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Abstract

We introduce the notion of a tt*-bundle. It provides a simple definition, purely
in terms of real differential geometry, for the geometric structures which are so-
lutions of a general version of the equations of topological-antitopological fusion
considered by Cecotti-Vafa, Dubrovin and Hertling. Then we give a simple char-
acterization of the tangent bundles of special complex and special Kähler mani-
folds as particular types of tt*-bundles. We illustrate the relation between metric
tt*-bundles of rank r and pluriharmonic maps into the pseudo-Riemannian sym-
metric space GL(r)/O(p, q) in the case of a special Kähler manifold of signature
(p, q) = (2k, 2l). It is shown that the pluriharmonic map coincides with the dual
Gauß map, which is a holomorphic map into the pseudo-Hermitian symmetric space
Sp(R2n)/U(k, l) ⊂ SL(2n)/SO(p, q) ⊂ GL(2n)/O(p, q), where n = k + l.
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1 tt*-equations and pluriharmonic maps

Definition 1 A tt*-bundle (E,D, S) over a complex manifold (M,J) is a real vector
bundle E →M endowed with a connection D and a section S ∈ Γ(T ∗M ⊗ EndE) which
satisfy the tt*-equation

Rθ = 0 for all θ ∈ R , (1.1)

where Rθ is the curvature tensor of the connection Dθ defined by

Dθ
X := DX + (cos θ)SX + (sin θ)SJX for all X ∈ TM . (1.2)

A metric tt*-bundle (E,D, S, g) is a tt*-bundle (E,D, S) endowed with a possibly indefinite
D-parallel fibre metric g such that for all p ∈M

g(SXY, Z) = g(Y, SXZ) for all X, Y, Z ∈ TpM . (1.3)

A unimodular metric tt*-bundle (E,D, S, g) is a metric tt*-bundle (E,D, S, g) such that
trSX = 0 for all X ∈ TM . An oriented unimodular metric tt*-bundle (E,D, S, g, or) is a
unimodular metric tt*-bundle endowed with an orientation or of the bundle E.

Remarks: 1) In special cases, particularly emphasized in the literature, such as the
moduli spaces of topological quantum field theories [CV, D] and the moduli spaces of
singularities [H], the complexified tt*-bundle EC is identified with T 1,0M and the metric
g is positive definite. Here we will consider the case E = TM , and hence EC = T 1,0M +
T 0,1M . This includes special complex and special Kähler manifolds, as we shall see.

2) If (E,D, S) is a tt*-bundle then (E,D, Sθ) is a tt*-bundle for all θ ∈ R, where

Sθ := Dθ −D = (cos θ)S + (sin θ)SJ . (1.4)
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The same remark applies to metric tt*-bundles.
3) Notice that an oriented unimodular metric tt*-bundle (E,D, S, g, or) carries a canonical
metric volume element ν ∈ Γ(∧rE∗), r = rkE, determined by g and or, which is Dθ

parallel for all θ ∈ R.

Proposition 1 Let E → M be a real vector bundle over a complex manifold (M,J)
such that E is endowed with a connection D and a section S ∈ Γ(T ∗M ⊗ EndE). Then
(E,D, S) is a tt*-bundle if and only if the following equations are satisfied

(i) dDS = dDSJ = 0, where S and SJ are considered as one-forms with values in EndE
and dD is the exterior covariant derivative defined by D,

(ii) [SX , SY ] = [SJX , SJY ] for all X and Y ,

(iii) RD(X,Y ) + [SX , SY ] = 0 for all X and Y .

Proof: Using the relations 2 cos θ sin θ = sin 2θ, 2 cos2 θ = 1 + cos 2θ and 2 sin2 θ =
1 − cos 2θ, we obtain a (finite) Fourier decomposition of RDθ

in the variable θ. The
tt*-equation RDθ

= 0 shows that all Fourier components are zero. This yields (i-iii).

Definition 2 Let (M,J) be a complex manifold and (N, h) a pseudo-Riemannian man-
ifold. A map f : M → N is called pluriharmonic if f |C is harmonic for all complex curves
C ⊂M .

Notice that the harmonicity of f |C is independent of the choice of a Riemannian metric
in the conformal class of C, by conformal invariance of the harmonic map equation for
(real) surfaces.

Proposition 2 Let (M,J) be a complex manifold and (N, h) a pseudo-Riemannian
manifold with Levi-Civita connection ∇h, D a connection on M which satisfies

DJYX = JDYX (1.5)

for all vector fields which satisfy LXJ = 0 (i.e. for which X − iJX is holomorphic) and
∇ the connection on T ∗M ⊗ f ∗TN which is induced by D and ∇h.

(i) A map f : M → N is pluriharmonic if and only if it satisfies the following equation

∇′′∂f = 0 , (1.6)

where ∂f = df1,0 ∈ Γ(
∧1,0 T ∗M ⊗C (TN)C) is the (1, 0)-component of df and ∇′′ is

the (0, 1)-component of ∇ = ∇′ +∇′′.

(ii) Any complex manifold (M,J) admits a torsion-free complex connection, i.e. a torsion-
free connection D which satisfies DJ = 0.

(iii) Any torsion-free complex connection D satisfies (1.5).
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Proof: (i) The condition (1.5) means that D′′Z = 0 for all local holomorphic vector fields
Z, i.e. Γγ

ᾱβ = Γγ̄
ᾱβ = 0 in terms of the Christoffel symbols of D with respect to holomorphic

coordinates zα. This implies that the Christoffel symbols of D do not contribute to the
equation (1.6). The equation is therefore independent of the choice of connection D. In
fact, it is straightforward to check that the restriction of (1.6) to every complex curve C
reduces to the harmonic map equation for f |C : C → N .
(ii) is well known, see [KN].
(iii) The conditions TD = 0 and DJ = 0 imply that

DJYX −JDYX = [JY,X] +DX(JY )−JDYX = [JY,X] +J [X,Y ] = −(LXJ)Y . (1.7)

The right-hand side vanishes if LXJ = 0.

Given a Hermitian metric γ on T 1,0M , or, more generally, a pseudo-Hermitian metric,
the Chern connection of γ is the unique Hermitian connection D in the holomorphic
bundle T 1,0M which satisfies D′′Z = 0 for all holomorphic local sections Z of T 1,0M . The
last property is usually written as D′′ = ∂̄.

Proposition 3 Let (M,J) be a complex manifold and D the Chern connection of a
pseudo-Hermitian metric γ on T 1,0M . Then there is a unique connection D in the real
tangent bundle TM such that DZ = DZ for all local sections Z of T 1,0M , where D has
been complex bilinearly extended to a connection on the complexified tangent bundle. The
connection D satisfies (1.5), DJ = 0 and Dg = 0, where g is the J-invariant pseudo-
Riemannian metric defined by

g(X,X) = 2γ(X1,0, X1,0) , X1,0 :=
1

2
(X − iJX) , (1.8)

for all X ∈ TM .

Conversely, let g be a J-invariant pseudo-Riemannian metric on a complex manifold
(M,J). Then there exists a unique connection D in TM , which satisfies the conditions
(1.5), DJ = 0 and Dg = 0. Moreover, D induces a connection in T 1,0M , which is the
Chern connection of the pseudo-Hermitian metric γ on T 1,0M defined by (1.8).

The factor 2 is chosen such that γ coincides with the restriction to T 1,0M of the sesquilinear
extension of g to the complexified tangent bundle.

Proof: We define a connection D in the complexified tangent bundle (TM)C by

DXZ := DXZ and DXZ̄ := DX̄Z (1.9)

for all local sections X of (TM)C and Z of T 1,0M . By construction D is real, i.e. is the
complex bilinear extension of a connection in TM , which we denote by the same symbol
D. Obviously, it is the only real connection such that DZ = DZ for all local sections
Z of T 1,0M . The equation (1.5) follows from D′′ = ∂̄. By construction, D preserves the
decomposition (TM)C = T 1,0M + T 0,1M . Therefore, DJ = 0. Finally, Dg = 0 follows
from the fact that D is Hermitian.

Conversely, let (M,J, g) be a pseudo-Hermitian manifold. Then we can define a
pseudo-Hermitian metric γ in T 1,0M by (1.8) and consider its Chern connection D. As
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we know, it induces a connection D in TM which satisfies (1.5), DJ = 0 and Dg = 0. To
prove the uniqueness, let D̃ be an other connection satisfying (1.5), D̃J = 0 and D̃g = 0.
D̃ induces a connection D̃ in T 1,0M , which satisfies D̃′′ = ∂̄, due to (1.5), and which is
Hermitian with respect to γ. Therefore, D̃ is the Chern connection of γ, i.e. D̃ = D. This
implies D = D̃, by the first part of the proof.

Given a metric tt*-bundle (E,D, S, g), we consider the flat connection Dθ for θ = 0:
∇ := D0. Any parallel frame s = (s1, . . . , sr) of E with respect to ∇ defines a map

G = G(s) : M → Symp,q(Rr) = {A ∈ GL(r)|At = A has signature (p, q)}
x 7→ G(x) := (gx(si(x), sj(x))) , (1.10)

where (p, q) is the signature of the metric g.

Similarly, for an oriented unimodular metric tt*-bundle (E,D, S, g, ν) with canonical
volume element ν and a ∇-parallel frame s = (s1, . . . , sr) such that ν(s1, s2, . . . , sr) = 1
we have a map

G = G(s) : M → Sym1
p,q(Rr) = {A ∈ Symp,q(Rr)| detA = (−1)q} . (1.11)

By Sylvester’s Theorem, the general linear group GL(r) acts transitively on the manifold
Symp,q(Rr), which we can identify with the pseudo-Riemannian symmetric space

S(p, q) := GL(r)/O(p, q) . (1.12)

The subgroup O(p, q) ⊂ GL(r) is the stabilizer of the matrix Ip,q = diag(1p,−1q). We
shall identify the tangent space of the coset space S(p, q) at the canonical base point
o = eO(p, q) with the vector space

sym(p, q) := {A ∈ gl(r)|η(A·, ·) = η(·, A·)} (1.13)

of symmetric endomorphisms of Rr with respect to the standard scalar product η = ηp,q

of signature (p, q), which is represented by the matrix Ip,q. The structure of a symmetric
space is defined by the symmetric decomposition

gl(r) = o(p, q) + sym(p, q) . (1.14)

The pseudo-Riemannian metric is defined by an O(p, q)-invariant pseudo-Euclidean scalar
product on sym(p, q). For instance, we may choose the metric induced by the trace form:

gl(r) 3 (X, Y ) 7→ trXY . (1.15)

Similarly, SL(r) acts transitively on the manifold Sym1
p,q(Rr), which we can identify with

the pseudo-Riemannian symmetric space

S1(p, q) := SL(r)/SO(p, q) . (1.16)

We have the de Rham decomposition

S(p, q) = R× S1(p, q) , (1.17)
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where the flat factor corresponds to the connected central subgroup

R>0 = {λId|λ > 0} ⊂ GL(r) (1.18)

and the other factor is always indecomposable and even irreducible if (p, q) 6= (1, 1). The
tangent space of SL(r)/SO(p, q) at the canonical base point o = eSO(p, q) is identified
with the trace-free η-symmetric matrices:

sym0(p, q) := {A ∈ sym(p, q)|trA = 0} . (1.19)

Under a change of parallel (respectively, parallel unimodular) frame s → su, u ∈ GL(r)
(respectively, u ∈ SL(r)), the map G = G(s) transforms as

G(su) = u−1 ·G(s) = utG(s)u , (1.20)

where the dot stands for the action of GL(r) on Symp,q(Rr).

The following theorem is proven in [S2], cf. [S1]. In the case where EC = T 1,0M and
the metric g is positive definite it is due to Dubrovin [D].

Theorem 1 Let (E,D, S, g) be a metric tt*-bundle over a simply connected complex
manifold M . Then the map

G(s) = (g(si, sj)) : M → Symp,q(Rr) ∼= GL(r)/O(p, q) = S(p, q) (1.21)

associated to a parallel frame s = (s1, . . . , sr) of E with respect to the flat connection
∇ = D0 is pluriharmonic. Moreover, for all x ∈ M , the image of T 1,0

x M ⊂ (TxM) ⊗ C
under the complex linear extension of dL−1

u dGx : TxM → ToS(p, q) = sym(p, q) consists
of commuting matrices, where u ∈ GL(r) is any element such that G(x) = u · o and
Lu : S(p, q) → S(p, q) is the isometry of S(p, q) induced by the left-multiplication by u in
GL(r).

Conversely, let M be a simply connected complex manifold and f : M → Symp,q(Rr) ∼=
S(p, q) a pluriharmonic map such that, for all x ∈ M , the image of T 1,0

x M under the
complex linear extension of dL−1

u dfx : TxM → ToS(p, q) = sym(p, q) consists of commuting
matrices, where u ∈ GL(r) is any element such that f(x) = u · o. Then there exists a
metric tt*-bundle (E,D, S, g) over M and a parallel frame s such that f = G(s). The
condition on the image of T 1,0

x M is automatically satisfied if pq = 0, which corresponds
to a positive or negative definite metric g.

The same correspondence holds for oriented unimodular tt*-bundles and pluriharmonic
maps into Sym1

p,q(Rr) ∼= SL(r)/SO(p, q) = S1(p, q).

Now we shall explain in more detail the condition on the image of T 1,0M under the
differential of f in the theorem. Above we have always identified Symp,q(Rr) with S(p, q).
Let us denote by

ϕ : Symp,q(Rr) → S(p, q) , S 7→ S̃ = ϕ(S) , (1.22)

that identification, which is GL(r)-equivariant and maps I = Ip,q to the canonical base
point o. We can identify the tangent space TSSymp,q(Rr) at S ∈ Symp,q(Rr) with the
(ambient) vector space of symmetric matrices:

TSSymp,q(Rr) = Sym(Rr) := {A ∈ Mat(r,R)|At = A} . (1.23)
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As above for S = I, the tangent space TS̃S(p, q) is canonically identified with the vector
space of S-symmetric matrices:

TS̃S(p, q) = sym(S) := {A ∈ gl(r)|AtS = SA} . (1.24)

Note that sym(Ip,q) = sym(p, q).

Proposition 4 The differential of ϕ at S ∈ Symp,q(Rr) is given by

Sym(Rr) 3 X 7→ −1

2
S−1X ∈ S−1Sym(Rr) = sym(S) . (1.25)

Let us now consider the differential

dfx : TxM → Sym(Rr) (1.26)

of f : M → Symp,q(Rr) at x ∈M and the differential

df̃x : TxM → sym(f(x)) (1.27)

of f̃ = ϕ ◦ f : M → S(p, q). Then the condition on the image of the differential of f in
the theorem is that

dL−1
u df̃(T 1,0

x M) ⊂ sym(p, q)⊗ C consists of commuting matrices , (1.28)

where f̃(x) = uo. This is equivalent to the condition that df̃(T 1,0
x M) ⊂ sym(f̃(x)) ⊗ C

consists of commuting matrices. This follows from the fact that

dLu : ToS(p, q) → TuoS(p, q) = Tf̃(x)S(p, q) (1.29)

corresponds to

Adu : sym(p, q) = sym(I) → sym(u · I) = sym(f̃(x)) (1.30)

and that the adjoint representation preserves the Lie bracket.

Finally, df̃x = dϕ dfx = −1
2
f(x)−1dfx and, therefore,

df̃(T 1,0
x M) = f(x)−1dfx(T

1,0
x M) . (1.31)

This shows that f satisfies the condition (1.28) if and only if the matrices f(x)−1dfx(Z)
and f(x)−1dfx(W ) commute for all Z, W ∈ T 1,0

x M . This is equivalent to

[f(x)−1dfx(JX), f(x)−1dfx(JY )] = [f(x)−1dfx(X), f(x)−1dfx(Y )] (1.32)

for all X, Y ∈ TxM .
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2 Special complex and special Kähler manifolds

In this section we recall some basic results on special complex manifolds and special Kähler
manifolds. For more detailed information the reader is referred to [ACD], see also [F].

Definition 3 A special complex manifold (M,J,∇) is a complex manifold (M,J) en-
dowed with a flat torsion-free connection ∇ (on the real tangent-bundle) such that ∇J is
symmetric.
A special Kähler manifold (M,J,∇, ω) is a special complex manifold (M,J,∇) endowed
with a J-invariant and ∇-parallel symplectic form ω. The (pseudo)-Kähler-metric g(·, ·) =
ω(J ·, ·) is called the special Kähler metric of the special Kähler manifold (M,J,∇, ω).

Given a complex manifold (M,J) with a flat connection ∇, we define its conjugate con-
nection by

∇J
X = ∇X − J∇XJ with X ∈ TM. (2.1)

On a special complex manifold (M,J,∇) the connection ∇J is torsion-free. In addition,
one can introduce a torsion-free connection

D :=
1

2
(∇+∇J) = ∇− S, where S :=

1

2
J∇J, (2.2)

which satifies DJ = 0, as follows from a short calculation.
In the case of a special Kähler manifold (M,J,∇, ω) the connection D is the Levi-Civita
connection of the special Kähler metric g and the endomorphism-field S anticommutes
with the complex structure J, i.e. :

JSX = −SXJ for all X ∈ TM . (2.3)

Now we explain part of the extrinsic construction of special Kähler-manifolds given
in [ACD]. In order to do this, we consider the complex vector space V = T ∗Cn = C2n

with canonical coordinates (z1, . . . , zn, w1, . . . , wn) endowed with the standard complex
symplectic form Ω =

∑n
i=1 dz

i∧dwi and the standard real structure τ : V → V with fixed
points V τ = T ∗Rn. These define a Hermitian form γ := iΩ(·, τ ·).
Let (M,J) be a complex manifold (M,J) of complex dimension n. We call a holomorphic
immersion φ : M → V nondegenerate (respectively Lagrangian) if φ∗γ is nondegenerate
(respectively, if φ∗Ω = 0). If φ is nondegenerate it defines a, possibly indefinite, Kähler
metric g = Reφ∗γ on the complex manifold (M,J) and the corresponding Kähler form
g(·, J ·) is a J−invariant symplectic form.

The following theorem gives a description of simply connected special Kähler-manifolds
in terms of the above data:

Theorem 2 [ACD] Let (M,J,∇, ω) be a simply connected special Kähler manifold of
complex dimension n, then there exists a holomorphic nondegenerate Lagrangian immer-
sion φ : M → V = T ∗Cn inducing the Kähler metric g, the connection ∇ and the symplec-
tic form ω = 2φ∗ (

∑n
i=1 dx

i ∧ dyi) = g(·, J ·) on M. Moreover, φ is unique up to an affine
transformation of V preserving the complex symplectic form Ω and the real structure τ .
The flat connection ∇ is completely determined by the condition ∇φ∗dxi = ∇φ∗dyi = 0,
i = 1, . . . , n, where xi = Re zi and yi = Rewi.
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3 Special complex and special Kähler manifolds as

solutions of the tt*-equations

Let (E,D, S) be a tt*-bundle over a complex manifold (M,J). We are now interested
in the case E = TM . In that case it is natural to consider tt*-bundles for which the
connection Dθ = D + (cos θ)S + (sin θ)SJ is torsion-free.

Definition 4 A tt*-bundle (TM,D, S) over a complex manifold (M,J) is called special
if Dθ is torsion-free and special, i.e. DθJ is symmetric for all θ.

Proposition 5 A tt*-bundle (TM,D, S) is special if and only if D is torsion-free and
DJ , S and SJ are symmetric.

Proof: The torsion T θ of Dθ is given by

T θ(X, Y ) = T (X,Y ) + cos θ(SXY − SYX) + sin θ(SJXY − SJYX) , (3.1)

where T is the torsion of D. This shows that T θ = 0 for all θ if and only if T = 0 and S
and SJ are symmetric. The equation

(Dθ
XJ)Y = (DXJ)Y + cos θ[SX , J ]Y + sin θ[SJX , J ]Y (3.2)

shows that DθJ is symmetric if DJ , S and SJ are symmetric. Conversely, if T θ = 0
and DθJ is symmetric, then, by the first part of the proof, S and SJ are symmetric and
equation (3.2) shows that DJ is symmetric.

Theorem 3

(i) Let (M,J,∇) be a special complex manifold. Put S := 1
2
J∇J and D := ∇ − S.

Then (TM,D, S) is a special tt*-bundle, which satisfies the additional conditions:
a) SXJ = −JSX for all X ∈ TM and
b) DJ = 0.
This defines a map Φ from special complex manifolds to special tt*-bundles.

(ii) Let (TM,D, S) be a special tt*-bundle over a complex manifold (M,J). Then
(M,J,∇ := D+S) is a special complex manifold. This defines a map Ψ from special
tt*-bundles to special complex manifolds such that Ψ ◦ Φ = Id. If (TM,D, S) is a
special tt*-bundle satisfying the conditions a) and b) in (i), then Φ(Ψ(TM,D, S)) =
(TM,D, S).

(iii) Let (M,J, g,∇) be a special Kähler manifold with S and D defined as in (i). Then
(TM,D, S, g) is a special metric tt*-bundle. This defines a map Φ from special
Kähler manifolds to special metric tt*-bundles.

(iv) Let (TM,D, S, g) be a special metric tt*-bundle over a pseudo-Hermitian manifold
(M,J, g) satisfying the conditions a) and b) in (i). Then (M,J,∇ := D + S, g)
is a special Kähler manifold. In particular, we have a map Ψ from special metric
tt*-bundles over pseudo-Hermitian manifolds satisfying a) and b) to special Kähler
manifolds. Moreover, Ψ is a bijection and Ψ−1 = Φ.
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(v) Let (TM,D, S, g) be a metric tt*-bundle over a pseudo-Hermitian manifold (M,J, g)
satisfying a) and b) in (i) and such that D is torsion-free. Then it is special if and
only if (M,J,∇ := D + S, g) is a special Kähler manifold.

Proof: (i) Let (M,J,∇) be a special complex manifold with S and D defined as above.
Then

∇θ = eθJ ◦ ∇ ◦ e−θJ (3.3)

is a family of flat torsion-free special connections. Using ∇ = D + S and (2.3) we can
write

∇θ
X = DX + e2θJSX . (3.4)

The following calculation shows that ∇θ = D−2θ, where Dθ is defined in (1.2):

∇θ
X −DX = e2θJSX = cos(2θ)SX + sin(2θ)JSX

(∗)
= cos(−2θ)SX + sin(−2θ)SJX = D−2θ

X −DX , X ∈ TM .

At (∗) we have used that JSX = −SJX , which follows from

JSXY = JSYX = −SY JX = −SJXY , X, Y ∈ TpM . (3.5)

Here we used the symmetry of S and (2.3). This shows that (TM,D, S) is a special
tt*-bundle.

(ii) Let (TM,D, S) be a special tt*-bundle. This means that Dθ is flat, torsion-free
and special. In particular, ∇ = D+S = D0 is flat, torsion-free and special and (M,J,∇)
is a special complex manifold. It is clear that Ψ ◦ Φ = Id.

Conversely, let (TM,D, S) be a special tt*-bundle such thatDJ = 0 and SXJ = −JSX

for all X. Then we can recover D and S from ∇ = D + S by the formulas S = 1
2
J∇J

and D = ∇−S. In fact, Let (TM,D′, S ′) be an other special tt*-bundle over (M,J) such
that D′J = 0 and S ′XJ = −JS ′X for all X ∈ TM and ∇ = D + S = D′ + S ′. Then

0 = D′
XJ = ∇XJ − [S ′X , J ] = ∇XJ + 2JS ′X (3.6)

for all X ∈ TM . This shows that S ′X = 1
2
J∇XJ = SX and D′ = ∇− S ′ = ∇− S = D.

(iii) Let (M,J, g,∇) be a special Kähler manifold with S and D defined as in (i).
Then, by (i), (TM,D, S) is a special tt*-bundle and satifies a) and b). To prove that it
is a metric tt*-bundle we have to check that Dg = 0 and that (1.3) is satisfied. Since
DJ = 0, by b), the equation Dg = 0 is equivalent to the following claim:

Claim: The Kähler form ω is D-parallel; Dω = 0.

In fact ∇ω = 0 and SX = 1
2
J∇XJ , X ∈ TM , is the product of two anticommuting

ω-skew-symmetric endomorphisms A = 1
2
J and B = ∇XJ . This implies that SX is

ω-skew-symmetric and, thus, Dω = 0.

The endomorphism SX is ω-skew-symmetric and anticommutes with J , by a). There-
fore SX is symmetric with respect to g = ω(J ·, ·).
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(iv) Let (TM,D, S, g) be a special metric tt*-bundle over a pseudo-Hermitian manifold
(M,J, g) satisfying a) and b) in (i). Thanks to (ii), we know already that (M,J,∇ :=
D + S) is a special complex manifold. Therefore it suffices to prove that ∇ω = 0. The
assumption Dg = 0 and property b) imply that Dω = 0. Now it is sufficient to observe
that the endomorphisms SX , X ∈ TM , are ω-skew-symmetric. In fact, SX is g-symmetric
in virtue of (1.3) and anticommutes with J , by a). This shows that (M,J,∇, g) is a special
Kähler manifold. The remaining statements follow from (ii).

(v) Let (TM,D, S, g) be a metric tt*-bundle over a pseudo-Hermitian manifold (M,J, g)
such that (M,J,∇ := D + S, g) is a special Kähler manifold. If D is torsion-free, then it
is the Levi-Civita connection of g and, thus, D = ∇− 1

2
J∇J , see section 2. Now we can

conclude that Φ(M,J,∇, g) = (TM,D, S, g). This shows that (TM,D, S, g) is a special
metric tt*-bundle. The converse follows from (iv).

Corollary 1 Any special metric tt*-bundle (TM,D, S, g) over a pseudo-Hermitian man-
ifold (M,J, g) which satisfies a) and b) in Theorem 3 (i) is oriented and unimodular.

Proof: TM is canonically oriented by the complex structure J . By Theorem 3, (M,J, g,∇
= D + S) is a special Kähler manifold. Its Kähler form is parallel with respect to D and
∇ and hence invariant under SX = ∇X−DX for all X ∈ TM . This shows that trSX = 0.

In [H] special complex and special Kähler geometry is interpreted in terms of variations
of Hodge structure of weight 1 on the complexified tangent bundle. From this interpreta-
tion and his discussion of tt*-geometry, it follows that any special complex (respectively,
special Kähler) manifold defines a tt*-bundle (respectively, a metric tt*-bundle) in the
sense of our definition.

4 The pluriharmonic map in the case of a special

Kähler manifold

4.1 The Gauß maps of a special Kähler manifold

Let (M,J, g,∇) be a special Kähler manifold of complex dimension n = k + l and of

Hermitian signature (k, l), i.e. g has signature (2k, 2l). Let (M̃, J, g,∇) be its universal
covering with the pullback special Kähler structure, which is again denoted by (J, g,∇).
According to Theorem 2, there exists a (holomorphic) Kählerian Lagrangian immersion

φ : M̃ → V = T ∗Cn = C2n, which is unique up to a complex affine transformation of V
with linear part in Sp(R2n). We consider the dual Gauß map of φ

L : M̃ → Grk,l
0 (C2n) , p 7→ L(p) := Tφ(p)M̃ := dφpTpM̃ ⊂ V (4.1)

into the Grassmannian of complex Lagrangian subspaces W ⊂ V of signature (k,l), i.e.
such that the restriction of γ to W is a Hermitian form of signature (k, l). The map

L : M̃ → Grk,l
0 (C2n) is in fact the dual of the Gauß map

L⊥ : M̃ → Grl,k
0 (C2n) , p 7→ L(p)⊥ = L(p) ∼= L(p)∗ . (4.2)

10



Here L(p)⊥ stands for the γ-orthogonal complement of L(p) and the isomorphism L(p) ∼=
L(p)∗ is induced by the symplectic form Ω on V = L(p)⊕ L(p).

The GrassmannianGrk,l
0 (C2n) is an open subset of the complex GrassmannianGr0(C2n)

of complex Lagrangian subspaces W ⊂ V and hence a complex submanifold.

Proposition 6 (i) The dual Gauß map L : M̃ → Grk,l
0 (C2n) is holomorphic

(ii) The Gauß map L⊥ : M̃ → Grl,k
0 (C2n) is antiholomorphic.

Proof: The holomorphicity of L follows from that of φ. Part (ii) follows from (i), since
L⊥ = L : p 7→ L(p).

The real symplectic group Sp(R2n) acts transitively on Grk,l
0 (C2n) and we have the

following identification:
Grk,l

0 (C2n) = Sp(R2n)/U(k, l) . (4.3)

Here U(k, l) ⊂ Sp(R2n) is defined as the stabilizer of

Wo = span{ ∂

∂z1
+ i

∂

∂w1

, · · · , ∂

∂zk
+ i

∂

∂wk

,
∂

∂zk+1
− i

∂

∂wk+1

, · · · , ∂

∂zn
− i

∂

∂wn

} . (4.4)

The Gauß maps L and L⊥ induce Gauß maps

LM : M → Γ \Grk,l
0 (C2n) (4.5)

L⊥M : M → Γ \Grl,k
0 (C2n) (4.6)

into the quotient of the Grassmannian by the holonomy group Γ = Hol(∇) ⊂ Sp(R2n) of
the flat symplectic connection ∇.

Corollary 2 (i) The dual Gauß map LM : M → Γ \Grk,l
0 (C2n) of M is holomorphic.

(ii) The Gauß map L⊥M : M → Γ \Grl,k
0 (C2n) is antiholomorphic.

The Grassmannian Grk,l
0 (C2n) is a pseudo-Hermitian symmetric space and, in particu-

lar, a homogeneous pseudo-Kähler manifold. If Γ ⊂ Sp(R2n) acts properly discontinuously
on Grk,l

0 (C2n) then Γ \Grk,l
0 (C2n) is a locally symmetric space of pseudo-Hermitian type.

4.2 Holomorphic coordinates on the Grassmannian Grk,l
0 (C2n) of

complex Lagrangian subspaces of signature (k, l)

In this section we shall introduce a local model for the Grassmannian Grk,l
0 (C2n) and

determine the corresponding local expression for the dual Gauß map. This model is a
pseudo-Riemannian analogue of the Siegel upper half-space

Sym+(Cn) := {A ∈ Mat(n,C)|At = A and ImA is positive definite} . (4.7)

Our aim is to construct holomorphic coordinates for the complex manifold Grk,l
0 (C2n)

in a Zariski-open neighborhood of a point W0 of the Grassmannian represented by a
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Lagrangian subspace W0 ⊂ V of signature (k, l). Using a transformation from Sp(R2n)
we can assume thatW0 = Wo, see (4.4). Let U0 ⊂ Grk,l

0 (C2n) be the open subset consisting
of W ∈ Grk,l

0 (C2n) such that the projection

π(z) : V = T ∗Cn = Cn ⊕ (Cn)∗ → Cn (4.8)

onto the first summand (z-space) induces an isomorphism

π(z)|W : W
∼→ Cn . (4.9)

Notice that U0 ⊂ Grk,l
0 (C2n) is an open neighborhood of the base point W0. For elements

W ∈ U0 we can express wi as a function of z = (z1, . . . , zn). In fact,

wi =
∑

Cijz
j , (4.10)

where

(Cij) ∈ Symk,l(Cn) = {A ∈ Mat(n,C)|At = A and ImA has signature (k, l)} .
(4.11)

Proposition 7 The map

C : U0 → Symk,l(Cn) , W 7→ C(W ) := (Cij) (4.12)

is a local holomorphic chart for the Grassmannian Grk,l
0 (C2n).

Remark: The open subset Symk,l(Cn) ⊂ Sym(Cn) = {A ∈ Mat(n,C)|At = A} is a
generalization of the famous Siegel upper half-space Symn,0(Cn) = Sym+(Cn), which is
a Siegel domain of type I. In the latter case, we have U0 = Sp(R2n)/U(n) and a global
coordinate chart

C : Grn,0
0 (C2n) = Sp(R2n)/U(n)

∼→ Symn,0(Cn) . (4.13)

We shall now describe the dual Gauß map L in local holomorphic coordinates in
neighborhoods of p0 ∈ M̃ and L(p0) ∈ Grk,l

0 (C2n). Applying a transformation from
Sp(R2n), if necessary, we can assume that L(p0) ∈ U0. We put U := L−1(U0). The open

subset U ⊂ M̃ is a neighborhood of p0.

Let φ : M̃ → T ∗Cn be the Kählerian Lagrangian immersion. It defines a system of
local (special) holomorphic coordinates

ϕ := π(z) ◦ φ|U : U
∼→ U ′ ⊂ Cn , p 7→ (z1(φ(p)), · · · , zn(φ(p))) (4.14)

and we have the following commutative diagram

U
L−→ U0

ϕ ↓ ↓ C
U ′ LU−→ Symk,l(Cn) ,

(4.15)
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where the vertical arrows are holomorphic diffeomorphisms and LU at z = (z1, . . . zn) is
given by

LU(z) = (Fij(z)) :=

(
∂2F (z)

∂zi∂zj

)
. (4.16)

Here F = F (z) is a holomorphic function on U ′ ⊂ Cn determined, up to a constant, by
the equations

wj(φ(p)) =
∂F

∂zj

∣∣∣∣
z(φ(p))

. (4.17)

Summarizing, we obtain the following proposition.

Proposition 8 The dual Gauß map L has the following coordinate expression

LU = C ◦ L ◦ ϕ−1 = (Fij) , (4.18)

where ϕ : U → Cn is the (special) holomorphic chart of M̃ associated to the Kählerian
Lagrangian immersion φ, see (4.14), and C : U0 → Sym(Cn) is the holomorphic chart of
Grk,l

0 (C2n) constructed in (4.12).

4.3 The special Kähler metric in affine coordinates

As before, let (M,J, g,∇) be a special Kähler manifold of Hermitian signature (k, l),

k+ l = n = dimCM , and (M̃, J, g,∇) its universal covering. As in section 1, we shall now
consider the metric g in a ∇-parallel frame. Such a frame is provided by the Kählerian
Lagrangian immersion φ : M̃ → V . In fact, any point p ∈ M̃ has a neighborhood in which
the functions x̃i := Re zi ◦ φ, ỹi := Rewi ◦ φ, i = 1, . . . , n, form a system of local ∇-affine
coordinates. We recall that the ∇-parallel Kähler form is given by ω = 2

∑
dx̃i ∧ dỹi.

This implies that the globally defined one-forms
√

2dx̃i,
√

2dỹi constitute a ∇-parallel
unimodular frame

(ea)a=1,...,2n = (e1, . . . , e2n) := (
√

2dx̃1, . . . ,
√

2dx̃n,
√

2dỹ1, . . . ,
√

2dỹn) (4.19)

of T ∗M̃ with respect to the metric volume form ν = (−1)n+1 ωn

n!
= 2ndx̃1 ∧ . . . ∧ dỹn. The

dual frame (ea) of TM̃ is also ∇-parallel and unimodular. The metric defines a smooth
map

G : M̃ → Sym1
2k,2l(R2n) = {A ∈ Mat(2n,R)|At = A , detA = 1 has signature (2k, 2l)}

(4.20)
by

p 7→ G(p) := (gab(p)) := (gp(ea, eb)) . (4.21)

We will call G = (gab) the fundamental matrix of φ. As before, we identify

Sym1
2k,2l(R2n) = SL(2n,R)/SO(2k, 2l) . (4.22)

This is a pseudo-Riemannian symmetric space. For conventional reasons, in this section,
SO(2k, 2l) ⊂ SL(2n,R) is defined as the stabilizer of the symmetric matrix

Eo := diag(1k,−1l,1k,−1l) . (4.23)
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The fundamental matrix induces a map

GM : M → Γ \ Sym1
2k,2l(R2n) (4.24)

into the quotient of Sym1
2k,2l(R2n) by the action of the holonomy group Γ = Hol(∇) ⊂

Sp(R2n) ⊂ SL(2n,R). The target Γ \ Sym1
2k,2l(R2n) is a pseudo-Riemannian locally sym-

metric space, provided that Γ acts properly discontinuously.

Theorem 4 The fundamental matrix G : M̃ → Sym1
2k,2l(R2n) = SL(2n,R)/SO(2k, 2l)

takes values in the totally geodesic submanifold

ι : Grk,l
0 (C2n) = Sp(R2n)/U(k, l) ↪→ SL(2n,R)/SO(2k, 2l) (4.25)

and coincides with the dual Gauß map L : M̃ → Grk,l
0 (C2n): G = ι ◦ L.

Proof: The proof will follow from a geometric description of the inclusion ι. To any
Lagrangian subspace W ∈ Grk,l

0 (C2n) we can associate the scalar product gW := Re γ|W
of signature (2k, 2l) on W ⊂ V . The projection onto the real points

Re : V = T ∗Cn → T ∗Rn = R2n , v 7→ Re v =
1

2
(v + v) (4.26)

induces an isomorphism of real vector spaces W
∼→ R2n the inverse of which we denote

by ψ = ψW . We claim that

ι(W ) = ψ∗gW =: (gW
ab ) =: GW . (4.27)

To check this, it is sufficient to prove that the map

Grk,l
0 (C2n) 3 W 7→ GW ∈ Sym1

2k,2l(R2n) (4.28)

is Sp(R2n)-equivariant and maps the base point Wo with stabilizer U(k, l), see (4.4), to the
base point Eo with stabilizer SO(2k, 2l), see (4.23). Let us verify that indeed GWo = Eo.

Using the definition of γ, one finds for the basis

(e±j ) := (
∂

∂zj
± i

∂

∂wj

) (4.29)

of V that the only non-vanishing components of γ are γ(e±j , e
±
j ) = ±2. This shows that

gWo = Re γ|Wo is represented by the matrix 2Eo with respect to the basis

(e+1 , . . . , e
+
k , e

−
1 , . . . , e

−
l , ie

+
1 , . . . , ie

+
k , ie

−
1 , . . . , ie

−
l ) . (4.30)

In order to calculate GWo = (gWo
ab ) = (g(ψea, ψeb)), we need to pass from the real basis

(4.30) of Wo to the real basis (ψea).

Recall that the real structure τ is complex conjugation with respect to the coordinates
(zi, wi). This implies that

ψ−1(e+j ) =
∂

∂xj
=
√

2ej , ψ−1(ie+j ) = − ∂

∂yj

= −
√

2en+j , j = 1, . . . , k, (4.31)

ψ−1(e−j ) =
∂

∂xj
=
√

2ej , ψ−1(ie−j ) =
∂

∂yj

=
√

2en+j , j = 1, . . . , l . (4.32)
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This shows that GWo = Eo.

It remains to check the equivariance of W 7→ GW = ψ∗g. Using the definition of the
map ψ = ψW : R2n → W , one easily checks that, under the action of Λ ∈ Sp(R2n), ψ
transforms as

ψΛW = Λ ◦ ψW ◦ Λ−1|R2n . (4.33)

From this we deduce the transformation law of GW :

GΛW = ψ∗ΛWg
ΛW = (Λ−1)∗ψ∗W Λ∗gΛW = (Λ−1)∗ψ∗Wg

W = (Λ−1)∗GW = Λ ·GW . (4.34)

The above claim (4.27), together with the fact that

gL(p) = gp and GL(p) = G(p) (4.35)

for all p ∈ M̃ , implies that
ι(L(p)) = GL(p) = G(p) . (4.36)

Corollary 3 The fundamental matrix G : M̃ → Sym1
2k,2l(R2n) is pluriharmonic.

Proof: G = ι◦L is the composition of the holomorphic map L : M̃ → Grk,l
0 (C2n) with the

totally geodesic inclusion Grk,l
0 (C2n) ⊂ Sym1

2k,2l(R2n). The composition of a holomorphic
map with a totally geodesic map is pluriharmonic.
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