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STATE ESTIMATION FOR A CLASS OF SINGULAR SYSTEMS

M. DAROUACH and M. ZASADZINSKI

C.R.ANN., C.N.R.S., U.A. 821

Université de Nancy |

[.U.T. de Longwy , route de Romain, 54400 Longwy, FRANCE

The linear state estimation for a class of singular systems is formulat
using the sequential linear estimator solution developed in steady state s
This procedure is based upon sequential processing of the covariance
estimate arising from the solution of the least squares problem.
convergence conditions of the state estimate are established. An applica
state and input estimation in the dynamic discrete system is presented.

Notation
p(A) : spectral radius of matrix A
IAll :  norm of matrix A §ay (ATA))/2

A>B: A - B positive definite matrix
A=B: A - B positive semi-definite matrix

1. Introduction

Singular systems were introduced to describe the dynamics of certain
systems for which the standard state-space representation is not applicabl
type of process has been studied by a number of investigators (Luenberge
and 1978, Verghese et al. 1981).

The problem of state estimation for discrete-time stochastic singular sy
was studied by Dai (1989) who transformed the filtering problem for a sir
system into an equivalent problem for a non singular system. However, no
seems to have been made to develop a theory of state estimation in ¢
described by rectangular matrices. In this paper we present a new
estimation algorithm for a class of singular systems described by recta
matrices.

This algorithm is based on the linear unbiased least-squares estimation
developed in steady state data reconciliation (Crowe et al. 1983 and Da
1986 and Darouach et al. 1989).

2. Problem statement

In this paper, we shall consider the singular system described by the fol
discrete model



-EX; 1 +BX =0 i=1, ...,k (1)
with the observations
Zi = Xi + Vi (2)

where E and B are (n,p) matrices, the state vectorisXof dimension p, tf
measurement noise ;vis a p-vector white-noise process with zero mean
known variance matrix V.

The state estimation problem for the singular system (1)-(2) may be solv
the linear least squares method.

The equation (1) can be expressed as a single vector equation

P, X =0 (3)
with
X, [
B
k+1
and

B-EO ... .O0 1

R 3 N
. . . .0B k k

In the least squares sense, the problem is

minimize J= (>A<-Z)TU'1(>A<-Z) (4)

subject to ® X =0 (5)

V.0
N
where Xis the estimate vector of X, Z =,(Zi = 1 to k+1 andU = E .. E
0.V

The solution of this problem is given by
X=PZ (6)
where P is the projection matrix
P=1-U @, (@ L o)L, (7)

This solution necessitates the inversion of the large scale mempi)@b. In

this paper, we present the conditions of the uniqueness of the solution &
give its recursive scheme with the convergence conditions.



3. State estimation algorithm

In the sequel we assume that mat@Bl-E) is a full row rank matrix.

Theorem 1

Solution (6) is unique if and only if the matrix pencil (sE - B) is of full

rank.

Pr oof

g

Solution (6) is unique if and only b, is a full row rank matrix. If we suppo

that the matrix pencil (sE - B) is not a full row rank matrix, this is equivale

the existence of a row vector X 0 such that

x(se-B)=0

where s is a complex number and x is a finite polynomial in s

x(s)=>b-sx1+szx2-...+(-1j<§‘xk

where k is the minimum index (Gantmacher 1959).
Inserting (9) in (8) gives

(Xo ...xk)cpk:o

and @ is not a full row rank matrix.
From (6) and (7) we have the following results :

N
(a) the expectation of estimate X

N
E(X) = X
N
(b) the covariance matrix of X

5 = E[X- X)X -X)T]=U -V &F (@, U byt o,

(c) the estimate (6) can be written as

AN

(X # 0)

(8)

(9)

(10)

(11)

(12)

(13)

The computation of the estimate Xises the expression of the covaria

N

matrix 2. If we noteX, the covariance matrix of the estimatg, Xoased on th

AN
measurements in the presence of the constrafpis; X = 0, the new estima



N N

X.+1 based on the measurements and the additional const‘i’akinx = 0 is giver
by the following theorem.

Theorem 2

N
The linear unbiased least squares estimation of the staie iX

]

1/k+1
N .
K1 = (14)
/k+1
+1/k+1
where
N T N
Xearker = Zee1 TV E Q (B Xy - E 4eyq) (15)
k+1
z(k+1)(k+l) =V-V ET Qk EV (16)
and
N N k T AN .
Zihi1) = Zi BT QE V for j < k+1 (18)
Q=B B +EVE)? (19)
with Zil =V andZiiJ$ is the (i,j) block of2, of dimension (p,p). 0
Proof

Consider the system described by

Z=X+vVv (20)
¢, X=0 (21)

Its state estimate is given by
N
=hPZ (22)

where R =1-U ¢I(¢1U ¢I)'1¢l

The covariance matrix of the estimatg 1§

vvB'QBV  VVB'TQEEV 0
5, =P U= V.WE'TQBV  V-VE'QqEV
0 0 Vv

o

(23)

where
Q,=BVB'+EVE)? (24)



Now with the following additional constraint
¢,X=0 (25)

the new estimate based on the knowledge of the measurement and cor
(21) and (25) is given by

N N 1
X =P X =2,0"Z (26)

AN
where 2, is the covariance matrix of estimate, X

N
More generally, ¥X,, is given by

X1 = Pt X = s V1 Z (28)
with
T T..
S = - L P @z vt oL 3,

N

The covariance matrix, of estimate X can be written as a block matrix

k k
D 11 e zlk O D
= [k k
2 1 - T O E (29)
O ... 0 V

From (28) and (29) we have

kK T kK T
L o . o -3BTQB SSBTOE M
0 oL
—0 . . o 1-38TQB I BTQE
— T T —
o . . 0o  VE'QB WETQE O
with
Q=03 ¢ht=Ez B +EVE)? (31)

In expression (30), only the value of thé"kblock column of matrix 2 is
required for the computation of, P, and consequentely for the new covaria
matrix 2, ... From the following relation

21 = Perr 2k (32)



we can deduce the (k+tf) block column of matrix2, 4

k+1 k
Z1(|<+1) N 1B QEV

| k1 K T (33)
. zk(k+l) kkBTQkEV;
k+1 T
(k+1)(k+1) VE QEV L
N N
and the estimate (X, is given in terms of Xby
A . Xk =
K+l = a1 Pe+1 = Pt - (34)
+ ||
K+l A=
+1/k+1 k+1—
From (30)-(34), we can easily obtain the results of the theorem. 0

Resulting from this theorem

AN
(a) the convergence of estimate, X,+; (15) can be obtained from t

convergence of sequencﬁtk (16) or sequencdl (19),
N N

(b) estimate >J§k+1 (17) converges to j)& if sequencerkk (18) converges |1
zero when Kk increases,
(c) the initialization V of sequencc{::k is positive definite.

Remarks
The study of the convergence of the algorithm is reduced to those of se

le((k initialized by V and of sequencEjkk.
N

If Zﬁ( converges to zero when k increases, the computation of estinm;c—.:l

does not necessitate the knowledge of all measurements and we can use
moving window for updating the past estimates. 0

4. Convergence study of the algorithm

4.1 Convergence of sequence Ztk

k . "
For sequenceX,, we have sufficient convergence conditions based on the

of a Riccati equation. Also we have necessary and sufficient conditions ba:
the continued fractions.



In fact, if E is a full row rank matrix, by using the inversion lemma, we
write expression (16) as the following Riccati equation

Visy=D+FV F -FV, B BV, B'+R/*1BV, F (35)

with F = VE'(EVET) !B, R = EVE', D = V - VE/(EVE")'EV and \( = 5, where R is
positive definite matrix and D is a semi-positive definite matrix.

Sufficient conditions for the convergence of (35) are given by Caines (19¢
the following theorem.

Theorem 3

If the pair (B,F) is detectable and the pair (F,S) is stabilizable where S |
square root matrix of D, then given any symmetric positive matriy, Yhe

sequence of solutions { k is a positive integer} generated by (35) converge
the unique symmetric positive solution Y to the algebraic Riccati equation

Y=D+FYF-FYB"BYB +R!BYF' (36)01

Now, we can study the convergence conditions from the matrix cont
fractions theory.
From equations (16) and (19), we have

Mw =S-Crch (37)

where T, = Q' T,=S=BVE +EVE andC=BVE.
Relation (37) can be written as a matrix continued fraction

M =S-CS-C(..(s-Bchyt. . yichylcT (38)

Convergence conditions of this sequence are given from the following th
(Hallin 1984, 1989).

Theorem 4
A matrix continued fraction defined by the formal expression F

F=%-GCy(S-C(S,-C (.. cytehtch (39)

iIs positive definite if and only if the associated matrix R



Co 0 0
S, C, 0
R = T

S, C. .

(40)

is positive definite. Its approximant(ri-') (n is a positive integer) is given by

=l Q) S-C(S1-C (... q.l_]_S;]lC:_l )-1 C-g_)-l CB (41)

(i) all " are positive definite,

(i) FM - H"1) s positive definite, nd N,

(iit) it converges and its value is positive semi-definite matrix F,
(iv) if we consider the positive definite matrix continued fraction

S;-C (.. GSc .. ytc) (42)

it converges to a positive definite valuélk= Co(Sg - F)'lc{) and its
approximants also satisfy (i) and (ii). 0

Necessary and sufficient convergence conditions of the sequépcg38) car
be given by the following theorem.

Theorem 5
Sequencel |, converges tol if and only if the matrix pencil (sE - B) is a full rc

rank matrix. 0

Proof

From theorem 1, the pencil matrix (s - B) is a full row rank matrix if and
if solution (6) is unique, then the matrix R & U CDL) IS non singular. Th
matrix is positive definite and given by expression (40) with S§ = S anc
Co=C; = C for all i. Consequently, from theorem 4 the matfix given by (38

converges tol . 0
From this theorem we can deduce that sequengés a positive definite matr

continued fraction which converges to the positive definite malrix
Consequently, sequenc®, converges toQ and sequenceilk(k converges toX .

5.=V-VE'QEV=V-VETlev (43)

4.2 Convergence of sequence Z}(k (G < k)

From the expression (18) we have the difference matrix equation
8



Y1 = Wi Yk (44)

with YE = ijk B and Yey=BYV E' Q.. We can associate to the relation (44),
following discrete state equation

Y1 = Wi Yk (45)
where y is a p state vector. The solution of this state equation is

Vi = A(KiKo) Vi, (46)
with

Alkko) = Yy Yig (47)

The convergence of the sequenzlﬁ (j < k) is then reduced to the stability

the null solution of (45). This stability is given by the following theo
(Willems 1970).

Theorem 6
If the matrix W is bounded, then the null solution of (45) is unifor

asymptotically stable if and only if a non-stationary decrescent positive d¢
Lyapunov function exists whose difference along the solution of (45) is give
decrescent, negative definite, non-stationary quadratic form. 0

5. Application to state and input estimation
Let us consider the linear discrete system described by
Xipq =G X%+ Hu (48)

n*m

where x [ Rn, G Rn*n, u O Rm, HOR

The observation equations are

Z; = X + V (49)

Yi = U+ W (50)
where

Vi~ N(0,V,)

w; ~ N(0,V,)

This system can be written as

E Xipq = B X; (51)

where E :(I|0), B :(G|H) and X = g:a



N

VAN
The estimation problem of;xand y based on the measurements is reduces

1k+1 A 2
minimize 3 =5 3 [1%- Xil\,1 (52)
5
N I N
under EX-BX., =0

where
vV, 0
Vzgo VUE
The recusive solution of this problem is given by expressions (15)

Obviously, since E :(IIO) the measurement of the variablg is not correcte
N N

in (15) (Y+1/k+1 = Yk+1), this is not the case forpyq (j < k+1) computed fror
(17).

The matrix E is a full row rank matrix. We can give the sufficient converg
condition for sequenceitk in the following theorem.

Theorem 7
Sequenceztk converges if the system described by (48) is asymptoti
stable. 0

Proof
If the system described by (48) is asymptotically stable, tp€¢@) < 1. The

matrices F, R, D and S are given by

G H 00 0 0
F:ﬁo O@R:VX,D:EO VugandS:go Vul/zg

The pair
@R =), & o

is detectable if

0= o B ik

is stabilizable. This can be verified for K éﬂllo) with 0< a <1, since the matri»

T T, _ (1'G)GT Oé
F-B K"E(l-a)HT 0

has its eigenvalues lieing within the unit circle. Similarly for
10



_ oKq KzE
K‘Eo 0
we have
H
F-SK:@C()5 0

and, sincep(G) < 1, we havep(F - SK) < 1.

From theorem 3, sequencEEk converges toX ..

From theorem 5 we have the necessary and sufficient convergence cor
for sequenceitk given by the matrix pencil (s - B) é(sI-G)IH) must be a fu
row rank matrix. This condition is verified for all matrix G. Consequently
convergence of sequencéEk iIs guaranteed for systems described by (
(50).0

We present the convergence of sequeriqu in two particular cases. The fi

corresponds to the inventory system which is described by G = | and the
is the case where '& < I.

Case 1
Equation (48) becomes

Xis1 T X+ H Y (53)
Expression (44) can be written

Yier =P Yk
where
W= Vi (54)

and from (19) we have

ot=v +B5 B >V, (55)
which vyields
‘-IJk=VXQk<I (56)

and W, is bounded.

If we take as Lyapunov function

T
we have

11



T,\T T 2 T 2 2
Qi1 - Q= Yi(WWi- DY = Yi(Q Vi Q- DY = Y Q (Vi - Q. )Qp Yy (58)

negative definite. In fact

-1
Q= v+ C (59)
where
C= BZ|l((kBT >0
Q2 = (Vi + CP = Vi + V, C + C \ + C? (60)

which givesQ;(2 - V)Z( >0 if C V, is positive definite. This, is verified because
have the product of a positive definite matrix and a symmetric matgx with
positive eigenvalues (Horn and Johnson p 465, 1988).

Numerical example
Consider the system described by

S B (B

30 O
VX:Q o aodand ;= 10.

where

N N

Figures 1 and 2 show the obtained curves gf,x and y, for j < k from the

above results. Figures 3 and 4 show the evolution quk|||| and EEH respectively

Case 2
The system is described by

Xis1 =G X+ Huy
where GG < I

In this case matriXx¥ is given by
W =GV, Qy (61)
If we take the same Lyapunov function as the first case we obtain
W, =0, (Q2-V,GTGV,)Q 62
- W W= Q Q7 -V, )82 (62)
.. .. . . - . -2 2 \F T
must be positive definite, which is verified sm@k >V, and \, >V,G GV,.

12



Numerical example
Consider the system described by

Tori= R s 05 HEuE

25 0
szﬁ o gofand ;= 15.

where

This system is stable and the inequalitJG{;< | is verified. As in the precede
N N
example, figures 5 and 6 show the curves gfx and x;, for j< k and figure
7 and 8 those of f, Il and Fjll-

6. Conclusion

We have presented a new state estimation algorithm for a class of s
systems. Its convergence conditions are given. Only determinist models
considered, which are generally used in chemical engineering field. In a
publication we shall present a stochastic version of this algorithm.
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