ Y Hi(nR).

Ni,..., Ng ALNy,...,Nqg<B
R=n (mod d) R=n (mod d)
NoZNp+A No>=Np+A

Apart from (a,b,d) € {(1,2,2),(1,2,3),(1,3,4)} - as in the proof of Corollary 1.3 - we
can suppose that 1 < a and follow the proof of Corollary 1.2.
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We have to substitute:

Na+1 Nb+1
Z Z / / F(.. tay. . ty,...)dtgdty
Na b

A<N,<B A<N,<B N
by
Ng+1 Ny+1
Ta,b:: E E / / F(...,ta,...,tb,...)dtadtb.
A+ALN,<B AKNy<Ng—A Y Na Ny
We have

Ng+1 Ng,+1-A
Top = Z /N /A F(ooita, ooty ...)dt, dtp.

A+ALN,<B

When A =1 we have the upper bound

B ta
Ta,bg/ / F(ootay. oty ... dtg dty.
A A

If A =0, then it is a lower bound :

B ta
Ta7b>/ / F(..  tas. o ty,...)dtg dty.
A A

Taking into account Corollary 1.3, apart from o(p(n)) partitions of n, we can compute

both cases substituting fA<t <B fA<tb<B by fA<t <B fA<tb<t . Later, considering also
the complementary integrals, we have to substitute

(1 +o(@Nr($) o+ o(d_l))F(g>

/000 rile™® ( /:O yi~ley dy> dz + O(dfl)F<%>I‘<g>.

For (a,b,d) € {(1,2,2),(1,2,3),(1,3,4)} we use both Ny = dL%J, Ni* = [%Wd.
Thus the final result is

by

(12-1)
1 1 oo o o0
S M R) = olpln) + ) [T itie [y vy
Nl ..... N(i F(% F g) 0 x
R=n (mod d)
No>2Np+A

This ends the proofs of (i) and (ii) of Theorem 1.4.

12.2.  Proof of the lower bound (1-6)
For the special case 1 < a < b=d, (12-1) becomes

=
2

(o) [* 4oy aey o
o(p(n)) + 1“3‘)1(1)/0 x d (p(n)) +

since 1 < 29 < 2.
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Moreover,
1  log2

5% = o = 5P () > 5t 5

and

We can estimate
I 1 I — I

r(a)r() 2 er(e)r()

from below in the following way. For any § > 0,

L —Ir > / / e*m*y(a;y)%*l(yb%a — a;biTa) dydx
0 z(149)

b—

> o] o] oy a_q b—a _ Y T“ dud
/0 /a:(1+5)e (ew)* (y T () ) yer
1

8

) et
(gt [T [ i)
(- @) - [ [ )
S0 G () - [ ina)
S0 e D) -

We obtain

19
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For =,y > 0,
[(z)l !
L@ _ gy 0 :/ 11— t)vL .
Iz +y) 0
F 1,1 1 F($+y)
or 0 < x <y < 1, we get B(z,y) > fot dt = - and T W) < z. Further,
=1
4" < 10é4ZJLIOg4 = 261})g2'
Therefore,

o0 (=) R T I

Let o := 0.59 and

d
Then

5 b—a 1 —a
_a:_dex( lo )—Q_d

2% P b—a gl—oszT“

b—a 1 b—a\m—1 b—a
(o S A ) -
exp oz—l—zmoz ( d )

b—a

1_a)b;a)—exp(—(log2) y )

= exp (a— (10g2+a—log

which is monotonically decreasing in Z’TT‘I (for a = 0.59). Therefore

<e® —1.

b—a

274

Finally,

(i) G ) > 10 ) > 5

We remind the reader of the fact that we considered the cases N, > N, resp. N, > N,
1
together. Increasing ¢, we can use d < ns~¢. Thus (1-6) is proved.

12.3.  Proof of the upper bound (1-7)

For 1 < a,b < d, we denote by S, 5, the set of the partitions of n satisfying N, > Ny.

As it is said in the introduction, when b = d, we can compute |S,q| by (1-5),
|Sa.al = p(n)(27@ + o(1)). The upper bound (1-7) in Theorem 1.4 is a consequence of
the following lemma :

Lemma 12.1. For 1 <a <b<d, we have |Sg | < [Sq,4| + o(p(n)).

Proof.
For any 1 < ¢1,¢2,c3 < d, let S(cy, ca,c3) denote the set of the partitions of n such that
N., 2 N, > N, (here as before, N, is the number of parts = ¢; (mod d)).
We have the two equalities :

Sap = S(a,b,d) U S(a,d,b) U S(d,a,b),
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and
Sa.a=S(a,b,d)US(a,d,b)US(b,a,d).

By Corollary 1.3, [S(c1,¢2,¢3) N S(cy(1); Co(2)s Co3))| = o(p(n)) for any non trivial
permutation o on the set {1,2,3}. Thus we have :

[Sapl = |5(a, b, d)| + [S(a, d, b)| +|5(d, a, b)| + o(p(n)),
[Sa.al = 15(a, b, d)| + |5 (a, d, b)| + |S(b; a, d)| + o(p(n)).

To prove Lemma 12.1, it is sufficient to show that
(12:2) 1S(d,a,b)| < [S(b, a,d)] + o(p(n)).

To prove this inequality, we will show that there exists an injective map ¥ defined on
S(d,a,b) such that for almost all partitions II € S(d,a,b), ¥(II) € S(b,a,d). This map
consists in exchanging the parts = b (mod d) with the parts = d (mod d) and to put some
appropriate parts to compensate the quantity (d—b)(/Ng — Np) arising from this exchange.
Such sort of idea was already used in some proofs of [2].

e We suppose that a # 1. Let II be a generic partition of n in S(d, a,b). We write II in
the following way :

d N,
Z (r+Xjd) with X\j, >0, for1<r<d, 1<j<N,,

r=1j=1

so that for 1 <r < d, r+ A1 ,d,...,r+ AN, »d are the parts = r (mod d). To this partition
IT we assign the following partition W(II)

M) :n=>Y Y (r+p,d) with g, >0, (1<r<d, 1<j<M,),

r=1j=1
with
N, if r & {1,b,d}
_ ) Na ifr=2»
MT o Nb ifr=d

Ny + (d — b)(Nd — Nb) ifr=1,
and the integers p;, are defined by :

Wir = A for r & {1,b,d}, 1 <j<M,,

tip = Aja (L <j<My), pja=Np (1<j< M),
R /\j,l lf 1 Nl
Hit =90 1fN1+1<y M.

We check easily that this application ¥ is injective, and that we have M, > M, > Mg,
U(II) € S(b,a,d).

e Case a = 1. If a = 1, the above application is not good because it may happen that
M, = My = N1+ (d = b)(Na — Ny) > My, Y(II) ¢ S(b,a,d).

In the case a = 1, we transform the quantity (d — b)(Ngq — Np) in parts equal to 2

and eventually add a part equal to 1. We set Z = L(Nd_NQMJ. The partition ¥(II) is
defined by :

for r € {1727b7 d}7 M, = N, and Hir = A]‘J« for 1 < 7 < M,
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Md = Nb and Hi.d = >\j,b for 1 Sj < Md,
V- Mz if (Ng — Np)(d —b) =0 (mod 2)
L7 AN +1 if (Ng— Ny)(d—b) =1 (mod 2)
and if (Ng — Np)(d —b) = 1 (mod 2), pn,+1,1 = 0.
If b # 2, then we take

, i1 = Aj1 for 1< 5 < Ny,

M, = N4 and Mj,b:)‘j,d for 1 <7< My,
B Ay 1< <Ny
MQ_N2+ZandMJ’2_{O if No+1<j< M.

If b = 2, then we take

Aja if1<7< Ny

In all cases we have My > My, and M, > M. Furthermore, we have M; < N1 +1 <
Ng + 1 thus the situation M; > M, can happen only if Ny = N;. By Corollary 1.3,
this can arrive for at most o(p(n)) partitions of n. Thus ¥(II) € S(b,a,d) for almost all
IT € S(d,a,b). This ends the proof of Lemma 12.1.

Thus Theorem 1.4 is proved.

Mg_Nd+Zanduj72_{

13. Dominant residue class

We investigate the number of partitions of n in which there are more parts = a (mod d)
than parts = b (modd) for all b € {1,...,d} \ {a}, briefly the case N, > N;, for 1 < b < d,
b # a. We shall consider the cases N, > N;, (b # a) resp. N, = N (b # a) together as
N, = Ny + A (b# a) with A =1 resp. A =0.

We have to estimate
M, = E II4(n, R).
Ni,....,Ng
R=n (mod d)
NgoZA+maxp-q Ny

Like in the proof of Corollary 1.3 or Theorem 1.4 we apply Corollary 1.2 to avoid the
abnormally small or big N, and Corollary 9.1 to make the N, independent.

Lemma 13.1. We have the equality :

24d 1 a5t
(13-1) M, = o(p(n)) + (1 + o(1))p(n)d*: (7) S F(Ny,...,Ny).
24/6n < <
A\Nlci‘.}\.f,lNd B

NgZzA+maxpxq Np

We use both Nj = |2t]d and Ny* = [21]d.

We first state the case a = 1, next we will quote the modifications to handle the case
a > 2.

By Corollary 9.1 and Corollary 1.2 we have

(13-2)
2+d 1 a1
My = o(p(n)) + (1+o(1))p(n)d =" > F(NY,...,Ng)
<2 \ 6”) A<Ni,...,Ny<B
R=n (mod d)
N1Z>A+maxpx1 Ny
2+d 1 a5t
= o(p(n)) + (1 +o(1))p(n)d = > F(N{*, ..., Ng).
<2 v 6n) A<N:,....N4<B
R=n (mod d)

NiZ>A+maxpx1 Ny
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We have

* *
3 F(N{.....Nj) > > F(N?,..., Na)
A<N,,..,Ny<B A<Ny,...,Ng<B
Ni=n=Y"" rN, (modd) Ni=n=Y"" rN, (modd)
(13.3) Ni1Z2A+maxagy<a Ny N{>2A+maxagp<a Ny
*
- Y RN N
AN} ... .Na<B
Nf}A—‘,—maXngngb
and
(13-4)
ok ok
3 PN, Na) < 3 F(N},.... N
A<N,,..,Ny<B A<N,,..,Ny<B
len—2i72 rN, (mod d) N, En—ziiz rN, (mod d)
N12A+max2<b<d]\fb Nf*2A+max2<b<dNb
ok
< Y FONLLN

ASNT* ., Ng<B
Nf*>A+maX2gb<d Nb

< >
ASN* .. \Ny<B
N{*>A4maxagp<a No

F(Nl**vad)—i_Ev

where E is an error term collecting the (N;*,..
enough by Corollary 1.2. Therefore

., Ng) with Nf* = B. This term is small

2+d 1 at
M; = o(p(n)) + (1 + o(1))p(n)d™: (7) 3 F(Ny,...,Ny).
24/6n < <
A\Nlci‘_ﬁlz\rd B

Ni1Z>A+maxpx1 Ny

This proves (13-1) for a = 1. For a # 1 we replace in (13-2) the conditions N; >
A + maxaogpcd Ny by the conditions N, > A + maxyx, Ny. When we replace in these
conditions Ny by N7 and change < B to < B, the corresponding (13-3) becomes an upper
bound and when we replace Ny by N;*, (13-4) becomes a lower bound. (The inequalities
are permuted). This ends the proof of the lemma.

Proof of (i) and (ii) of Theorem 1.5 for a = 1. It remains to compute the summations

of
!
T := g F(dNy,Na,...,Ny).
A<AN!,N3,...,Ng<B
dN!>Ny+A
b=2,....d

We have :

Ni+1 pNa+1 Ng+1
T, = § / / F(dN{, Na,...,Ng)dt| dts - - dt,.
/
A<AN!,Na,...Ny<B N1 Nz Na
dN!>Ny+A

b=2,....d
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We apply one more times Corollary 9.1 :

N{+1 ,Na+1 Ng+1
Ty = (14 0(1)) / / / F(dt), ta, ... tg)dt) dts -+ - dtg.

A<dNY, NQ, L N4<B
dN!>Ny+A
b=2,...,d

N{+1 pdNj—A+1 dN{—A+1
=(1+0(1)> / / / F(dth, tg, ... tq)dt) dty - - dt,.

N/ A A
A+A B
=N <

dt} dt}
/ / / F(dt), ta, - tg)dta--- dtd> dt}
B
d

dty—d dtt —d
!
2/A+ol</ / F(dty, t2,- ':td)dtQ"'dtd>dt1
(Jlt1 dt1
:/A / / dt1+d to, - '7td)dt2"'dtd>dt/1
T

if A = 0. Taking into account Corollary 1.3, apart from o(dp(n)) partitions of n we can
compute both cases together for fixed d as

)+ (Lt o(1)p <n>d¥d(2j6fn)d51

(n
X = / / Ftl,...,td)dtg---,dtd)dtl
(

Here the sum is

B
d

if A =1 resp.

T, =o(p

= ofp(m) + (1+o(1)p(md*¥ (=) =
\/T”L 17
<G e (- - Lo (- )
t s Vén T
x{}_[:Q/A exp(—ﬁrt—éexp< %)dt}dtl

(Lt oWp() (™ 4y ol 1T [~ 5-1oms
:0(p(n))+1M/o xd e (Tll/x yi e dy)dx

for fixed d. This ends the proof of Theorem 1.5 (i) and (ii) in the case a = 1.
Case a = 2. The term corresponding to 77 is
T, := > F(dN!, Ny, ..., Ny).
A<dNY,...,Ng<B
N, >A+dN;|
NQ>A+maxb€{1ya} Ny

We use the integral representation and we apply Corollary 9.1 :

T, = (1+0(1)
Ny,+1 +1 No,—A+1 N,—A+1
/ / / / F(dty,.. . ta) 1] dt]} At} dt,.
AJd A A 4

Jj#l.a

A+A<N <B
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By Corollary 1.3 we see that we can handle the cases A =0 and 1 together and we do
the same computations as in the case a = 1.

14. Some properties of truncated Gamma functions; end of the
proof of Theorem 1.5

For 1 < a < d, let us consider the integrals

o d oo
Jo = / x%_le_z( H / yale™¥ dy) dx.
0 r=1 €T

r;a
We have ;
HF(%) = H (/ xfﬁle_””j dxj) =JLi+Jo+- 4 Jg,
j=1 j=1 70
since
{(21,...,2q) € [0,00["} = Ul {(21,...,24) €[0,00[%, 2, = min x,}.

1<5<d

For 1 < a < d,
oo %) . 1 d %)
J—J, = / (/ e_x_y(ajy)ﬁ_l(yaT — xaT)( H / za~leT? dz) dy) dz > 0.
0 T T

Therefore,

and

o(p(n)) + (1 +o(1))p(n) ~ p(n)
B OO R R OR OB &
for fixed d > 2. We can estimate

Ji

r(a)r()-r(d)

from below in the following way. For any § > 0 an

2
Jr—Jo > /000 </w(:+5) e_z_y(l‘y)%_l(y% B (173/_5) a )
X ( ﬁ /Oo za~le™? dz) dy) dz

[oN

(e ) (@) o T )
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Ji—Ja 1 1 5F<1TTQ>
dP(}lS (4 - (- (1+5)adl>{d2 - 21§“dr(;)r(;)}
exp(%llog(lw)) —1{1_5} _ a—1(1-0)log(1+9)
(1+6)“T 2 d? d3 1406 '
Choosing § := 0.364 we obtain that
d Ty — T, La-1 1,1 1
;dp@)pl(i)...p(g) >az_:2m3_ 14(d d2)'

This ends the proof of Theorem 1.5.
Similar arguments yield estimates for the case N1 > Ny > ... > Ny, 1. e., for the number
of “d-regular” partitions of n, and more generally to obtain estimates for Theorem 1.7.
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