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STATE ESTIMATION FOR A CLASS OF SINGULAR SYSTEMS

M. DAROUACH and M. ZASADZINSKI
C.R.A.N., C.N.R.S., U.A. 821
Université de Nancy I
I.U.T. de Longwy , route de Romain, 54400 Longwy, FRANCE

The linear state estimation for a class of singular systems is formulated by
using the sequential linear estimator solution developed in steady state systems.
This procedure is based upon sequential processing of the covariance of the
estimate arising from the solution of the least squares problem. The
convergence conditions of the state estimate are established. An application to
state and input estimation in the dynamic discrete system is presented.

N o t a t i o n
ρ(A) : spectral radius of matrix A

||A|| : norm of matrix A (λmax (ATA)) 1/2

A > B : A - B positive definite matrix
A ≥ B : A - B positive semi-definite matrix

1. Introduction
Singular systems were introduced to describe the dynamics of certain linear

systems for which the standard state-space representation is not applicable. This
type of process has been studied by a number of investigators (Luenberger 1977
and 1978, Verghese et al. 1981).

The problem of state estimation for discrete-time stochastic singular systems
was studied by Dai (1989) who transformed the filtering problem for a singular
system into an equivalent problem for a non singular system. However, no effort
seems to have been made to develop a theory of state estimation in systems
described by rectangular matrices. In this paper we present a new state
estimation algorithm for a class of singular systems described by rectangular
matr ices.

This algorithm is based on the linear unbiased least-squares estimation method
developed in steady state data reconciliation (Crowe et al. 1983 and Darouach
1986 and Darouach et al. 1989).

2. Problem statement

In this paper, we shall consider the singular system described by the following
discrete model
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- E Xi+1 + B Xi = 0 i = 1, ... , k ( 1 )

with the observations

Zi = Xi + vi ( 2 )

where E and B are (n,p) matrices, the state vector Xi  is of dimension p, the
measurement noise vi  is a p-vector white-noise process with zero mean and

known variance matrix V.
The state estimation problem for the singular system (1)-(2) may be solved by

the linear least squares method.
The equation (1) can be expressed as a single vector equation

Φk X = 0 ( 3 )

with

X = 
 



 

X1

:
Xk+1

a n d

Φk = 

 



 



B -E 0 . . . . 0
0 B -E 0 . . . 0
. . . . . . . .
0 . . . . 0 B -E

 = 
 



 

Φk-1

ϕ
k

  = 
 



 

ϕ

1
:
ϕ

k

In the least squares sense, the problem is

minimize J = 
1
2 (X

^
 - Z)Tυ-1(X

^
 - Z) ( 4 )

subject to Φk X̂ = 0 ( 5 )

where X
^
 is the estimate vector of X, Z = (Zi), i = 1 to k+1 and υ = 

 



 

V . 0

. . .
0 . V

.

The solution of this problem is given by

X
^
 = P Z ( 6 )

where P is the projection matrix

P = I - υ ΦT
k (Φk υ ΦT

k)-1 Φ k ( 7 )

This solution necessitates the inversion of the large scale matrix (Φ kυ Φ T
k ). In

this paper, we present the conditions of the uniqueness of the solution and we
give its recursive scheme with the convergence conditions.
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3. State estimation algorithm
In the sequel we assume that matrix ( )B| -E  is a full row rank matrix.

Theorem 1
Solution (6) is unique if and only if the matrix pencil (sE - B) is of full row

rank . ❑

P r o o f
Solution (6) is unique if and only if Φ k  is a full row rank matrix. If we suppose

that the matrix pencil (sE - B) is not a full row rank matrix, this is equivalent to
the existence of a row vector x ≠  0 such that

x (sE - B) = 0 ( 8 )

where s is a complex number and x is a finite polynomial in s

x(s) = x0 - s x1 + s2 x2 - ... + (-1)k sk xk (xk  ≠  0) ( 9 )

where k is the minimum index (Gantmacher 1959).
Inserting (9) in (8) gives

( )x0 . . . xk  Φ k = 0 ( 1 0 )

and Φ k is not a full row rank matrix. ❑

From (6) and (7) we have the following results :

(a) the expectation of estimate X
^

E(X
^
) = X ( 1 1 )

 (b) the covariance matrix of X
^

Σ = E[(X
^
 - X)(X

^
 - X)T] = υ - υ ΦT

k (Φk υ ΦT
k)-1 Φ k ( 1 2 )

(c) the estimate (6) can be written as

X
^
 = Σ υ-1 Z ( 1 3 )

The computation of the estimate X
^

 uses the expression of the covariance

matrix Σ . If we note Σ k the covariance matrix of the estimate X
^

k  based on the

measurements in the presence of the constraints Φ k-1 X
^

 = 0, the new estimate
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X
^

k+1 based on the measurements and the additional constraint ϕ
k  X

^
 = 0 is given

by the following theorem.

Theorem 2

The linear unbiased least squares estimation of the state X
^

k+1 is

X
^

k+1 = 

 




 


X

^
1 / k+1

:

X
^

k / k + 1

X
^

k+1/k+1

( 1 4 )

where

X
^

k+1/k+1 = Zk+1 + V ET Ωk (B X
^

k/k - E Zk+1) ( 1 5 )

Σk+1
(k+1)(k+1) = V - V ET Ωk E V ( 1 6 )

a n d

X
^

j/k+1 = X
^

j /k  - Σ k
jk BT Ωk (B X

^
k/k - E Zk+1) for j < k+1 ( 1 7 )

Σk+1
j(k+1) = Σk

jk BT Ωk E V for j < k+1 ( 1 8 )

Ωk = (B Σk
kk BT + E V ET)-1 ( 1 9 )

with Σ1
11 = V and Σk

ij  is the (i,j) block of Σ k  of dimension (p,p). ❑

P r o o f
Consider the system described by

Z = X + v ( 2 0 )
ϕ

1 X = 0 ( 2 1 )

Its state estimate is given by

X
^

1 = P1 Z ( 2 2 )

where P1 = I - υ ϕT
1 (ϕ1 υ ϕT

1)-1 ϕ1

The covariance matrix of the estimate X
^

1 is

Σ1 = P1 υ = 

 



 

V-VBTΩ1BV V-VBTΩ1EV 0

V-VETΩ1BV V-VETΩ1EV 0
0 0 V

( 2 3 )

where
Ω1 = (B V BT + E V ET)-1 ( 2 4 )
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Now with the following additional constraint

ϕ
2 X = 0 ( 2 5 )

the new estimate based on the knowledge of the measurement and constraints
(21) and (25) is given by

X
^

2 = P2 X
^

1 = Σ2 υ-1 Z ( 2 6 )

where Σ2 is the covariance matrix of estimate X
^

2

Σ2 = Σ1 - Σ1 
ϕT

2 (ϕ2 Σ1 ϕ
T
2)-1 ϕ2 Σ1 ( 2 7 )

More generally, X
^

k+1 is given by

X
^

k+1 = Pk+1 X
^

k = Σk+1 υ-1 Z ( 2 8 )

with

Σk+1 = Σk - Σk 
ϕT

k (ϕk Σk ϕ
T
k)-1 ϕk Σk

The covariance matrix Σk of estimate X
^

k  can be written as a block matrix

Σk = 

 




 


Σk

11 . . . Σk
1 k 0

Σk
k 1 . . . Σk

k k 0
0 ... 0 V

( 2 9 )

From (28) and (29) we have

Pk+1 = 

 





 



I 0 . 0 -Σk

1kB
TΩkB Σk

1kB
TΩkE

. . . . .. . . . .

0 . 0 I -Σk
(k-1)kBTΩkB Σk

(k-1)kBTΩkE

0 . . 0 I-Σk
kkBTΩkB Σk

kkBTΩkE

0 . . 0 VETΩkB I-VETΩkE

( 3 0 )

with

Ωk = (ϕk Σk ϕ
T
k)-1 = (B Σk

kk BT + E V ET)-1 ( 3 1 )

In expression (30), only the value of the kth block column of matrix Σ k  is
required for the computation of Pk+1 and consequentely for the new covariance
matrix Σk+1. From the following relation

Σk+1 = Pk+1 Σk ( 3 2 )
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we can deduce the (k+1)th block column of matrix Σ k + 1

 




 


Σk+1

1(k+1)
:

Σk+1
k(k+1)

Σk+1
(k+1)(k+1)

 = 

 



 

Σk

1kB
TΩkEV
:

Σk
kkBTΩkEV

V-VETΩkEV

( 3 3 )

and the estimate X
^

k+1 is given in terms of X
^

k b y

X
^

k+1 = 

 




 


X

^
1 / k+1

:

X
^

k / k + 1

X
^

k+1/k+1

 = Pk+1 

 




 


X̂k

Zk+1

 = Pk+1 

 



 

X

^
1 / k
:

X
^

k / k
Zk+1

( 3 4 )

From (30)-(34), we can easily obtain the results of the theorem. ❑

Resulting from this theorem :

( a ) the convergence of estimate X
^

k+1/k+1 (15) can be obtained from the

convergence of sequence Σk
kk  (16) or sequence Ω k (19) ,

( b ) estimate X
^

j/k+1 (17) converges to X
^

j/k if sequence Σ k
jk  (18) converges to

zero when k increases,

( c ) the initialization V of sequence Σk
kk  is positive definite.

R e m a r k s
The study of the convergence of the algorithm is reduced to those of sequence

Σk
kk initialized by V and of sequence Σk

jk .

If Σk
jk  converges to zero when k increases, the computation of estimate X

^
j / k + 1

does not necessitate the knowledge of all measurements and we can use only a
moving window for updating the past estimates. ❑

4. Convergence study of the algorithm

4.1 Convergence of sequence ΣΣΣΣ k
k k

For sequence Σk
kk  we have sufficient convergence conditions based on the use

of a Riccati equation. Also we have necessary and sufficient conditions based on
the continued fractions.
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In fact, if E is a full row rank matrix, by using the inversion lemma, we can
write expression (16) as the following Riccati equation

Vk+1 = D + F Vk FT - F Vk BT (B Vk BT + R)-1 B Vk FT ( 3 5 )

with F = VET(EVET)-1B, R = EVET, D = V - VET(EVET)-1EV and Vk = Σk
kk  where R is a

positive definite matrix and D is a semi-positive definite matrix.
Sufficient conditions for the convergence of (35) are given by Caines (1988) in

the following theorem.

Theorem 3
If the pair (B,F) is detectable and the pair (F,S) is stabilizable where S is any

square root matrix of D, then given any symmetric positive matrix V0 , the
sequence of solutions {Vk, k is a positive integer} generated by (35) converges to

the unique symmetric positive solution Y to the algebraic Riccati equation

Y = D + F Y FT - F Y BT (B Y BT + R)-1 B Y FT (36)❑

Now, we can study the convergence conditions from the matrix continued
fractions theory.

From equations (16) and (19), we have

Γk+1 = S - C Γ-1
k  C

T ( 3 7 )

where Γk = Ω -1
k , Γ1 = S = B V BT + E V ET and C = B V ET.

Relation (37) can be written as a matrix continued fraction

Γk+1 = S - C(S - C( ... (S - CΓ-1
1  CT)-1 ... )-1 CT)-1 CT ( 3 8 )

Convergence conditions of this sequence are given from the following theorem
(Hallin 1984, 1989).

Theorem 4
A matrix continued fraction defined by the formal expression F

F = S0 - C0 (S1 - C1 (S2 - C2 ( ... )
-1 C

T
2)-1 C

T
1)-1 C

T
0 ( 3 9 )

is positive definite if and only if the associated matrix R
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R = 

 




 




S0 C0 0 0 . .

C
T
0 S1 C1 0 . .

0 C
T
1 S2 C2 . .

. . . . . .

. . . . . .

( 4 0 )

is positive definite. Its approximant F(n) (n is a positive integer) is given by

F(n) = S0 - C0 (S1 - C1 ( ... Cn-1S
-1
n C

T
n-1 ... )-1 C

T
1)-1 C

T
0 ( 4 1 )

( i ) all F(n) are positive definite,
( i i ) F(n) - F(n-1) is positive definite, n ∈  N ,

( i i i ) it converges and its value is positive semi-definite matrix F,
( iv) if we consider the positive definite matrix continued fraction

S1 - C1 ( ... Cn-1S
-1
n C

T
n-1 ... )-1 C

T
1 ( 4 2 )

it converges to a positive definite value F(1) = C0(S0 - F)-1C
T
0 and its

approximants also satisfy (i) and (ii). ❑

Necessary and sufficient convergence conditions of the sequence Γ k  (38) can

be given by the following theorem.

Theorem 5
Sequence Γk converges to Γ  if and only if the matrix pencil (sE - B) is a full row

rank matrix. ❑

P r o o f
From theorem 1, the pencil matrix (sE - B) is a full row rank matrix if and only

if solution (6) is unique, then the matrix R = (Φ k υ Φ T
k ) is non singular. This

matrix is positive definite and given by expression (40) with S0 = Si  = S and
C0 = Ci  = C for all i. Consequently, from theorem 4 the matrix Γ k given by (38)

converges to Γ . ❑

From this theorem we can deduce that sequence Γ k is a positive definite matrix

continued fraction which converges to the positive definite matrix Γ .

 Consequently, sequence Ω k converges to Ω and sequence Σk
kk converges to Σ c

Σc = V - V ET Ω E V = V - V ET Γ-1 E V ( 4 3 )

4.2 Convergence of sequence ΣΣΣΣ k
j k  (j < k)

From the expression (18) we have the difference matrix equation
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Yk+1 = Ψk Yk ( 4 4 )

with Y
T
k  = Σ k

jk  BT and Ψ k = B V ET Ω k . We can associate to the relation (44), the

following discrete state equation

yk+1 = Ψk yk ( 4 5 )

where yk is a p state vector. The solution of this state equation is

yk = Λ (k,k0) yk0
( 4 6 )

with

Λ(k,k0) = Yk Y
-1
k0

( 4 7 )

The convergence of the sequence Σk
jk  (j < k) is then reduced to the stability of

the null solution of (45). This stability is given by the following theorem
(Willems 1970).

Theorem 6
If the matrix Ψ k is bounded, then the null solution of (45) is uniformly

asymptotically stable if and only if a non-stationary decrescent positive definite
Lyapunov function exists whose difference along the solution of (45) is given by
decrescent, negative definite, non-stationary quadratic form. ❑

5. Application to state and input estimation
Let us consider the linear discrete system described by

x i+1 = G xi + H ui ( 4 8 )

where xi ∈  Rn
, G ∈  Rn* n

, ui ∈  Rm
, H ∈  Rn* m

.

The observation equations are

zi  = xi + vi ( 4 9 )
y i = ui + wi ( 5 0 )

where
vi ~ N(0,Vx)
w i ~  N(0,Vu)

This system can be written as

E Xi+1 = B Xi ( 5 1 )

where E = ( )I | 0 , B = ( )G| H  and Xi = 
 



 

x i

u i
.
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The estimation problem of x
^

i  and ûi  based on the measurements is reduced to

minimize J = 
1
2 ∑

i=1

k+1

 | |X
^

i - Xi||
2

V
-1 ( 5 2 )

under E X
^

i - B X
^

i-1 = 0

where

V = 
 



 

Vx 0

0 Vu

The recusive solution of this problem is given by expressions (15)-(19).

Obviously, since E = ( )I | 0  the measurement of the variable uk is not corrected

in (15) (u
^

k+1/k+1 = yk+1), this is not the case for u
^

j/k+1 (j < k+1) computed from

(17 ) .
The matrix E is a full row rank matrix. We can give the sufficient convergence

condition for sequences Σ k
kk  in the following theorem.

Theorem 7

Sequence Σ k
k k  converges if the system described by (48) is asymptotically

stable. ❑

P r o o f
If the system described by (48) is asymptotically stable, then ρ (G) < 1. The

matrices F, R, D and S are given by

F =  


 
G H

0 0 , R = Vx, D = 
 



 

0 0

0 Vu
 and S = 

 



 

0 0

0 V
1/2
u

.

The pair

(B,F) =  


 


( )G| H ,   


 
G H

0 0

is detectable if

(FT,BT) = 
 



 



 



 

GT 0

HT 0
,  

 



 

GT

HT

is stabilizable. This can be verified for K = ( )αI | 0  with 0< α <1, since the matrix

FT - BTK = 
 



 

(1-α)GT 0

(1-α)HT 0

has its eigenvalues lieing within the unit circle. Similarly for
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K = 
 



 

K1 K2

0 0

we have

F - SK =  


 
G H

0 0

and, since ρ(G) < 1, we have ρ(F - SK) < 1.

From theorem 3, sequence Σ k
kk converges to Σ c.

From theorem 5 we have the necessary and sufficient convergence conditions

for sequence Σ k
kk given by the matrix pencil (sE - B) = ( )(sI-G)| H  must be a full

row rank matrix. This condition is verified for all matrix G. Consequently the

convergence of sequence Σ k
k k  is guaranteed for systems described by (48)-

(50).❑

We present the convergence of sequence Σ k
jk  in two particular cases. The first

corresponds to the inventory system which is described by G = I and the second
is the case where GTG < I.

Case 1
Equation (48) becomes

x i+1 = xi + H ui ( 5 3 )

Expression (44) can be written

Yk+1 = Ψk Yk

where
Ψk = VxΩk ( 5 4 )

and from (19) we have

Ω -1
k  = Vx + BΣk

kkBT > Vx ( 5 5 )

which yields

Ψk = VxΩk < I ( 5 6 )

and Ψ k is bounded.

If we take as Lyapunov function

Qk = Y
T
k Yk ( 5 7 )

we have
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Qk+1 - Qk = Y
T
k(ΨT

kΨk - I)Yk = Y
T
k(Ωk V

2
x Ωk - I)Yk = Y

T
k Ωk( V

2
x - Ω-2

k )Ωk Yk ( 5 8 )

negative definite. In fact

Ω-1
k  = Vx + C ( 5 9 )

where

C = BΣk
kkBT ≥ 0

Ω-2
k  = (Vx + C)2 = V

2
x + Vx C + C Vx + C2 ( 6 0 )

which gives Ω -2
k  - V

2
x  > 0 if C Vx  is positive definite. This, is verified because we

have the product of a positive definite matrix and a symmetric matrix Vx  with

positive eigenvalues (Horn and Johnson p 465, 1988).

Numerical example
Consider the system described by

 



 

x1i+1

x2i+1
 = 

 



 

x1i

x2i  +  


 
1

1  ui

where

Vx =  


 
3 0 0

0 4 0  and Vu = 10.

Figures 1 and 2 show the obtained curves of x
^

1 j /k  and u
^

j /k  for j ≤  k from the

above results. Figures 3 and 4 show the evolution of ||Σk
kk || and ||Σk

k || respectively.

Case 2
The system is described by

x i+1 = G xi + H ui

where GTG < I.

In this case matrix Ψ k is given by

Ψk = G Vx Ωk ( 6 1 )

If we take the same Lyapunov function as the first case we obtain

I - ΨT
kΨk = Ωk(Ω -2

k  - VxGTGVx)Ωk ( 6 2 )

must be positive definite, which is verified since Ω -2
k  > V

2
x and V

2
x > VxGTGVx.
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Numerical example
Consider the system described by

 



 

x1i+1

x2i+1
 =  


 
0 0 . 3

0 . 5 0 . 7  
 



 

x1i

x2i  +  


 
1

1  ui

where

Vx =  


 
2 5 0

0 6 0  and Vu = 15.

This system is stable and the inequality GTG < I is verified. As in the precedent

example, figures 5 and 6 show the curves of x
^

1j /k  and x
^

2j /k  for j ≤  k and figures

7 and 8 those of ||Σ k
kk || and ||Σk

jk | |.

6. Conclusion
We have presented a new state estimation algorithm for a class of singular

systems. Its convergence conditions are given. Only determinist models were
considered, which are generally used in chemical engineering field. In a future
publication we shall present a stochastic version of this algorithm.
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figure 1 : measured and estimated values of state variable x1 in case 1
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figure 2 : measured and estimated values of input in case 1

figure 3 : evolution of the norm ||Σ k
kk || in case 1
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figure 4 : evolution of the norm ||Σ k
jk || for j = 1, 10, 20, 30 and 40 in case 1

figure 5 : measured and estimated values of state variable x1 in case 2
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figure 6 : measured and estimated values of state variable x2 in case 2

figure 7 : evolution of the norm ||Σ k
kk || in case 2


