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Dominant residue classes concerning the summands of partitions

Introduction

Recently András Sárközy and the authors [START_REF] Dartyge | On the distribution of the summands of partitions in residue classes[END_REF] proved that for almost all partitions of an integer n, the parts are well distributed in arithmetic progressions modulo d for d < n 1/2-ε . This range for d is large if we compare it with the largest parts of almost all partitions. Indeed, Erdős and Lehner [START_REF] Erdős | The distribution of the number of summands in the partitions of a positive integer[END_REF] proved in 1941 that for almost all partitions of n (with at most o(p(n)) exceptions) the biggest part is (1 + o(1))

√ 6n 2π log n. However this well distribution is limited by some phenomenon of preponderance of parts with small module. For example, it is well known that for almost all partitions the number of parts equal to 1 is ≈ √ n (see [START_REF] Szalay | On some problems of the statistical theory of partitions with application to characters of the symmetric group II[END_REF]).

In order to some applications, the aim of this paper is to study precisely the distribution of the parts congruent to j modulo d. Let d 2 and R = {N 1 , . . . , N d } a set of some positive integers.

We denote by Π d (n, R) the number of partitions of n with exactly N r parts congruent to r mod d for 1 r d.

We immediately remark that Π d (n, R) 1 if and only if n ≡ R (mod d) with

(1•1) R := d r=1 rN r .
It is the reason why we will compute Π d (n + R, R) for n ≡ 0 (mod d). In the following result we give an asymptotic formula for Π d (n + R, R) in a large range of N 1 , . . . , N d .

Theorem 1.1. Let 0 < ε < 10 -2 . There exists n 0 such that for n n 0 , d n we have

(1•3) Π d (n + R, R) = (1 + o(1))p(n)d 2+d 2 1 2 √ 6n d-1 2 × exp - √ 6n πd d r=1 exp - dN r π √ 6n .
The condition d n 1 8 -ε is a consequence of the use of saddle point method. This condition is probably not optimal. It is clear that we must have d √ n log n but perhaps another approach could give some significative result in some part of the range [n

1 8 -ε , n 1 2 -ε ].
The error term (o(1)) in (1•3) depends mainly on the computation of the term S 1 (see paragraphs 4 and 5). We could replace it by O(n -ε/6 ). In fact if we take a smaller range for N 1 , . . . , N d than the one given in (1•2), then we can obtain a more precise error term in (1•3).

The first part of the paper (the paragraphs 2,3,4,5,6,7) is devoted to the proof of this theorem by the saddle point method.

In the second part of the paper we derive many results on the distributions of the parts in residue classes. Some of these results solve problems posed in [START_REF] Dartyge | Arithmetic properties of summands of partitions[END_REF], [START_REF] Dartyge | Arithmetic properties of summands of partitions, II[END_REF] and [START_REF] Dartyge | On the distribution of the summands of unequal partitions in residue classes[END_REF].

We first obtain a statistical result on the size of all N r for 1 r d.

Corollary 1.2. For 0 < ε < 10 -2 , n n 2 (ε), and d n It should be noted that, for d = o(log 2 n), Corollary 1.2 is implied by the Theorem 1 and Corollary 2 of the article of András Sárközy with the two authors [START_REF] Dartyge | On the distribution of the summands of partitions in residue classes[END_REF]. Next we will state a corollary which shows that for almost all partitions, two given residue classes doesn't contain the same number of summands. In [START_REF] Dartyge | Arithmetic properties of summands of partitions[END_REF] and [START_REF] Dartyge | Arithmetic properties of summands of partitions, II[END_REF] Dartyge and Sárközy proved that for a positive proportion of partitions some residue classes are much more represented than others. For a given partition Π of n and for any 1 j d, we denote by N j = N j (Π) the number of parts congruent to j modulo d. Dartyge and Sárközy [START_REF] Dartyge | Arithmetic properties of summands of partitions, II[END_REF] showed that, for d fixed, n large enough (n n 1 (d)) and any 1 a < b d, the inequality N a -N b > (a+b)

Corollary 1.3. For 0 < ε < 10 -2 , n n 3 (ε), d n
√ n 50ab
is satisfied for at least p(n)/12 partitions of n. In the introduction of [START_REF] Dartyge | Arithmetic properties of summands of partitions[END_REF] and in the end of [START_REF] Dartyge | On the distribution of the summands of unequal partitions in residue classes[END_REF] it is conjectured that for 1 a < b d there exists C = C(a, b, d) > 1/2 such that N a > N b for at least Cp(n) partitions of n.

In the following theorem we prove this conjecture. In fact, we obtain an asymptotic estimation of the number of such partitions.

Theorem 1.4. For any 0 < ε < 10 -2 , n > n 4 (ε), d n (i) The number of partitions of n in which there are more parts ≡ a (mod d) than parts ≡ b (mod d) is

(1•4) (1 + o(1))p(n) 1 Γ a d Γ b d ∞ 0 x a d -1 e -x ∞ x y b d -1 e -y dy dx.
(ii) The number of partitions of n in which there are at least as many parts ≡ a (mod d) (iii) For fixed d, 1 a < b d, and large enough n, the number of partitions of n in which there are more parts ≡ a (mod d) than parts ≡ b (mod d) is

as parts ≡ b (mod d) is (1•5) (1 + o(1))p(n) 1 Γ a d Γ b d ∞ 0 x a d -1 e -x
(1•6) > p(n) 1 2 + b -a 12d p(n) 1 2 + 1 12d
.

On the other hand, this number is less than

(1•7) p(n)2 -a d (1 + o(1)).
When b = d in the above theorem, it is possible to compute the integrals in (1•4) or in (1•5). We obtain that for 1 a < d, the number of partitions of n such that

N a > N d (or such that N a N d ) is (1 + o(1))2 -a/d p(n).
In [START_REF] Dartyge | Arithmetic properties of summands of partitions, II[END_REF], Dartyge and Sárközy proved by combinatorics arguments that for at least p(n)/d partitions of n, we have N 1 N j for any 2 j d. In [START_REF] Dartyge | On the distribution of the summands of unequal partitions in residue classes[END_REF], it is conjectured that there are at least ( 1 d + c)p(n) such partitions for some c = c(d) > 0. We state this for fixed d in the following theorem.

Theorem 1.5. For fixed d 2 and 1 a d, the three following assertions are satisfied.

(i) The number of partitions of n in which there are more parts ≡ a (mod d) than parts

≡ b (mod d) for all b ∈ {1, • • • , d} {a} is (1 + o(1))p(n) 1 Γ 1 d • • • Γ d d ∞ 0 x a d -1 e -x d r=1 r =a ∞ x y r d -1 e -y dy dx.
(ii) The number of partitions of n in which there are at least as many parts ≡ a (mod d)

as parts ≡ b (mod d) for all b ∈ {1, • • • , d} {a} is (1 + o(1))p(n) 1 Γ 1 d • • • Γ d d ∞ 0 x a d -1 e -x d r=1 r =a ∞ x y r d -1 e -y dy dx.
(iii) For n large enough, the number of partitions of n in which there are more parts ≡ 1 (mod d) than parts ≡ b (mod d) for all b ∈ {2, . . . , d} is

> p(n) 1 d + 1 14d 1 - 1 d .
In [START_REF] Dartyge | Arithmetic properties of summands of partitions, II[END_REF], Dartyge and Sárközy proved that for at least

p(n) d! (1 + O(d!d 4 / √ n)) we have N 1 > N 2 > • • • > N d .
In [START_REF] Dartyge | On the distribution of the summands of unequal partitions in residue classes[END_REF] we conjectured that this holds in fact for at least Cp(n) partitions with C > 1/d!. In the following result we solve this conjecture for fixed d.

Theorem 1.6. For fixed d 2, the number of partitions of n in which there are more parts ≡ a (mod d) than parts ≡ b (mod d) for any 1 a < b d is

(1 + o(1))p(n) Γ 1 d Γ 2 d • • • Γ d d ∞ 0 x 1 d -1 1 e -x 1 ∞ x 1 x 2 d -1 2 e -x 2 ∞ x 2 x 3 d -1 3 e -x 3 • • • ∞ x d-1 x d d -1 d e -x d dx d • • • dx 1 .
For n large enough this is

> p(n) d! .
We won't give the details of the proof of this theorem because it is an adaptation of the proof of Theorem 1.5. In fact, the proof of Theorem 1.5 may be also adapted easily to obtain the more general result : Theorem 1.7. For fixed d 2 and any permutation σ on the set {1, . . . , d}, the number of partitions of n in which there are more parts ≡ σ(a) (mod d) than parts ≡ σ(b) (mod d) for any 1 a < b d is

(1 + o(1))p(n) Γ 1 d Γ 2 d • • • Γ d d ∞ 0 x σ(1) d -1 1 e -x 1 ∞ x 1 x σ(2) d -1 2 e -x 2 ∞ x 2 x σ(3) d -1 3 e -x 3 • • • ∞ x d-1 x σ(d) d -1 d e -x d d r=1 dx r .
With much more computations some results could be more precise. Some estimations are obtained only for d fixed mainly because in some steps we apply many times Corollary 1.3. It is probably possible to improve this corollary by a more direct use of the saddle point method.

A lemma on some generating function

In order to use the saddle point method we define the generating function :

G(z) := ∞ n=0 n≡R (mod d) Π d (n, R)z n .
We will prove that this function is a finite product. 

G(z) = z 1N 1 +•••+dN d d r=1 N r j=1 (1 -z jd )
.

We will give two proofs of this result. The first one uses a multi-variable generating function and a formula of Euler, the second is more combinatoric.

First proof of Lemma 2.1. According to Euler's theorem, for |t| < 1 and |q| < 1, we have

(2•1) 1 + ∞ n=1 t n (1 -q)(1 -q 2 ) • • • (1 -q n ) = ∞ n=0 1 1 -tq n ,
for example, see [START_REF] Hardy | An introduction to the theory of numbers[END_REF] Theorem 349 p. 280.

For z, w r ∈ C, |z| < 1, and |w r | < |z| -r , (1 r d) we have

(2•2) d r=1 ∞ k r =0 1 1 -w r z r+k r d = d r=1 ∞ k r =0 (1 + w r z r+k r d + w 2 r z 2(r+k r d) + • • •) = ∞ N 1 =1 • • • ∞ N d =1 * n∈N Π d (n, {N 1 , . . . , N d })z n w N 1 1 • • • w N d d ,
where * indicates that the sum is over the n ∈ N such that n ≡ R (mod d).

On the other hand, for 1 r d, we write w r z r+k r d = (w r z r )(z d ) k r and we apply (2•1) with t = w r z r , q = z d :

(2•3) d r=1 ∞ k r =0 1 1 -w r z r+k r d = d r=1 1 + ∞ N r =1 (w r z r ) N r (1 -z d )(1 -z 2d ) • • • (1 -z N r d ) = d r=1 ∞ N r =0 w N r r z rN r N r j=1 (1 -z jd ) = ∞ N 1 =0 • • • ∞ N d =0 z N 1 +•••+dN d d r=1 N r j=1 (1 -z jd ) w N 1 1 • • • w N d d .
We finish the proof by comparing the coefficient of w

N 1 1 • • • w N r r in (2•2) and (2•3).
Second proof of Lemma 2.1. Let Π be a partition of n counted in Π(n, R). This partition is of the form :

Π : n = d r=1 N r j=1 (r + λ r,j d), with λ r,1 . . . λ r,N r 0 (1 r d).
Thus we have

n = R + d d r=1 m r , with m r = N r j=1 λ r,j (1 r d).
For each 1 r d, λ r,1 , . . . , λ r,N r is a partition of m r in at most N r parts. Let p N r (m r ) denote the number of such partitions. We have

G(z) = z R ∞ n=0 n≡R (mod d) m 1 +•••+m d = n-R d m j ∈N p N 1 (m 1 ) • • • p N d (m d )z d(m 1 +•••+m d ) = z R d r=1 ∞ m=0 z dm p N r (m) = z R d r=1 N r j=1 (1 -z dj )
, where we have used the formula for |x| < 1

∞ n=0 p m (n)x n = 1 m j=1 (1 -x j )
.

The saddle point method

For v ∈ C, |v| < 1, it follows from Lemma 2.1 that ∞ m=0 Π d (dm + R, R)v dm = d r=1 N r j=1 (1 -v jd ) -1 .
For d|n, and some 0 < < 1, we obtain by the Cauchy formula that

Π d (n + R, R) = 1 2iπ |v|= v -n-1 d r=1 N r j=1 (1 -v jd ) -1 dv. Let x > 0, = e -x , z = x + iy, v = e -z .
Then we have :

Π d (n + R, R) = 1 2π π -π d r=1 N r j=1 1 1 -exp(-jd(x + iy)) exp(n(x + iy)) dy = d 2π π/d -π/d d r=1 N r j=1 1 1 -exp(-jd(x + iy))
exp(n(x + iy)) dy since the integrand is periodic in y and has period 2π/d. For w > 0, we set

f (w) := ∞ ν=1 (1 -exp(-νw)) -1
and

g k (w) := k ν=1 (1 -exp(-νw)) -1 = f (w) ∞ ν=k+1 (1 -exp(-νw)).
With this notation,

Π d (n + R, R) = d 2π π/d -π/d d r=1 g N r (d(x + iy)) exp(n(x + iy)) dy. For ε > 0, 0 < ε < 10 -2 , d n 1 8
-ε and n > n 0 , we consider the interval

I = I n,d,ε := 3 4 + ε √ 6 2πd √ n log n, n 5 8 
d .

We will estimate

Π d (n + R, R) for N 1 , . . . , N d ∈ I and d|n. Choosing x = x 0 = π √ 6n , y 1 = n -3 4 + ε 3 , y 2 = n -5 8 + ε 3 and y 3 = πx 0 , we write Π d (n + R, R) as (3•1) Π d (n + R, R) = d 2π |y| y 1 + y 1 |y| y 2 + y 2 |y| y 3 + y 3 |y| π/d = S 1 + S 2 + S 3 + S 4 .
Theorem 1.1 will be derived by the following lemma :

Lemma 3.1. Under the hypotheses of Theorem 1.1, we have

(3•2) S 1 = (1 + o(1))p(n)d 2+d 2 x 0 2π d-1 2 exp - 1 dx 0 d r=1 exp(-dN r x 0 ) ; (3•3) S i = o(S 1 ) (i = 2, 3, 4).
In the next paragraph we state some estimates of g k and in the paragraphs 5, 6, and 7 we prove (3•2), (3•3) respectively.

The function g k

By elementary arguments we will prove the following lemma which compares g k with f . Lemma 4.1. (i) For k ∈ I and |y| π/d we have

(4•1) g k (d(x 0 + iy)) = f (d(x 0 + iy)) exp - exp(-dk(x 0 + iy)) d(x 0 + iy) × exp O(exp(-dkx 0 )) + O n d exp(-2dkx 0 ) , and 
(4•2) g k (d(x 0 + iy)) = f (d(x 0 + iy)) exp - exp(-dkx 0 ) dx 0 × exp O(1) exp(-dkx 0 )( √ nk|y| + 1 + √ n d exp(-dkx 0 )) .
(ii) For k ∈ I and |y| y 1 we have

(4•3) g k (d(x 0 + iy)) = f (d(x 0 + iy)) exp -exp(-dkx 0 ) dx 0 exp O n 3 8 + ε 3 d exp(-dkx 0 ) = (1 + o(d -1 ))f (d(x 0 + iy)) exp - 1 dx 0 exp(-dkx 0 ) . Proof. Consider g k (dz) for k ∈ I and |y| π/d. If ν k + 1 then | exp(-νd(x 0 + iy))| = exp(-νdx 0 ) < exp(-kdx 0 ) n -3 8 -ε 2 .
Therefore (here log denotes the principal determination of logarithm defined on C R -),

g k (d(x 0 + iy)) = f (d(x 0 + iy)) exp ∞ ν=k+1 log(1 -exp(-νd(x 0 + iy))) = f (d(x 0 + iy)) exp - ∞ ν=k+1 exp(-νd(x 0 + iy)) + O(exp(-2νdx 0 )) = f (d(x 0 + iy)) exp - exp(-dk(x 0 + iy)) exp(d(x 0 + iy)) -1 + O exp(-2dkx 0 ) exp(2dx 0 ) -1 .
Here, |d(x 0 + iy)| dx 0 + π < 6. Thus

1 exp(d(x 0 + iy)) -1 = 1 d(x 0 + iy) + O(1).
This yields that

g k (d(x 0 + iy)) = f (d(x 0 + iy)) × exp - exp(-dk(x 0 + iy)) d(x 0 + iy) + O(exp(-dkx 0 )) + O √ n d exp(-2dkx 0 ) ,
this ends the proof of (4•1).

To prove (4•2) we remark that

(4•4) exp(-dk(x 0 + iy)) d(x 0 + iy) - exp(-dkx 0 ) dx 0 = exp(-dkx 0 ) d exp(-dkiy) -1 -iyx -1 0 x 0 + iy exp(-dkx 0 ) d (dk|y| + |y|x -1 0 ) x 0 = O( √ nk|y| exp(-dkx 0 )), since x -1 0 = O(dk). It remains to insert (4•4) in (4•1) to obtain (4•2).
Now we prove (4•3). For k ∈ I and |y| y 1 = n -3 4 +ε , the different factors in the error term of (4•2) become :

√ nk|y| + 1 + √ n d exp(-dkx 0 ) √ n n 5/8 d n -3 4 + ε 3 + d d + √ n d n -3 8 -ε 2 = O n 3 8 + ε 3 d ,
and

(4•5) n 3 8 + ε 3 d exp(-dkx 0 ) n -ε 6 d = o 1 d .
Consequently, for k ∈ I and |y| y 1 ,

g k (d(x 0 + iy)) = f (d(x 0 + iy)) exp - exp(-dkx 0 ) dx 0 + O n 3 8 + ε 3 d exp(-dkx 0 ) = (1 + o(d -1 ))f (d(x 0 + iy)) exp - exp(-dkx 0 ) dx 0 ,
this ends the proof of (4•3).

The main term S 1

By (3•1) and Lemma 4.1 we have

S 1 = d 2π y 1 -y 1 d r=1 g N r (d(x 0 + iy)) exp(n(x 0 + iy)) dy = d 2π exp - 1 dx 0 d r=1 exp(-dN r x 0 ) × y 1 -y 1 f d (d(x 0 + iy)) exp n(x 0 + iy) + O n 3 8 + ε 3 d d r=1 exp(-dN r x 0 ) dy = d exp - 1 dx 0 d r=1 exp(-dN r x 0 ) × 1 2π y 1 -y 1 f d (d(x 0 + iy)) exp n(x 0 + iy) + O(n -ε 6 ) dy.
Next we use the well-known formula (see for example [START_REF] Erdős | On the statistical theory of partitions[END_REF] or [START_REF] Erdős | On some problems of the statistical theory of partitions[END_REF])

f (w) = exp π 2 6w + 1 2 log w 2π + O(|w|)
for w → 0 in | arg w| κ < π/2 and w > 0.

For |y| y 3 = πx 0 ,

f (d(x 0 + iy)) = exp π 2 6d(x 0 + iy) + 1 2 log d(x 0 + iy) 2π + O(dx 0 ) , f d (d(x 0 + iy)) = exp π 2 6(x 0 + iy) + d 2 log d(x 0 + iy) 2π + O(d 2 x 0 ) = f (x 0 + iy) exp d 2 log d + d -1 2 log x 0 + iy 2π + O(d 2 x 0 ) . For |y| y 2 = n -5 8 + ε 3 ,
(5•1)

f d (d(x 0 + iy)) = f (x 0 + iy) exp d 2 log d + d -1 2 log x 0 2π + O(d) |y| x 0 + dx 0 = f (x 0 + iy)d d/2 x 0 2π d-1 2 exp(O(dn -1 8 + ε 3 )).
Finally by (5•1) and (4•5),

S 1 = d 1+ d 2 x 0 2π d-1 2 exp - 1 dx 0 d r=1 exp(-dN r x 0 ) × 1 2π y 1 -y 1 f (x 0 + iy) exp(n(x 0 + iy)) dy + o(1) y 1 -y 1 |f (x 0 + iy) exp(n(x 0 + iy))| dy .
For |y| y 1 , ---as it is well known --- This ends the proof of (3•2).

f (x 0 + iy) exp(n(x 0 + iy)) = exp π 2 6(x 0 + iy) + 1 2 log x 0 + iy 2π + o(1) + nx 0 + iny = exp π 2 6x 0 1 - iy x 0 - y 2 x 2 0 + O y 3 1 x 3 0 + 1 2 log x 0 2π + O y 1 x 0 + o(1) + nx 0 + iny = exp π 2 6x 0 - π 2 y 2 6x 3 0 + 1 2 log x 0 2π + o(1) + nx 0 = (1 + o( 1 

The term S 2

We write

S 2 = y 2 y 1 + -y 1 -y 2 = S + 2 + S - 2 .
Thus we have 

S + 2 = d 2π
|g k (d(x 0 + iy))| = |f (d(x 0 + iy))| exp - exp(-dkx 0 ) dx 0 exp(-dkiy) 1 + i y x 0 + O(n -3 8 -ε 2 ) + O n -1 4 -ε d = |f (d(x 0 + iy))| exp - exp(-dkx 0 ) dx 0 exp(-dkiy)(1 + O( y 2 x 0 )) + o(d -1 ) = |f (d(x 0 + iy))| exp - exp(-dkx 0 ) dx 0 cos(dky) + O(n -1 8 + ε 3 ) + o(d -1 ) = |f (d(x 0 + iy))| exp - exp(-dkx 0 ) dx 0 1 -2 sin 2 dky 2 + o(d -1 ) . If k √ 6 πd √ n log n then (6•2) exp(-dkx 0 ) dx 0 2 sin 2 dky 2 = O √ n d (dky 2 ) 2 exp(-dkx 0 ) = O √ n d n -3 8 -ε 2 (log 2 n)n -1 4 + 2ε 3 = o(d -1 ). If k √ 6n πd log n then (6•3) exp(-dkx 0 ) dx 0 2 sin 2 dky 2 = O √ n d exp(-dkx 0 ) = O √ n d n -1 = o(d -1 )
.

By (6•1), (6•2), (6•3), and (5•1) we have

|S + 2 | d 2π exp - d r=1 exp(-dN r x 0 ) dx 0 y 2 y 1 |f d (d(x 0 + iy))| exp(nx 0 + o(1)) dy = O(d) exp - d r=1 exp(-dN r x 0 ) dx 0 d d 2 x 0 2π d-1 2 y 2 y 1 |f (x 0 + iy)| exp(nx 0 ) dy.
Here the usual estimation :

|f (x 0 + iy)| = exp π 2 6(x 0 + iy) + O(log n) exp π 2 6x 0 . x 2 0 x 2 0 + y 2 1 + O(log n) yields that S + 2 = o(S 1
) and the same goes for S - 2 .

The terms S 3 and S 4

Like in the previous paragraph we write

S 3 = y 2 y y 3 + -y 3 y -y 2 = S + 3 + S -
and in the same way we write S 4 = S + 4 + S - 4 . Similarly, for y 2 |y| y 3 = πx 0 ,

|f d (d(x 0 + iy)) = |f (x 0 + iy)|d d 2 x 0 2π d-1 2 exp(O(d log n))
and

|g k (d(x 0 + iy))| = |f (d(x 0 + iy))| exp - exp(-dk(x 0 + iy)) d(x 0 + iy) + o(d -1 ) |f (d(x 0 + iy))| exp + exp(-dkx 0 ) dx 0 + o(d -1 ) |f (d(x 0 + iy))| exp - exp(-dkx 0 ) dx 0 + O n 1 8 -ε 2 d yield that |S 3 | = o(S 1 ) since π 2 6x 0 . x 2 0 x 2 0 + y 2 2 π 2 6x 0 1 - y 2 2 2x 2 0 π 2 6x 0 -n 1 4 .
Finally, for y 3 |y| π/d, we obtain again that

|g k (d(x 0 + iy))| |f (d(x 0 + iy))| exp - exp(-dkx 0 ) dx 0 + O n 1 8 -ε 2 d .
Since

f (w) = exp ∞ m=1 1 m(exp(mw) -1)
for w > 0, we have

|f (w)| exp 1 e w -1 + ∞ m=2 1 m|e mw -1| exp 1 |e w -1| + 1 w π 2 6 -1 exp 1 2 π |Imw| + 1 w π 2 6 -1 if |Imw| π. Thus |f (d(x 0 + iy))| exp π 2d|y| + 1 dx 0 π 2 6 -1 , |f d (d(x 0 + iy))| exp π 2|y| + 1 x 0 π 2 6 -1 exp π 2 6x 0 - 1 2x 0 .
Observing that

d -d 2 2π x 0 d-1 2 = exp(O(d log n))
we see that S 4 = o(S 1 ), this ends the proof of Lemma 3.1 and Theorem 1.1 is proved.

When n ≡ R (mod d)

We are going to apply Theorem 1.1 for n -R instead of n when n ≡ R (mod d). In this section we will derive from Theorem 1.1 the following result :

Corollary 8.1. For 0 < ε < 10 -2 , n n 1 , d (n -n 3/4 ) 1 8 -ε , n ≡ R (mod d), and (8•1) 3 4 + ε √ 6n 2πd log n N r √ 6 π n 5/8 d (r = 1, . . . , d)
we have

Π d (n, R) = (1 + o(1))p(n)d 2+d 2 1 2 √ 6n d-1 2 exp - πR √ 6n - √ 6n πd d r=1 exp - dN r π √ 6n .
Proof. Under the hypotheses of Corollary 8.1, we have

R < n 5 8 d . d(d + 1) 2 dn 5 8 < n 3 4 -ε < n 3 4 , thus n -R > n -n 3/4 , √ 6 
π n 5/8 < (n -R) 5/8 , and

n -R = n(1 + O(n -1/4 )) = n exp(O(n -1/4 )) √ n -R = √ n exp(O(n -1/4 )) = √ n + O(n 1/4 ) 1 √ n -R = 1 √ n exp(O(n -1/4 )) = 1 √ n + O(n -3/4 ) 1 √ n -R d-1 2 = 1 √ n d-1 2 exp(O(dn -1/4 )) = 1 √ n d-1 2 (1 + o(1)).
Next we compute the argument of the exponential in Theorem 1.1 :

√ 6n πd - 6(n -R) πd d r=1 exp - dN r π 6(n -R) = O n 1/4 d d r=1 exp - dN r π √ 6n = O n 1/4 d dn -3 8 -ε 2 = O(n -1 8 -ε 2 ) = o(1).
In the same way we have for 1 r d:

exp - dN r π 6(n -R) = exp -dN r π 1 √ 6n + O(n -3/4 ) = exp - dN r π √ 6n + O d n 5/8 d n -3/4 = (1 + O(n -1/8 )) exp - dN r π √ 6n .
It remains to sum this equality over 1 r d:

√ 6n πd d r=1 exp - dN r π 6(n -R) = √ 6n πd (1 + O(n -1/8 )) d r=1 exp - dN r π √ 6n = √ 6n πd d r=1 exp - dN r π √ 6n + O n 1 2 -1 8 d dn -3 8 -ε 2 = √ 6n πd d r=1 exp - dN r π √ 6n + o(1).
We apply Theorem 1.1:

(8•2) Π d (n, R) = (1 + o(1))p(n -R)d 2+d 2 1 2 √ 6n d-1 2 exp - √ 6n πd d r=1 exp - dN r π √ 6n .
From the asymptotic formula

p(n) = (1 + o(1)) 1 4n √ 3 exp 2π √ n √ 6
of Hardy and Ramanujan [START_REF] Hardy | Asymptotic formulae in combinatory analysis[END_REF] we obtain for 1 t n

3 4 -ε , that (8•3) p(n -t) p(n) = (1 + o(1)) exp - 2π √ 6 ( √ n - √ n -t) = (1 + o(1)) exp - πt √ 6n exp - 2π √ 6 t √ n + √ n -t - t 2 √ n = (1 + o(1)) exp - πt √ 6n exp - 2πt √ 6 √ n - √ n -t 2 √ n( √ n + √ n -t) = (1 + o(1)) exp - πt √ 6n exp O(t 2 n -3/2 ) = (1 + o(1)) exp - πt √ 6n .
The equalities (8•3) and (8•2) give Corollary 8.1.

Local stability of Π d (n, R).

The next corollary says that if we take two sets R = {N 1 , . . . , N d } ⊂ Z d verifying (8•1) and R * = {N * 1 , . . . , N * d } ⊂ R d such that the N * r are near the N r on average, then in the estimation of Π d (n, R) we may replace the N r by the N * r in cost of an admissible error term. This will be very useful for the proofs of the different results announced in the introduction.

Corollary 9.1. For 0 < ε < 10 -2 , n n 1 , d (n -n 3/4 ) 1 8 -ε , n ≡ R (mod d), and two sets R = {N 1 , . . . , N d } ⊂ Z d , R * = {N * 1 , . . . , N * d } ⊂ R d such that: (i) R satisfies (8•1); (ii) R and R * verify (9•1) d r=1 |N r -N * r | d 3 ,
we have

Π d (n, R) = (1 + o(1))p(n)d 2+d 2 1 2 √ 6n d-1 2 exp - πR * √ 6n - √ 6n πd d r=1 exp - dN * r π √ 6n .
Proof. Let F be the function defined by :

(9•2) F (N 1 , . . . , N d ) = exp - πR √ 6n - √ 6n πd d r=1 exp - dN r π √ 6n . If R * satisfy (9•1), then in Corollary 8.1, F (N 1 , . . . , N r ) ∼ F (N * 1 , . . . , N * d ) since 1 √ n d r=1 r(N r -N * r ) 1 √ n d r=1 d|N r -N * r | d 4 √ n = o(1), and √ n d d r=1 exp - dN r π √ 6n -exp - dN * r π √ 6n √ n d d r=1 exp - dN r π √ 6n × 1 -exp - d(N * r -N r )π √ 6n √ n d d r=1 n -3 8 -ε 2 O d √ n |N * r -N r | = O(d 3 n -3 2 -ε 2 ) = o(1).
This ends the proof of Corollary 9.1.

Partitions without abnormally represented residue classes; proof of Corollary 1.2

If we shall sum over certain choices of N 1 , . . . , N d then the product in

F (N 1 , . . . , N d ) = d r=1 exp - πrN r √ 6n - √ 6n πd exp - dN r π √ 6n
would be useful for an "independent" computation but we have the condition 

(10•1) N 1 ≡ n -
Π d (n, R) = (1 + o(1))p(n)d 2+d 2 1 2 √ 6n d-1 2 A N 1 ,...,N d <B d|N 1 F (N 1 , . . . , N d ).
Here the sum is

S := A/d N 1 <B/d A N 2 ,...,N d <B F (dN 1 , N 2 , . . . , N d ) = A/d N 1 <B/d A N 2 ,...,N d <B N 1 +1 N 1 N 2 +1 N 2 • • • N d +1 N d F (dN 1 , N 2 , . . . , N d ) dt 1 dt 2 • • • dt d .
Next we apply Corollary 9.1

S = A/d N 1 <B/d A N 2 ,...,N d <B N 1 +1 N 1 N 2 +1 N 2 • • • N d +1 N d (1 + o(1))F (dt 1 , t 2 , . . . , t d ) dt 1 • • • dt d , since (dt 1 -dN 1 ) + (t 2 -N 2 ) + • • • + (t d -N d ) d + d -1 d 3 . By dt 1 = t 1 , it is S = (1 + o(1)) 1 d B A B A • • • B A F (t 1 , . . . , t d ) dt 1 • • • dt d = (1 + o(1)) 1 d d r=1 B A exp - πrt √ 6n - √ 6n πd exp - dtπ √ 6n dt.
We set t = u √ 6n/πd in the integral :

S = (1 + o(1)) 1 d √ 6n πd d d r=1 Bπd/ √ 6n Aπd/ √ 6n e -ur d e -e -u √ 6n πd du. Next we write x = √ 6n πd e -u S = (1 + o(1)) 1 d √ 6n πd d- d r=1 r d d r=1 √ 6n πd exp -Aπd √ 6n √ 6n πd exp -Bπd √ 6n x r d -1 e -x dx = (1 + o(1)) 1 d √ 6n πd d-1 2 d r=1 √ 6n πd exp -Aπd √ 6n √ 6n πd exp -Bπd √ 6n x r d -1 e -x dx.
We shall estimate the complementary integrals:

√ 6n πd exp -Bπd √ 6n 0 x r d -1 e -x dx = exp(-n 1/8 +o(1)) √ 6n/(πd) 0 x r d -1 e -x dx. < √ nd -1 exp(-n 1 8 ) 0 x r d -1 dx = d r √ n d exp(-n 1/8 ) r d d r exp( log n 2 -n 1/8 )) r/d d r exp(- n 1/8 2d ) d r exp - n ε 2 = O(Γ( r d )) exp(- n ε 2 ) = o 1 d Γ r d , by Γ(x) = 1 xe γx ∞ ν=1 e x/ν 1 + x ν > 1 xe γx ,
where γ is the Euler constant.

For the other side, we have: 

∞ √ 6n πd exp -Aπd √ 6n x r d -1 e -x dx = ∞ exp -3 8 + ε 2 log n+o(1) √ 6n πd x r d -1 e -x dx = ∞ (1+o(1)) √ 6 π n 1 8 -ε 2 d x r d -1 e -x dx ∞ n ε 2 2 x r d -1 e -x dx ∞ n ε 2 2 e -x dx exp - n ε 2 2 = o 1 d = o 1 d Γ r d , since Γ r d 1.

Finally we obtain that

A N 1 ,...,N d <B R≡n (mod d) Π d (n, R) = (1 + o(1))p(n)d 2+d 2 1 2 √ 6n d-1 2 1 d √ 6n πd d-1 2 × d r=1 Γ r d + o 1 d Γ r d = (1 + o(1))p(n) √ d 1 2π d-1 2 (1 + o(d -1 )) d d r=1 Γ r d = (1 + o(1))p(n) Γ 1 d • • • Γ d-1 d (2π) d-1 2 √ d = (1 + o(1))p(n).
E(a, b) = A N 1 ,...,N d B n≡R (mod d) N a =N b Π d (n, R) + o(p(n)).
We can follow the proof of Corollary 1.2 to make the N 1 , . . . , N d independent.

There is a technical difficulty when d is small (when ϕ(d) < 3). We would like to replace for some convenient j ∈ {1, . . . , d} {a, b} the condition

jN j ≡ n - 1 r d r =j rN r (mod d)
by d|N * j . But in this way, when d is small we are not sure that the correspondence between the corresponding sets R and R * is one-to-one. We will choose our set R * in the following way. If a = 1 then we take

N * 1 = d N 1 d . If a = 1, b = d -1 and d 3 then we use j = d -1, N * d-1 = d N d-1 d . If a = 1, b = d -1 and d ∈ {2, 3, 4, 6} we use j = c, N * c = d N c d with c minimal satisfying 1 < c < d -1 and (c, d) = 1. If (a, b, d) = (1, 5, 6), we use N * 2 = 3 N 2 3 , N * 3 = 2 N 3 2
(thus in this case we have [START_REF] Dartyge | Arithmetic properties of summands of partitions[END_REF][START_REF] Dartyge | Arithmetic properties of summands of partitions, II[END_REF][START_REF] Dartyge | On the distribution of the summands of partitions in residue classes[END_REF], [START_REF] Dartyge | Arithmetic properties of summands of partitions[END_REF][START_REF] Dartyge | On the distribution of the summands of partitions in residue classes[END_REF][START_REF] Dartyge | On the distribution of the summands of unequal partitions in residue classes[END_REF]} are to be investigated separately. Later we have to substitute 

R * = {N 1 , N * 2 , N * 3 , N 4 , N 5 , N 6 }). The cases (a, b, d) ∈ {(1, 2, 2),
B A exp - π √ 6n at a - √ 6n πd exp - dt a π √ 6n dt a B A exp - π √ 6n bt b - √ 6n πd exp - dt b π √ 6n dt b by B A exp - π √ 6n (a + b)t -2 √ 6n πd exp - dtπ √ 6n 
N 1 ,...,N d R≡n (mod d) N a N b +∆ Π d (n, R) = o(p(n)) + A N 1 ,...,N d <B R≡n (mod d) N a N b +∆ Π d (n, R).
Apart from (a, b, d) ∈ {(1, 2, 2), [START_REF] Dartyge | Arithmetic properties of summands of partitions[END_REF][START_REF] Dartyge | Arithmetic properties of summands of partitions, II[END_REF][START_REF] Dartyge | On the distribution of the summands of partitions in residue classes[END_REF], [START_REF] Dartyge | Arithmetic properties of summands of partitions[END_REF][START_REF] Dartyge | On the distribution of the summands of partitions in residue classes[END_REF][START_REF] Dartyge | On the distribution of the summands of unequal partitions in residue classes[END_REF]} -as in the proof of Corollary 1.3 -we can suppose that 1 < a and follow the proof of Corollary 1.2.

We have to substitute: We have For (a, b, d) ∈ {(1, 2, 2), (1, 2, 3), (1, 3, 4)} we use both

A N a <B A N b <B N a +1 N a N b +1 N b F (. . . ,
T a,b = ∆+A N a <B N a +1 N a N a +1-∆ A F (. . . ,
N * 1 = d N 1 d , N * * 1 = N 1 d d. Thus the final result is (12•1) N 1 ,...,N d R≡n (mod d) N a N b +∆ Π d (n, R) = o(p(n)) + (1 + o(1)) Γ a d Γ b d p(n) ∞ 0 x a d -1 e -x ∞ x y b d -1 e -y dy dx.
This ends the proofs of (i) and (ii) of Theorem 1.4.

Proof of the lower bound (1•6)

For the special case 1 a < b = d, (12•1) becomes

o(p(n)) + (1 + o(1))p(n) Γ a d Γ 1 ∞ 0 x a d -1 e -2x dx = o(p(n)) + (1 + o(1))p(n) 2 a d = (1 + o(1)) p(n) 2 a d , since 1 < 2 a d < 2.
Moreover, 1 2

a d 1 2 (d-1) d = 1 2 exp log 2 d > 1 2 + log 2 2d .
For the general case 1 a < b d let us consider the integrals Therefore,

I 1 = ∞ 0 x a d -1 e -x
I 1 > 1 2 Γ a d Γ b d and o(p(n)) + (1 + o(1))p(n) I 1 Γ a d Γ b d ∼ p(n) I 1 Γ a d Γ b d . We can estimate I 1 Γ a d Γ b d - 1 2 = I 1 -I 2 2Γ a d Γ b d
from below in the following way. For any δ > 0,

I 1 -I 2 > ∞ 0 ∞ x(1+δ) e -x-y (xy) a d -1 y b-a d -x b-a d dy dx ∞ 0 ∞ x(1+δ) e -x-y (xy) a d -1 y b-a d - y 1 + δ b-a d dy dx = 1 - 1 (1 + δ) b-a d ∞ 0 ∞ x(1+δ) x a d -1 e -x y b d -1 e -y dy dx = 1 - 1 (1 + δ) b-a d I 1 - ∞ 0 x(1+δ) x x a d -1 e -x y b d -1 e -y dy dx > 1 - 1 (1 + δ) b-a d 1 2 Γ a d Γ b d - ∞ 0 x a d -1 e -x x(1+δ) x y b d -1 e -y dy dx 1 - 1 (1 + δ) b-a d 1 2 Γ a d Γ b d - ∞ 0 x a d -1 e -x (x b d -1 e -x δx) dx = 1 - 1 (1 + δ) b-a d 1 2 Γ a d Γ b d -δΓ a + b d 2 -a+b d ,
We obtain

I 1 -I 2 2Γ a d Γ b d > 1 - 1 (1 + δ) b-a d 1 4 - δΓ a+b d 2 1+ a+b d Γ a d Γ b d . For x, y > 0, Γ(x)Γ(y) Γ(x + y) = B(x, y) = 1 0 t x-1 (1 -t) y-1 dt.
For 0 < x y 1, we get B(x, y)

1 0 t x-1 dt = 1 x and Γ(x + y) Γ(x)Γ(y) x. Further, x4 -x 1 log 4 4 -1 log 4 = 1 2e log 2 . Therefore, δΓ a+b d 2 1+ a+b d Γ a d Γ b d δ a d 2 1+ 2a d + b-a d δ 2 b-a d 1 4e log 2 .
Let α := 0.59 and Finally,

δ := 1 1 -α b-a d d b-a -1. Then δ 2 b-a d = 2 -b-a d exp d b -a log 1 1 -α b-a d -2 -b-a d = 2 -b-a d exp α + ∞ m=2 1 m α m b -a d m-1 -2 -b-a d 2 -b-a d exp α + log 1 1 -α -α b -a d -2 -b-a d = exp α -log 2 + α -log 1 1 -α b -a d -exp -( log 
1 - 1 (1 + δ) b-a d 1 4 - δ 2 b-a d 1 4e log 2 α b -a d 1 4 1 - e α -1 e log 2 > 1 12 b -a d .
We remind the reader of the fact that we considered the cases N a > N b resp. N a N b together. Increasing ε, we can use d n 

Proof.

For any 1 c 1 , c 2 , c 3 d, let S(c 1 , c 2 , c 3 ) denote the set of the partitions of n such that N c 1 N c 2 N c 3 (here as before, N c i is the number of parts ≡ c i (mod d)).

We have the two equalities : By Corollary 1.3 we see that we can handle the cases ∆ = 0 and 1 together and we do the same computations as in the case a = 1.

14. Some properties of truncated Gamma functions; end of the proof of Theorem 1.5 Therefore,

J 1 > 1 d Γ 1 d Γ 2 d • • • Γ d d and o(p(n)) + (1 + o(1))p(n) J 1 Γ 1 d Γ 2 d • • • Γ d d ∼ p(n) J 1 Γ 1 d Γ 2 d • • • Γ d d
for fixed d 2. We can estimate

J 1 Γ 1 d Γ 2 d • • • Γ d d - 1 d = d a=2 (J 1 -J a ) dΓ 1 d Γ 2 d • • • Γ d d
from below in the following way. For any δ > 0 and 2 a d,

J 1 -J a > ∞ 0 ∞ x(1+δ)
e -x-y (xy) Choosing δ := 0.364 we obtain that

d a=2 J 1 -J a dΓ 1 d Γ 2 d • • • Γ d d > d a=2 a -1 7d 3 = 1 14 1 d - 1 d 2 .
This ends the proof of Theorem 1.5. Similar arguments yield estimates for the case N 1 > N 2 > . . . > N d , i. e., for the number of "d-regular" partitions of n, and more generally to obtain estimates for Theorem 1.7.

1 8 2 √ n log n d and √ 6n 5/8 πd 2 d - 1

 1221 -ε , in almost all partitions of n the number of summands ≡ r (mod d) are between simultaneously for r = 1, . . . , d.

1 8

 1 -ε , and 1 a < b d, the number of partitions of n with the same number of summands in the residue classes a and b (mod d) is o(p(n)).

1 8

 1 -ε and 1 a < b d, we have the three following properties.

  e -y dy dx.

Lemma 2 . 1 .

 21 For z ∈ C and |z| < 1, we have

1 -y 1 f

 11 ))|f (x 0 + iy) exp(n(x 0 + iy))|, (x 0 + iy) exp(n(x 0 + iy)) dy = (1 -o(1))p(n).

g

  N r (d(x 0 + iy)) exp(n(x 0 + iy)) dy. From Lemma 4.1 we have for k ∈ I and |y| π/d |g k (d(x 0 + iy))| = |f (d(x 0 + iy))| exp -exp(-dk(x 0 + iy)) d(x 0 + iy) + O(exp((-dkx 0 )) + O √ n d exp(-2dkx 0 ) . If k ∈ I and y 1 y y 2 = n -

  mod d). For N * 1 = N 1 d d (or N 1 d d) and N * r = N r (r = 2, . . . , d), Corollary 9.1 implies that in an asymptotic sense, we can substitute the condition (10•1) by the condition d|N 1 . Let A :In the following lines, for each A N 1 , . . . , N d < B, R is the associated set R = {N 1 , . . . , N d } and the integer R is d r=1 rN r . By Corollary 9.1, A N 1 ,...,N d <B R≡n (mod d)

11 .. 3 For 1

 1131 Partitions with equilibrated residue classes: proof of Corollary 1a < b d, we can estimate the number of partitions of n with the property that the residue classes a and b (mod d) contain the same number of summands. Let E(a, b) denote the set of such partitions. By Corollary 1.2, apart from o(p(n)) partitions of n we may assume that A N 1 , . . . , N d < B. Thus we have:

4 12. 1 . 4

 414 This result is valid for (a, b, d) = (1, 2, 2) too. For (a, b, d) ∈ {(1, 2, 3), (1, 3, 4)} we can obtain similar expressions weighted by constants depending on the residue of n mod d: 0, 0, 3; 0, 2, 0, 2.12. Comparison between the number of summands in two residue classes: proof of Theorem 1.Proof of the propositions (i) and (ii) of Theorem 1.In this section, for 1 a < b d, we investigate the number of partitions of n in which there are more parts ≡ a (mod d) than parts ≡ b (mod d), briefly the case N a > N b . We shall consider the casesN a > N b resp. N a N b together as N a N b + ∆ with ∆ = 1 resp. ∆ = 0.By Corollary 1.2 the N r belong to [A, B] for almost partitions :

F

  t a , . . . , t b , . . .) dt a dt b by T a,b := A+∆ N a <B A N b N a -∆ (. . . , t a , . . . , t b , . . .) dt a dt b .

( 1

 1 e -y dy dx + o(d -1 )Γ a d Γ b d .

I 1 -

 1 e -y dy dx.Then we haveI 1 + I 2 = Γ a d Γ b d and

1 8

 1 -ε . Thus (1•6) is proved. 12.3. Proof of the upper bound (1•7) For 1 a, b d, we denote by S a,b the set of the partitions of n satisfying N a N b . As it is said in the introduction, when b = d, we can compute |S a,d | by (1•5), |S a,d | = p(n)(2 -a d + o(1)). The upper bound (1•7) in Theorem 1.4 is a consequence of the following lemma : Lemma 12.1. For 1 a < b < d, we have |S a,b | |S a,d | + o(p(n)).

S

  a,b = S(a, b, d) ∪ S(a, d, b) ∪ S(d, a, b),

t 1 AF 1 .a 2 .

 112 (t 1 , . . . , t d ) dt 2 • • • , dt d dt 1 = o(p(n)) + (1 + o(1))p(n)d e -y dy dx for fixed d. This ends the proof of Theorem 1.5 (i) and (ii) in the case a = Case The term corresponding to T 1 isT a := A dN 1 ,...,N d <B N a ∆+dN 1 N a ∆+max b ∈{1,a} N b F (dN 1 , N 2 , . . . , N d ).We use the integral representation and we apply Corollary 9.1 :T a = (1 + o(1)) × A+∆ N a <B N a +1 N a N a -∆ d +1 A/d N a -∆+1 A • • • N a -∆+1 A F (dt 1 , . . . , t d ) j =1,adt j dt 1 dt a .

For 1 e

 1 a d, let us consider the integrals -x j dx j = J1 + J 2 + • • • + J d , since {(x 1 , . . . , x d ) ∈ [0, ∞[ d } = ∪ d a=1 {(x 1 , . . . , x d ) ∈ [0, ∞[ d , x a = min 1 j d x j }.For 1 < a d, J 1 -J a = e -z dz dy dx > 0.

  t a , . . . , t b , . . .) dt a dt b . . . , t a , . . . , t b , . . .) dt a dt b . . . , t a , . . . , t b , . . .) dt a dt b .Taking into account Corollary 1.3, apart from o(p(n)) partitions of n, we can compute both cases substituting A t a B A t b B by A t a B A t b t a . Later, considering also the complementary integrals, we have to substitute

	When ∆ = 1 we have the upper bound
	B	t a
	T a,b	
	A	
	If ∆ = 0, then it is a lower bound :	
	B	t a
	T a,b	
	A	

A F (. A F (.
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Such sort of idea was already used in some proofs of [START_REF] Dartyge | Arithmetic properties of summands of partitions, II[END_REF].

• We suppose that a = 1. Let Π be a generic partition of n in S(d, a, b). We write Π in the following way : 

and the integers µ j,r are defined by :

We check easily that this application Ψ is injective, and that we have

• Case a = 1. If a = 1, the above application is not good because it may happen that

In the case a = 1, we transform the quantity (d -b)(N d -N b ) in parts equal to 2 and eventually add a part equal to 1. We set

. The partition Ψ(Π) is defined by : for r ∈ {1, 2, b, d}, M r = N r and µ j,r = λ j,r for 1 j M r ,

If b = 2, then we take

In all cases we have M b M d , and M a M d . Furthermore, we have d,a,b). This ends the proof of Lemma 12.1.

Thus Theorem 1.4 is proved.

Dominant residue class

We investigate the number of partitions of n in which there are more parts ≡ a We have to estimate

Like in the proof of Corollary 1.3 or Theorem 1.4 we apply Corollary 1.2 to avoid the abnormally small or big N r and Corollary 9.1 to make the N r independent.

Lemma 13.1. We have the equality :

We first state the case a = 1, next we will quote the modifications to handle the case a 2.

By Corollary 9.1 and Corollary 1.2 we have (13•2)

We have

and (13•4)

where E is an error term collecting the (N * * 1 , . . . , N d ) with N * * 1 = B. This term is small enough by Corollary 1.2. Therefore

This proves (13•1) for a = 1. For a = 1 we replace in (13•2) the conditions N 1 ∆ + max 2 b d N b by the conditions N a ∆ + max b =a N b . When we replace in these conditions N 1 by N * 1 and change B to < B, the corresponding (13•3) becomes an upper bound and when we replace N 1 by N * * 1 , (13•4) becomes a lower bound. (The inequalities are permuted). This ends the proof of the lemma.

Proof of (i) and (ii) of Theorem 1.5 for a = 1. It remains to compute the summations of

We have :

We apply one more times Corollary 9.1 :

Here the sum is