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Examples of multiple solutions for the Yamabe problem on

scalar curvature

Lionel Berard Bergery and Guy Kass

Abstract

In the conformal class of a Riemannian metric on a compact connected manifold, there exists
at least one metric with constant scalar curvature. In the case with positive scalar curvature,
there may be many (non-homothetic) metrics with constant scalar curvature in a conformal class.
R. Schoen gave a beautiful example of that phenomenon for a one-parameter family of metrics
on S

1
× S

n−1. In a preceding paper, we showed that Schoen’s construction may be generalized
on products S

1
× N (and other related examples). A unique (ordinary) differential equation,

depending only on the dimension, is the key to that construction. Here we give some more details
on the solutions of that equation and their behavior in a one-parameter family.

Classification: 53C21, 53A30

Key words: Riemannian manifold, scalar curvature, conformal class, Yamabe problem.

1 Introduction

Let (M, g) be a compact connected Riemannian manifold with dimension n (≥ 3). We denote by
sg, µg, V (g) the scalar curvature, canonical measure and total volume of the Riemannian metric g.
Let [g] be the conformal class of g, i.e. [g] is the set of metrics h−2g, where h is any smooth positive
function on M . The general ”Yamabe problem” is the following: describe all such functions h on M
such that the scalar curvature s(h−2g) is constant.

Thanks to the works of many authors, we know that there exists at least one solution to the
Yamabe problem. More precisely, we consider the Einstein-Hilbert functional σ on the set Riem(M)
of all Riemannian metrics on M :

σ(g) =

∫

M
sgµg

[V (g)]
n−2

n

.

Notice that the power n−2
n is chosen such that σ(k−2g) = σ(g) for any positive constant k.

The functional σ is bounded from below when restricted to the conformal class [g] of the metric g.
The Yamabe constant

µ(g) = inf
h>0

σ(h−2g)

is the infimum of σ in the conformal class [g]. So µ(g) depends only on [g] and may be written µ([g]).
A theorem, due to successive works by Yamabe [ ], Trudinger [ ], Aubin [ ], Schoen [ ], asserts that
the infimum µ([g]) is always achieved in any conformal class and that the resulting metric h−2g has
constant scalar curvature precisely µ([g]) (if normalized such that its volume be one). Furthermore,
in the cases where µ([g]) is non-positive, the above solution is unique, and the ”Yamabe problem” is
solved. (Some survey references for all these results are LBB [Bourbaki], Besse [Einstein], ...).

On the other hand, if µ([g]) is positive, then there may exist many (non homothetic) solutions
to the general Yamabe problem. This is currently a very active subject, with contributions by many
authors ( ... ). Notice that the constant scalar curvature is positive for all those solutions.

A complete solution of the Yamabe problem is known only for some particular cases, such as
Einstein metrics.
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R. Schoen has studied in [ ] the particular case of the product S1 × Sn−1, with the one-parameter
family of metrics (with volume one) given by the canonical metrics on both factors, but with different
scaling factors. In that case, he was able to give a complete answer to the Yamabe problem, with an
(almost) explicit description of all solutions.

In a preceding paper ([ ]), we showed that R. Schoen’s construction may be generalized to S1 ×N
(and some other related examples) in order to give metrics with multiple solutions for the Yamabe
problem. In this paper, we give some more details on the corresponding solutions, and a complete
explicit description in dimension 4.

We will recall the basic construction for the product S1 × N , which reduces our problem to the
study of a unique ordinary differential equation (depending only on the dimension n), with boundary
conditions depending only on one parameter (given by N). Then we give some of the details of our
computations (including some open questions).

2 Statement of the result

We will consider in this paper only the simplest case of the construction that we considered in our
previous paper [ ], and we refer to it for some motivations about these studies. On the other hand, we
will recall the basic hypothesis with some details, so this paper may be read independently.

Let (N, gN ) be a compact connected Riemannian manifold with dimension n− 1 (with n ≥ 3). We
assume that the scalar curvature sN of gN is a positive constant. In order to simplify the computations,
we choose sN = (n − 1)(n − 2), which is the value of the (constant) scalar curvature of the canonical

sphere Sn−1. We denote by VN the volume of gN . Notice that σ(gN ) = (n − 1)(n − 2)V
2

n−1

N . In the
computations below, the only relevant parameter will be VN .

Now we consider the product manifold M = S1×N , which is obviously compact, connected and with
dimension n. On M , we consider the one-parameter family of metrics gl which are Riemannian products
of the metrics with total length l on S1 with the metric gN on N . Notice that sgl

= (n − 1)(n − 2)

and V (gl) = VN l, hence σ(gl) = (n − 1)(n − 2)V
2
n

N l
2
n .

We consider the subset Cl of the conformal class [gl] of gl given by the metrics g(l, h) = h−2gl, where
h is a positive smooth function on M depending only on the first factor S1, so h may be considered as
a function on S1.

For a given positive l, we choose a parameter t on S1 through the identification S1 = R/lZ. Now
h(t) is a positive smooth function on R which is periodic and such that l is a period (not necessarily
the smallest positive period). With such a parameter t, one may write gl = dt2 +gN . Then elementary
computations give that the scalar curvature of g(l, h) = h−2gl is given by

sg = (n − 1)(n − 2)h2 + (n − 1)(2hh′′ − nh′2),

and that the volume of g(l, h) is given by Vg = (
∫ l

0
[h(t)]−ndt)VN .

So g(l, h) has a constant scalar curvature sg = n(n − 1) if and only if h satisfies the (ordinary)
differential equation

(n − 2)h2 + 2hh′′ − nh′2 = n. (1)

Hence the Yamabe problem for the restricted class Cl reduces to
(a) find all solutions h of (1) admitting l as a period,
(b) compute Vg(l,h) for these solutions.

Notice that for such a restricted problem the Riemannian manifold (N, gN ) gives only the parameter

VN = [ σ(gN )
(n−1)(n−2) ]

n−1
2 .

Since gl has constant scalar curvature, equation (1) has an ”obvious” constant solution

h0 =

(

n

n − 2

)
1
2

,

and the corresponding metric g0 = g(l, h0) satisfies sg0 = n(n − 1) and V (g0) =
(

n−2
n

)
n
2 VN l.



Examples of multiple solutions for the Yamabe problem on scalar curvature 3

We may now state our results.

Theorem. For any integer n ≥ 3, there exists a positive smooth function fn : [ 2π√
n−2

,+∞[→ R with

the following properties:
(a) if 0 < l ≤ 2π√

n−2
, equation (1) admits no non-constant function as solution with l as a period;

(b) for any integer p ≥ 1, and any l with p 2π√
n−2

< l ≤ (p + 1) 2π√
n−2

, equation (1) admits exactly p

one-parameter families of non-constant periodic solutions, with smallest period 1
k l, for all k = 1, ..., p;

(c) for p and k as in (b), all the periodic solutions may be written hc
k(t) = hk(εt+c), where ε ∈ {−1, 1}

and c ∈ [0, l[, and hk(t) is the unique solution of equation (1) with period exactly 1
k l, and minimal value

at t = 0;
(d) on M , g(l, hc

k) is isometric to g(l, hk);
(e) all metrics g(l, ha

k) have constant scalar curvature n(n − 1);
(f) V (g(l, hc

k)) = VNkfn( l
k );

(g) fn( 2π√
n−2

) =
(

n−2
n

)
n
2 2π√

n−2
= V (g(0, 2π√

n−2
)) and f ′

n( 2π√
n−2

) = 1;

(h)

lim
l→∞

fn(l) =

{

π(2p)!
22p(p!)2 if n = 2p + 1
22p−1((p−1)!)2

(2p−1)! if n = 2p
;

(i) the coefficient cn =
√

n−2
2π ( n

n−2 )
n
2 liml→∞ fn(l) satisfies the following properties:

(i1) cn is strictly increasing if n goes to infinity;
(i2) limn→∞ cn = e√

2π
;

(i3) c3 = 3
√

3
4 (hence 1 < e√

2π
< cn ≤ 3

√
3

4 < 1, 3 );

(i4) liml→∞
V (g(l,hk))

V (g( 2π√
n−2

,h0))
= kcn, ∀k ≥ 1;

(j) for n = 4, f4(l) is strictly increasing in l ∈ [π, +∞[.

Remark. (1) We believe that fn(l) is strictly increasing on [ 2π√
n−2

, +∞[ for any n ≥ 3, but we are

able to prove it only for n = 4. With a computer, we get also some ”evidence” for small n, but we
were unable to prove the general case.

(2) In the picture (fig. 1), we indicate the values of V (g(l, hp)) for 0 ≤ p ≤ [
√

n−2
2π l], in order to

illustrate (at least) some aspects of these multiple solutions in Cl.
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3 General solutions of equation (1)

From now on we will look only for non-constant periodic solutions h of equation (1). After mul-
tiplication by h−n−1h′ the differential equation (1) becomes (n − 2)h1−nh′ + (h−nh′2)′ = nh−n−1h′,
or

(−h2−n + h−nh′2 + h−n)′ = 0.

So, for any solution h, there exists a constant K such that −h2−n + h−nh′2 + h−n + K = 0, that is

h′2 = −Khn + h2 − 1. (2)

For K = 0 the equation becomes h′2 = h2 − 1 whose solutions h(t) = cosh(t + c) are not periodic. Let
K 6= 0 and consider

FK(s) = −Ksn + s2 − 1.

For K < 0 the derivative FK
′(s) = −nKsn−1 + 2s is positive for s > 0, so equation (2) has no

periodic solution.

Now let K > 0. Then the derivative FK
′ vanishes at the point s1 = ( 2

nK )
1

n−2 . The function FK

increases from −1 to FK(s1) on the interval [0, s1] and decreases from FK(s1) to −∞ on the interval
[s1, +∞[. We have

FK(s1) > 0 ⇔ K <
2

n

(

n − 2

n

)

n−2
2

.

So if K ≥ 2
n

(

n−2
n

)

n−2
2 , we have no solution of equation (2).

Let K < 2
n

(

n−2
n

)

n−2
2 . Then the function FK vanishes at two points 0 < s0 < sm, and is positive

on the interval ]s0, sm[. Equation (2) is now equivalent to

dh
√

FK(h)
= ±dt,

that is ηK(h) = ±t + c, where

ηK(h) =

∫ h

s0

ds
√

FK(s)
.

The function ηK is well defined on the interval [s0, sm] since s0 and sm are simple roots of the polynomial
FK . We have η′

K(h) = 1√
FK(h)

, so the function ηK increases from 0 to ηK(sm) on the interval [s0, sm]

and its derivatives at s0 and sm are +∞. Hence ηK admits an inverse function η−1
K which increases

from s0 to sm on the interval [0, ηK(sm)] and whose derivatives at 0 and ηK(sm) vanish. Equation (2)
becomes

h(t) = η−1
K (±t + c).

It follows that the positive periodic solutions of equation (2) are the functions hK,c : t 7→ hK(t + c)
where hK is the even, 2ηK(sm)-periodic function given by hK(t) = η−1

K (t) for t ∈ [0, ηK(sm)]. We are
looking for solutions having period l, that is for functions whose smallest positive period is of the form
l/k where k is a positive integer. So the non-constant solutions of our problem are the functions hK,c

for which there exists a positive integer k such that

ηK(sm) =
l

2k
. (3)

For such solution hK,c we have



Examples of multiple solutions for the Yamabe problem on scalar curvature 5

V (hK,c
−2gl) = VN

∫ 2kηK(sm)

0

hK(t)−ndt

= 2kVN

∫ ηK(sm)

0

hK(t)−ndt

=
VN

ηK(sm)

∫ ηK(sm)

0

hK(t)−nh′
K(t)

√

FK(hK(t))
dt

=
VN

ηK(sm)

∫ sm

s0

t−n

√

FK(t)
dt.

Let x = K
1

n−2 s, a = K
1

n−2 s0 and b = K
1

n−2 sm. Then FK(s) = K− 2
n−2 (−xn + x2 − K

2
n−2 ), so we get

ηK(sm) =

∫ b

a

dx
√

−xn + x2 − K
2

n−2

and

∫ b

a

t−n

√

FK(t)
dt = K

n
n−2

∫ b

a

x−ndx
√

−xn + x2 − K
2

n−2

.

Clearly a and b are the roots of the polynomial −xn + x2 − K
2

n−2 , so

K = (a2 − an)
n−2

2 = (b2 − bn)
n−2

2 .

The function a 7→ K is an increasing bijection from ]0, r[ to ]0, 2
n

(

n−2
n

)

n−2
2 [, where

r =

(

2

n

)
1

n−2

.

So, the condition 0 < K < 2
n

(

n−2
n

)

n−2
2 is equivalent to 0 < a < r.

For a ∈]0, r[ we define the following functions

Pa(x) = −xn + x2 + an − a2,

ϕ(a) =

∫ b

a

dx
√

Pa(x)
,

ψ(a) = (a2 − an)
n
2

∫ b

a

x−ndx
√

Pa(x)
.

Condition (3) becomes

ϕ(a) =
l

2k

and we get

V (hK,c
−2gl) = VN

ψ(a)

ϕ(a)
l = 2kVNψ(a).
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4 Variations of the function ϕ

We have the factorization

Pa(x) = (x − a)(b − x)Qa(x),

with

Qa(x) = xn−2 + (b + a)xn−3 + (b2 + ba + a2)xn−4 + ...

+(bn−3 + bn−4a + ... + an−3)x + (bn−2 + bn−3a + ... + an−2 − 1)

=

n−1
∑

k=1

bk − ak

b − a
xn−1−k − 1.

Let x = a cos2 t + b sin2 t. Then (x − a)(b − x) = (b − a)2 sin2 t cos2 t, and dx = (b − a) sin 2tdt, so
we get

ϕ(a) = 2

∫ π
2

0

dt
√

Qa(a cos2 t + b sin2 t)
.

We have ϕ(r) = π√
Qr(r)

, and Qr(r) = [1 + 2 + ... + (n − 1)]rn−2 − 1 = n − 2, so

ϕ(r) =
π√

n − 2
.

Using Fatou’s lemma we get lima→0 ϕ(a) ≥ 2
∫ π

2

0
dt√

Q0(sin2 t)
; we have Q0(x) = x1−xn−2

1−x , so
√

Q0(sin
2 t) =

sin t

√
1−sin2n−4 t

cos t , which shows that

lim
a→0

ϕ(a) = +∞.

The constant term of the polynomial Qa(x) is Qa(0) = −Pa(0)
ab > 0, so all the coefficients of the

polynomial Qa(x) are positive. Moreover:

Lemma 1. The coefficients of the polynomial Qa(x) are increasing functions of a ∈ [0, r].

Proof. We have to show that for every k ∈ {2, 3, ..., n − 1}, the function

F : a 7→ bk − ak

b − a

is increasing on [0, r]. We denote the derivative of b as a function of a by b′. We have

F ′(a) =
(b − a)(kbk−1b′ − kak−1) − (bk − ak)(b′ − 1)

(b − a)2
,

so

F ′(a) > 0 ⇐⇒ [(k − 1)bk − kabk−1 + ak]b′ + [(k − 1)ak − kak−1b + bk] > 0

⇐⇒
[

(k − 1) − k
a

b
+

(a

b

)k
]

b′ +

[

(k − 1)
(a

b

)k

− k
(a

b

)k−1

+ 1

]

> 0.

Let α = a
b . It follows from relation a2 − an = b2 − bn that bn−2 = 1−α2

1−αn ; from this we see that the
function α 7→ a is an increasing bijection from [0, 1] to [0, r]. The preceding condition becomes
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[(k − 1) − kα + αk]b′ + [(k − 1)αk − kαk−1 + 1] > 0.

The coefficient of b′ is positive; indeed if we set u(α) = (k − 1) − kα + αk, then u(1) = 0 and
u′(α) = k(αk−1 − 1) < 0 for 0 < α < 1. Our condition becomes

−b′ <
(k − 1)αk − kαk−1 + 1

(k − 1) − kα + αk
.

We denote the second member by Fk(α) and we will show that for every integer k ≥ 1 we have

∀α ∈]0, 1[, Fk+1(α) < Fk(α);

then it will be sufficient to show that −b′ < Fn−1(α). We have

Fk+1(α) < Fk(α) ⇐⇒ kαk+1 − (k + 1)αk + 1

k − (k + 1)α + αk+1
<

(k − 1)αk − kαk−1 + 1

(k − 1) − kα + αk

⇐⇒ 1 − αk − kα
k−1
2 (1 − α) > 0 (4)

Let f(α) = 1 − αk − kα
k−1
2 (1 − α). Then f ′(α) = −kα

k−3
2 g(α) with g(α) = α

k+1
2 + k−1

2 − k+1
2 α; as

g(1) = 0 and g′(α) = k+1
2 (α

k−1
2 −1) < 0, we have g(α) > 0 for 0 < α < 1, hence f ′(α) < 0; as f(1) = 0

we have finally that f(α) > 0 for 0 < α < 1.
Let us show now that −b′ < Fn−1(α). It follows from relation bn − b2 = an −a2 that the derivative

b′ satisfies (nbn−1 − 2b)b′ = nan−1 − 2a, so

b′ =
2a − nan−1

2b − nbn−1
= α

(n − 2)αn − nαn−2 + 2

−2αn + nα2 − (n − 2)
.

The denominator is negative because 2b − nbn−1 = nb(rn−2 − bn−2) < 0. Hence we get

−b′ < Fn−1(α) ⇐⇒ α
(n − 2)αn − nαn−2 + 2

2αn − nα2 + (n − 2)
<

(n − 2)αn−1 − (n − 1)αn−2 + 1

αn−1 − (n − 1)α + (n − 2)

⇐⇒ −(n − 2)(α − 1)2[1 − α2n−2 − (n − 1)αn−2(1 − α2)] < 0.

Comparing with (4) we see that the expression between square brackets is positive, which ends the
proof of lemma 1.

Proposition 1. The function ϕ is strictly decreasing on the interval ]0, r[.

Proof. We have

ϕ(a) = 2

∫ π
4

0

(

1
√

Qa(a cos2 t + b sin2 t)
+

1
√

Qa(a sin2 t + b cos2 t)

)

dt.

Hence it is enough to show that for all t ∈]0, π
4 [, the function

a 7→ 1
√

Qa(a cos2 t + b sin2 t)
+

1
√

Qa(a sin2 t + b cos2 t)

is decreasing on ]0, r[. For fixed t ∈]0, π
4 [ we set

u(a) = Qa(a cos2 t + b sin2 t),

v(a) = Qa(a sin2 t + b cos2 t).

It follows from the fact that the coefficients of the polynomial Qa(x) are positive, that 0 < u < v.
From lemma 1 we have in particular that b′ > −1, so
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(a cos2 t + b sin2 t)′ = cos2 t + b′ sin2 t > cos2 t − sin2 t > 0,

and it follows from lemma 1 that u′ > 0. We will show that (u + v)′ > 0. Then we get (uv)′ =
u(v′ + v

uu′) > u(v′ + u′) > 0, so uv is increasing, and 2√
uv

is decreasing; moreover

(

1

u
+

1

v

)′

= − 1

v2

(

v2

u2
u′ + v′

)

< 0,

so 1
u + 1

v is decreasing; now ( 1√
u

+ 1√
v
)2 = 1

u + 1
v + 2√

uv
is decreasing, so 1√

u
+ 1√

v
is decreasing.

Let us show that (u + v)′ > 0. Let a = αb, θ = α cos2 t + sin2 t, η = cos2 t + α sin2 t. Then

u + v =
1

sin2 t cos2 t

(1 + α)(αn − θn + 1 − ηn)

(1 − α)(1 − αn)
− 1 + cos(2t)

cos2 t
,

so it is enough to show that the function

ft : α 7→ (1 + α)(αn − θn + 1 − ηn)

(1 − α)(1 − αn)

is increasing. Straightforward calculation gives the following

f ′
t(α) =

Fα(t)

(1 − α)2(1 − αn)2

where

Fα(t) = −2α2n − 2nαn+1 + 2nαn−1 + 2

+(θn + ηn)(nαn+1 + 2αn − nαn−1 − 2) + n(θn−1θ′ + ηn−1η′)(−αn+2 + αn + α2 − 1).

We have to show that Fα(t) > 0 for every α ∈]0, 1[ and every t ∈]0, π
4 [. For t = 0 we have θ = α,

η = 1, θ′ = 1, η′ = 0, and so

Fα(0) = 0.

Hence it is enough to show that F ′
α(t) > 0 for t ∈]0, π

4 [. We get

F ′
α(t) = −n(1 − α)2 sin(2t)Gα(t)

where

Gα(t) = [(n − 1)αn + nαn−1 + 1](θn−1 − ηn−1)

+(n − 1)(1 + α)(1 − αn)(θn−2 cos2 t − ηn−2 sin2 t);

but

θn−1 − ηn−1 = θn−2(α cos2 t + sin2 t) − ηn−2(cos2 t + α sin2 t)

= α(θn−2 cos2 t − ηn−2 sin2 t) + (θn−2 sin2 t − ηn−2 cos2 t),

so

Gα(t) = θn−2(A cos2 t + B sin2 t) − ηn−2(A sin2 t + B cos2 t),

with

A = αn − nα + n − 1, B = (n − 1)αn + nαn−1 + 1.

We have to show that Gα(t) < 0. We have
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G′
α(t) = sin(2t) Gα,1(t),

with

Gα,1(t) = (B − A)(θn−2 + ηn−2)

+(n − 2)(1 − α)[θn−3(A cos2 t + B sin2 t) + ηn−3(A sin2 t + B cos2 t)].

We have

G′
α,1(t) = (n − 2)(1 − α) sin(2t) Gα,2(t),

with

Gα,2(t) = 2(B − A)(θn−3 − ηn−3)

+(n − 3)(1 − α)[θn−4(A cos2 t + B sin2 t) − ηn−4(A sin2 t + B cos2 t)].

For p ∈ {1, 2, ..., n − 1}, let

Gα,p(t) = p(B − A)(θn−1−p + (−1)p+1ηn−1−p)

+(n − 1 − p)(1 − α)[θn−2−p(A cos2 t + B sin2 t) + (−1)p+1ηn−2−p(A sin2 t + B cos2 t)].

Then

G′
α,p(t) = (n − 1 − p)(1 − α) sin(2t) Gα,p+1(t).

Clearly Gα(π
4 ) = 0, and for even p we have Gα,p(

π
4 ) = 0. We have the following

Lemma 2. For every α ∈]0, 1[ we have
a) If n = 3, then Gα,1(0) > 0.

If n = 4, then Gα,1(0) = 0.
If n ≥ 5, and if p is odd, p ≤ n − 2, then Gα,p(0) < 0.

b) Gα,1(π/4) > 0.
If p is odd, n

2 ≤ p ≤ n − 1, then Gα,p(π/4) < 0.
If p is odd, 3 ≤ p ≤ n − 1, then [Gα,p(π/4) ≥ 0 ⇒ Gα,p−2(π/4) > 0].

c) Gα(0) < 0.

Proof. a) If p is odd, we have

Gα,p(0) = p(B − A)(θn−1−p + 1) + (n − 1 − p)(1 − α)(θn−2−pA + B)

= (n − 1)[(p − 1)α2n−1−p + (p + 1)α2n−2−p − (n − 1 − p)αn+1 + (p − 1)αn + nαn−1

−nαn−p − (p − 1)αn−1−p + (n − 1 − p)αn−2−p − (p + 1)α − (p − 1)],

in particular

Gα,1(0) = α(n − 1)[2α2n−4 − (n − 2)αn + (n − 2)αn−4 − 2].

For n = 3 we get Gα,1(0) = 2(1 − α2)(1 − α)2 > 0. For n = 4 we get Gα,1(0) = 0. Let now n ≥ 5.
First we show that Gα,1(0) < 0. We have

Gα,1(0) = α(n − 1)f(α)

with

f(α) = 2α2n−4 − (n − 2)αn + (n − 2)αn−4 − 2.

We get
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f ′(α) = (n − 2)αn−5h(α)

with

h(α) = 4αn − nα4 + n − 4.

We have h(1) = 0 and h′(α) = 4nα3(αn−4 − 1) < 0, so h(α) > 0 and f is increasing; as f(1) = 0, we
have f(α) < 0 and Gα,1(0) < 0.
Let Gα,p(0) = (n − 1)hn,p(α), then

hn+1,p+1(α) − hn,p(α) = p u(α) + n v(α) + w(α)

with

u(α) = α2n−p − α2n−2−p + αn+2 − αn = (α2 − 1)(α2n−2−p + αn) < 0,

v(α) = −αn+2 + αn+1 + αn − αn−1 = αn−1(1 − α)(α2 − 1) < 0,

w(α) = 3α2n−1−p − α2n−2−p + αn+2 − αn+1 + 2αn − αn−p − αn−1−p − α − 1

= (α − 1)(α2n−2−p + αn+1) + (αn−1 − 1)(αn−p + α) + (αn − 1)(αn−1−p + 1) < 0,

which implies that hn+1,p+1(α) < hn,p(α). We know that hn,1(α) =
Gα,1(0)

n−1 < 0 for all n ≥ 5,

h4,1(α) = 0, and we have h4,2(α) = 4α(α + 1)(α2 − 1) < 0, which ends the proof of a).

b) If p is odd, we get

Gα,p(π/4) = (n − 1)
(1 + α)n−1−p

2n−2−p
f(α)

with

f(α) = −(n − 2p)αn + nαn−1 − nα + n − 2p.

We have

f ′(α) = n[−(n − 2p)αn−1 + (n − 1)αn−2 − 1],

f ′′(α) = n(n − 1)αn−3[−(n − 2p)α + n − 2].

For p = 1 we have f ′′(α) = n(n − 1)(n − 2)αn−3(1 − α) > 0 and f ′(1) = 0, so f ′ < 0 on ]0, 1[; as
f(1) = 0, we get f > 0 on ]0, 1[, that is Gα,1(π/4) > 0.

For p = n/2 (in case where n/2 is odd) we have f ′(α) = n[(n − 1)αn−2 − 1], so f ′ vanishes at

α0 = (n− 2)−
1

n−2 and f is decreasing on [0, α0] and increasing on [α0, 1]; as f(0) = f(1) = 0 it follows
that f < 0 on ]0, 1[, so Gα,p(π/4) < 0.

For p > n/2 we have f ′′ > 0 on ]0, 1[; as f ′(0) = −n and f ′(1) = 2n(p − 1), there exists α0 ∈]0, 1[
such that f is decreasing on [0, α0] and increasing on [α0, 1]; as f(0) = n − 2p < 0 and f(1) = 0 it
follows that f < 0 on ]0, 1[, so Gα,p(π/4) < 0.

Now let us suppose that Gα,p(π/4) ≥ 0. We have

f(α) = 2p(αn − 1) − nαn + nαn−1 − nα + n,

and this expression is a strictly increasing function of p, from which we conclude that Gα,p−2(π/4) > 0.

c) We have Gα(0) = αn−2A−B = α2n−2 − (n− 1)αn + (n− 1)αn−2 − 1. Denoting this expression
by f(α) we get f ′(α) = (n − 1)αn−3g(α) with g(α) = 2αn − nα2 + n − 2. As g(1) = 0 and g′(α) =
2nα(αn−2 − 1) < 0, we have g > 0 on ]0, 1[, and f is increasing. As f(1) = 0 we have f < 0 on ]0, 1[,
so Gα(0) < 0.
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In order to achieve the proof of proposition 1 we have to show that Gα(t) < 0 for all t ∈]0, π/4[,
all α ∈]0, 1[ and all integer n ≥ 3. We have

Gα,n−1(t) = (n − 1)(B − A)[1 + (−1)n],

and

B − A = (n − 2)(αn − 1) + nα(αn−2 − 1) < 0.

Let us consider first the case n = 3. Then Gα,2(t) = 0, so Gα,1(t) is constant. By lemma 2 this
constant is positive, so Gα(t) is increasing. As Gα(π/4) = 0, we have Gα < 0 on ]0, π/4[.

Now let n = 4. Then Gα,3(t) = 6(B −A) < 0, so Gα,2(t) is decreasing. As Gα,2(π/4) = 0, we have
Gα,2 > 0 on ]0, π/4[, so Gα,1(t) is increasing. As Gα,1(0) = 0, we have Gα,1 > 0 on ]0, π/4[, so Gα(t)
is increasing. As Gα(π/4) = 0, we have Gα < 0 on ]0, π/4[.

Now let n ≥ 5, n odd. Then Gα,n−1 = 0, so Gα,n−2(t) is constant. As Gα,n−2(0) < 0, this constant
is negative. By lemma 2 there exists an odd integer p0 (depending on α) such that Gα,p(π/4) ≥ 0 and
such that for every odd integer p we have

p0 < p ≤ n − 2 ⇒ Gα,p(π/4) < 0

and

1 ≤ p < p0 ⇒ Gα,p(π/4) > 0.

For every odd integer p such that p0 < p ≤ n − 2 we then have:

Gα,p+1 :ց0, Gα,p+1 > 0, Gα,p :ր−, Gα,p < 0,

so

Gα,p0+1 : ց0, Gα,p0+1 > 0, Gα,p0 : − ր+, Gα,p0 : [−,+],

and for every odd integer p such that 1 ≤ p < p0 we have:

Gα,p+1 : ց ր0, Gα,p+1 : [+,−], Gα,p : − ր ց+, Gα,p : [−,+],

so

Gα,1 : [−, +],

and finally

Gα : − ց ր0,

so Gα < 0 on ]0, π/4[
For n ≥ 5, n even, we have Gα,n−1 = 2(n−1)(B−A) < 0, and like before we conclude that Gα < 0

on ]0, π/4[.

5 On the function fn

We have shown in the preceding paragraph that the function ϕ decreases from +∞ to π√
n−2

on

the interval ]0, r]. The existence condition (3) for a non-constant solution of our problem stated in
paragraph 2 is ϕ(a) = l

2k , (k integer ≥ 1).

For every l > 0 our problem has the constant solution h0 ≡
√

n
n−2 . It satisfies

V (h−2
0 gl) =

(

n − 2

n

)
n
2

VN l.

For l ≤ 2π√
n−2

this is the only solution of equation (1).
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Let p ∈ N
∗ with p 2π√

n−2
< l ≤ (p + 1) 2π√

n−2
. Then for any k = 1, 2, ..., p, l

2k ≥ l
2p > π√

n−2
and

a = ϕ−1( l
2k ) exists and belongs to ]0, r[. The solution hl

k of (1) corresponding to a satisfies

V ((hl
k)−2gl) = VNkfn(l/k),

where we define the function fn by

fn(l) = 2ψ(ϕ−1(l/2)). (5)

If l → 2π√
n−2

, (l > 2π√
n−2

), then ϕ−1( l
2 ) → ϕ−1( π√

n−2
) = r, and fn(l) → 2ψ(r) = 2

(

n−2
n

)
n
2 π√

n−2
,

so

lim
l→ 2π√

n−2

V (g(l, h1)) = V

(

g

(

2π√
n − 2

, h0

))

.

Proposition 2. We have (fn)′right(
2π√
n−2

) =
(

n−2
n

)
n
2 , which shows that V (g(l, h1)) and V (g(l, h0))

have the same derivative at the point l = 2π√
n−2

.

Proof. For l > 2π√
n−2

we have f ′
n(l) =

ψ′(ϕ−1( l
2 ))

ϕ′(ϕ−1( l
2 ))

, so

(fn)′right

(

2π√
n − 2

)

= lim
s→r

ψ′(s)

ϕ′(s)
.

From a2 − b2 = an − bn and a 6= b we get a + b =
∑n−1

i=o an−1−ibi, so

1 + b′ =

n−1
∑

i=o

[(n − 1 − i)an−2−ibi + ian−1−ibi−1b′],

from which we get 1 + b′(r) = (n − 1)[1 + b′(r)], so

b′(r) = −1.

Let a = r − h, then b = r + h + αh2 + βh3 + γh4 + .... Putting this in relation a2 − b2 = an − bn, we
get the values of the constants α, β, γ:

b = r + h − n − 1

3r
h2 +

(

n − 1

3r

)2

h3 − (n − 1)(19n2 − 23n + 58)

540r3
h4 + ...

Let x = a cos2 t + b sin2 t. Then we get after some calculations

Qa(x) = (n − 2){1 − n − 1

3r
cos 2t · h − n − 1

36r2
[12 − 2(n − 1) cos 2t − 3(n − 3) cos2 2t]h2} + ...,

1
√

Qa(x)
=

1√
n − 2

{1 +
n − 1

6r
cos 2t · h +

n − 1

72r2
[3(n + 2) − 2(n − 1) cos 2t + 3 cos 4t]h2} + ...,

ϕ(a) =
π√

n − 2

[

1 +
(n − 1)(n + 2)

24r2
h2

]

+ ...,

ψ(a) =
π√

n − 2

(

n − 2

n

)
n
2

[

1 +
(n − 1)(n + 2)

24r2
h2

]

+ ...,

so

(fn)′right(
2π√
n−2

) =
ψ′′(r)

ϕ′′(r)
=

(

n − 2

n

)
n
2

.
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Proposition 3. For l > 2π√
n−2

we have V (g(l, h1)) < V (g(l, h0)).

Proof. As V (g(l, h1)) = 2VNψ(a) and V (g(l, h0)) = 2VN

(

n−2
n

)
n
2 ϕ(a), with a = ϕ−1( l

2 ), we have
to show that for all a ∈]0, r[,

ψ(a) < (1 − 2
n )

n
2 ϕ(a).

Let us recall that ϕ(a) =
∫ b

a
dx√
Pa(x)

and ψ(a) = (a2 − an)
n
2

∫ b

a
x−ndx√

Pa(x)
. Let s =

√

x2

a2−an − 1, s0 =
√

an−2

1−an−2 , sm =
√

bn−2

1−bn−2 ; then

ϕ(a) =

∫ sm

s0

ds

(1 + s2)
1
2

√

1 − (a2 − an)
n−2

2
(1+s2)

n
2

s2

=

+∞
∑

p=0

(2p)!

22p(p!)2
(a2 − an)p n−2

2

∫ sm

s0

(1 + s2)
pn−1

2

s2p
ds,

ψ(a) =

∫ sm

s0

ds

(1 + s2)
n+1

2

√

1 − (a2 − an)
n−2

2
(1+s2)

n
2

s2

=

+∞
∑

p=0

(2p)!

22p(p!)2
(a2 − an)p n−2

2

∫ sm

s0

(1 + s2)
(p−1)n−1

2

s2p
ds,

so it is enough to show that for all integer p ≥ 0 and all a ∈]0, r[ we have

∫ sm

s0

(1 + s2)
(p−1)n−1

2

s2p
ds < (1 − 2

n )
n
2

∫ sm

s0

(1 + s2)
pn−1

2

s2p
ds.

Let

Fp(a) = (1 − 2
n )

n
2

∫ sm

s0

(1 + s2)
pn−1

2

s2p
ds −

∫ sm

s0

(1 + s2)
(p−1)n−1

2

s2p
ds.

If a = r, then s0 = sm, so F (r) = 0. Hence it is enough to show that the function F is strictly
decreasing on ]0, r[. We get

2
n−2 (a2 − an)1+

p(n−2)
2 F ′

p(a) = [(1 − 2
n )

n
2 − (1 − bn−2)

n
2 ]b

n
2 b′ − [(1 − 2

n )
n
2 − (1 − an−2)

n
2 ]a

n
2 ,

so we have to show that

b′ <
a

n
2

b
n
2

(1 − 2
n )

n
2 − (1 − an−2)

n
2

(1 − 2
n )

n
2 − (1 − bn−2)

n
2

,

i.e.

a

b

(1 − 2
n ) − (1 − an−2)

(1 − 2
n ) − (1 − bn−2)

<
(a

b

)
n
2 (1 − 2

n )
n
2 − (1 − an−2)

n
2

(1 − 2
n )

n
2 − (1 − bn−2)

n
2

. (6)

Let α = a
b and u =

√

n
n−2

1−αn−2

1−αn . Clearly u > 1 and αu < 1. Moreover we have α1/2u < 1. Inequality

(5) becomes

1 − u2

1 − (αu)2
< α

n
2 −1 1 − un

1 − (αu)n
,

i.e.
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( n−1
∑

k=0

(αu)k

)

(1 + u) − α
n
2 −1(1 + αu)

( n−1
∑

k=0

uk

)

> 0. (7)

For even n this inequality reads

(

n−2
2

∑

k=0

[(αu)k + (αu)n−1−k]

)

(1 + u) − α
n
2 −1(1 + αu)

(

n−2
2

∑

k=0

(uk + un−1−k)

)

> 0.

For each integer k such that 0 ≤ k ≤ n−2
2 we have

[(αu)k + (αu)n−1−k](1 + u) − α
n
2 −1(1 + αu)(uk + un−1−k)

= (αu)k
[

(1 + (αu)n−1−2k)(1 + u) − α
n
2 −1−k(1 + αu)(1 + un−1−2k)

]

= (αu)k
[

(1 − α
n
2 −1−k)(1 − (α1/2u)n−2k) + u(1 − α

n
2 −k)(1 − (α1/2u)n−2−2k)

]

,

which is positive as α1/2u < 1. This proves inequality (7) in the case n even. For odd n this inequality
reads

(

(αu)
n−1

2 +

n−3
2

∑

k=0

[(αu)k + (αu)n−1−k]

)

(1 + u) − α
n
2 −1(1 + αu)

(

u
n−1

2 +

n−3
2

∑

k=0

(uk + un−1−k)

)

> 0,

i.e.

(αu)
n−1

2 (1 + u) − α
n
2 −1(1 + αu)u

n−1
2

+

n−3
2

∑

k=0

(

(αu)k
[

(1 − α
n
2 −1−k)(1 − (α1/2u)n−2k) + u(1 − α

n
2 −k)(1 − (α1/2u)n−2−2k)

]

)

> 0.

The first term is negative:

(αu)
n−1

2 (1 + u) − α
n
2 −1(1 + αu)u

n−1
2 = −α

n
2 −1u

n−1
2 (1 − α1/2)(1 − α1/2u),

but it is compensated by the first term in the sum:

−α
n
2 −1u

n−1
2 (1 − α1/2)(1 − α1/2u) + (1 − α

n
2 −1)(1 − α

n
2 un)

= (1 − α1/2)(1 − α1/2u)

[( n−3
∑

j=0

αj/2

)( n−1
∑

j=0

(α1/2u)k

)

− α
n
2 −1u

n−1
2

]

;

as α
n
2 −1u

n−1
2 = α( n−3

2 )/2(α1/2u)
n−1

2 , the expression between brackets is positive, which ends the proof.

Remark about V(g(l,hk)) Let k be an integer ≥ 1 and let l > k 2π√
n−2

. Then l
2k = l/k

2 > π√
n−2

, and

V (g(l, hk)) = kV (g( l
k , h1)). (8)

By proposition 4 we have kV (g( l
k , h1)) < kV (g( l

k , h0)) = V (g(l, h0)), so

V (g(l, hk)) < V (g(l, h0)). (9)

If l → k 2π√
n−2

, then V (g(l, hk)) → kV (g( 2π√
n−2

, h1)) = kV (g( 2π√
n−2

, h0)), so
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lim
l→k 2π√

n−2

V (g(l, hk)) = V (g(k 2π√
n−2

, h0)). (10)

If l → +∞, then V (g(l, hk)) → 2kVNψ(ϕ−1(+∞)), so

lim
l→+∞

V (g(l, hk)) = 2kVNψ(0). (10)

In particular V (g(+∞, hk)) = kV (g(+∞, h1)).

The following proposition shows that ψ(0) is finite.

Proposition 4. Let ψn(a) = (a2 − an)
n
2

∫ b

a
x−ndx√

Pa(x)
.

Proof. We write ψn(a) in the form

ψn(a) = (1 − an−2)
n
2 an

(
∫

√
a

a

x−ndx
√

Pa(x)
+

∫ r

√
a

x−ndx
√

Pa(x)
+

∫ b

r

x−ndx
√

Pa(x)

)

.

For
√

a ≤ x ≤ r we have x−n ≤ a−n/2, and as the function x 7→ Pa(x) is increasing on [0, r],
Pa(x) ≥ Pa(

√
a) = a − an/2 − a2 + an, so

an

∫ r

√
a

x−ndx
√

Pa(x)
≤ a

n−1
2

r −√
a

√

1 − a
n
2 −1 − a + an−1

,

which shows that

lim
a→0

an

∫ r

√
a

x−ndx
√

Pa(x)
= 0.

As
∫ b

r
dx√
Pa(x)

is bounded when a → 0, we have

lim
a→0

an

∫ b

r

x−ndx
√

Pa(x)
= 0.

We have Pa(x) = (x2 − a2)
(

1 − xn−an

x2−a2

)

, and for a < x <
√

a,

n
2 an−2 <

xn − an

x2 − a2
<

an/2 − an

a − a2
,

so

1
√

1 − n
2 an−2

<
1

√

1 − xn−an

x2−a2

<
1

√

1 − a
n
2

−1−an−1

1−a

.

It follows that

lim
a→0

ψ(a) = lim
a→0

an

∫

√
a

a

x−ndx√
x2 − a2

.

Let t =
√

x2 − a2, then

∫

√
a

a

x−ndx√
x2 − a2

=

∫

√
a−a2

0

dt

(t2 + a2)
n+1

2

,

and standard calculations show the announced results.

Remark on fn(+∞) The function n 7→ ψn(0) is decreasing, so we have for all integer n ≥ 3, ψn(0) ≤
ψ3(0) = π/4. Moreover limn→∞ ψn(0) = 0.
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Proposition 5. Let n = 4. Then

ϕ(a) =
π
√

2

2

+∞
∑

p=0

(4p)!

26p(p!)2(2p)!
(b2 − a2)2p,

ψ(a) =
π
√

2

8

+∞
∑

p=0

(4p)!

26p(p!)2(2p)!

3

(4p − 3)(4p − 1)
(b2 − a2)2p,

which shows in particular that the function ψ is decreasing, since b2 − a2 is decreasing.

Proof. In this case we have a2 + b2 = 1 and 0 < x0 < r = 1√
2

< b < 1, so there exists θ ∈]0, π
4 [ such

that a = sin θ and b = cos θ. Let

x2 = a2 cos2 t + b2 sin2 t;

then 2xdx = (b2−a2) sin 2tdt, Pa(x) = (x2−a2)(b2−x2) = 1
4 (b2−a2)2 sin2 2t, x2 = 1

2 (1−cos 2θcos2t),
so

ψ(a) = (a2 − a4)2
∫ b

a

dx

x4
√

Pa(x)

=

√
2

4
sin4 2θ

∫ π/2

0

dt

(1 − cos 2θ cos 2t)5/2

=

√
2

8
(1 − cos2 2θ)2

∫ π

0

dt

(1 − cos 2θ cos t)5/2
.

Let s = cos 2θ = b2 − a2; then

ψ(a) =

√
2

8
(1 − s2)2

∫ π

0

( +∞
∑

p=0

(−1)p (2p + 4)!

3 · 22p+2(p + 2)!p!
sp cosp t

)

dt

=

√
2

8
(1 − s2)2

+∞
∑

p=0

(−1)p (2p + 4)!

3 · 22p+2(p + 2)!p!
sp

∫ π

0

cosp tdt

=

√
2

8
(1 − s2)2

+∞
∑

p=0

(4p + 4)!

3 · 24p+2(2p + 2)!(2p)!
s2p

∫ π

0

cos2p tdt

=

√
2

8
(1 − s2)2

+∞
∑

p=0

(4p + 4)!

3 · 24p+2(2p + 2)!(2p)!
s2p (2p)!

22p(p!)2
π

=
π
√

2

8
(1 − s2)2

+∞
∑

p=0

(4p + 4)!

3 · 26p+2(2p + 2)!(p!)2
s2p

=
π
√

2

8

+∞
∑

p=0

(4p)!

26p(p!)2(2p)!

3

(4p − 3)(4p − 1)
s2p,

and the formula for ϕ(x0) is obtained in the same way.
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