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1. Introduction

Let M be a compact Riemannian manifold of dimension n > 3. If g is a Riemannian
metric on M, we denote by s, the scalar curvature and by u, the canonical measure
of the Riemannian manifold (M,g). Moreover, let V(g) = [,, g be the volume, and
S(g) = [y Sqltg the total scalar curvature of (M, g). We denote by [g] the conformal class
of g:

lg] = {fg/f smooth positive function on M},

and by C'(M) the set of all conformal classes of Riemannian metrics on M. Let Riem(M) be
the set of all Riemannian metrics on M. The Einstein-Hilbert functional o : Riem (M) — R
is given by

The volume power in this definition is chosen so that o is homogeneous. Generally the
functional o is neither bounded from above nor below, but its restriction to every conformal
class C' € C'(M) is bounded from below; the constant
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— inf
pe glgca(g)

is called the Yamabe constant of the class C'. Moreover, the infimum is always achieved:
there exists a metric g € C such that uc = o(g); such metrics are called Yamabe metrics.
Every Yamabe metric g is a solution of the Yamabe problem, that is s, is constant.

The conformal group of (M, g) is the set of diffeomorphisms ¢ of M such that

Vo' € lg], ¢79" € [g]-
Let G be a compact subgroup of the conformal group of (M, g), and let

3 /
G — inf o .
H g'€lg], g’ G—invariant <g)

Then there exists a conformal G-invariant metric ¢’ to g such that

U(g,) = kG,

and so, sy is constant ([Hebey x]).

2. Position of the problem

Let n be an integer > 3. Let (N, gn) be a compact connected n — 1 dimensional
Riemannian manifold. We denote its scalar curvature by sy and its volume by Vy. We
suppose that the scalar curvature of this manifold is constant positive, equal to the one of
the canonical sphere S™~ !, so we have

sy=(n-1)(n-2).

On the other hand we consider the circle with length [ > 0, that is the Riemannian manifold
(S1(l) = R/IZ,dt?), where t denotes the parameter on S(I). We take the product manifold
M; = S(I) x N and we consider on M; the metric g; given by

gr = dtQ +gnN.

Then we have V(g;) = Vi, 54, = sn, and o(g1) = sn(V)aln.

Let GG; be the set of isometries of M; leaving N invariant. Clearly G; is a compact
subgroup of the conformal group of (M;, g;) and the set H; of Gj-invariant metrics that
are conformal to g; is the set of metrics that are conformal to g; with a ratio depending
only on the variable ¢ € S*(1):

Hy = {(f xidn)gi/f € C=(S'(1),R})}

It follows from the result of Hebey stated in the introduction, that there exists ¢’ € H,
such that



0_(9/) = UGy,

and sy is constant. It follows from the fact that o is homogeneous that for each £ > 0 we
have

. /
G = inf o(g).
He = ot (9)

We will consider a module of the form h™? x idy with h € C*°(S'(1),R% ) and denote it

simply by h~2. Then we have V(h™2g;) = Vy fol h(t)~™ dt, so if sj-2,, is constant we get

l

n

o(h2q) = sp_sg, (Vi) : < /0 ) dt>

We will determine all the functions h such that s,-2, =n(n — 1), and study the behavior
of the function

poil— pg,.

3. Reduction to an ordinary differential equation and resolution

We consider the metrics of the form h~2g;, where h denotes a positive function on
S1(l). That function h may be considered as a function on R having period 1.

We have h=2g; = u%gg, where u = h*3" and g2 = dt* + gy. Clearly s,, = sn.
Using (1.161 a)) p.59 in [Besse|, we see that the scalar curvatures of h=2g; and go are
related by

4 4n—1) _nt2 ,
Sp2g, = U "28g, — ———=U "2uU .
n—2

We have v/ = 2_T”h_%h’ and v’ = Q_T”h_T (hh" — %h'Q), hence
Sh-2g, = h®sn + (n — 1)(2hh" — nh'?).

We have sy = (n — 1)(n — 2), and we impose the condition s,-2, = n(n —1). So we get
the following differential equation for the module h:

(n — 2)h? 4+ 2hh" — nh'* = n. (1)

Of course a first solution is given by the case where h is constant equal to ,/-"5; in this

case we have
o(hg) = o(g1) = (n—1)(n = 2)(V) = 1.
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From now on we will look for non-constant solutions h. After multiplication by A’ the
differential equation (1) becomes (n—2)h2h’' +h"L(h="h'?) = nh/, that is (n—2)h'~"h/+
(h="h'?) = nh=™ 11/, and finally

(_hZ—n + h—nh/2 + h—n)/ = 0.
So there exists a constant K such that —h?~" + h~"h'2 + h~" + K = 0, that is

h? = —Kh" + h* — 1. (2)

For K = 0 the equation becomes h’> = h? — 1 whose solutions h(t) = cosh(t + ¢) are not
periodic. For K # 0 we put

Fr(s) = —Ks" 4 5% — 1.

Let K < 0. Then the derivative Fi'(s) = —nKs" ! 4 2s is positive for s > 0, so equation
(2) has no periodic solution.

Now let K > 0. Then the derivative Fi' vanishes at the point s; = (%)ﬁ The
function F increases from —1 to Fx(s1) on the interval [0, s1] and decreases from F(s1)
to —oo on the interval [s1, +0o[. We have

9 _9\ T
FK(51)>0<:>K<—(n > )

n n

n—2

n=2
Soif K > 2 (2=2)"% | we have no solution of equation (2). Let K < 2 (2=2) 2 . Then
the function Fi vanishes at two points 0 < sg < S, and is positive on the interval |sg, s, .

Equation (2) is now equivalent to

dh

VvV Fk(h)

= +dt,

that is nx (h) = £t + ¢, where

h ds
() = / N0l

The function ng is well defined on the interval [sg, s,,] since sg and s, are simple roots

of the polynomial Fx. We have nj (h) = 1 so the function ng increases from 0

- /Fr(h)’

to Nk (sm) on the interval [sg,s,,] and its derivatives at so and s,, are +o0o. Hence ngx
admits an inverse function 7% which increases from sq to s,, on the interval [0, 7 (sm)]
and whose derivatives at 0 and 1 (s,,) vanish. Equation (2) becomes

h(t) = g (£t +c).

It follows that the positive periodic solutions of equation (2) are the functions hg . : t —
hi(t + c) where hy is the even, 21 (s, )-periodic function given by hx (t) = nj'(t) for
t € [0,k (sm)]. We are looking for solutions having period [, that is for functions whose
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smallest positive period is of the form [ /k where k is a positive integer. So the non-constant
solutions of our problem are the functions hx . for which there exists a positive integer k
such that

l

S ) = 3
Nk (Sm) ok (3)
For such solution hg . we have

o(hic.e %) = n(n — 1)(Viy)* ( / e dt)

5 5 77K(5m) %
n(n — 1) (V)= (2k)» (/ k(&)™ dt>
0

:Iw

— nn - 1)(Va) ¥ (

= n(n —1)(Vi) = ( l )%( g )%

Let x = Kn—2s, g = Kﬁso and xz,, = Kﬁsm. Then Fg(s) = K_%(—x" + 22 —
K%),SO we get

K m
o \/_a'/-’l’l _|_

2
x2 — Kn—2

and

/ QLI /Im v "dr
w VER(D) Y g
Clearly o and x,, are the roots of the polynomial —z"™ + 22 — K %, SO

K:( 2 n)"T*2 2

n—2
xo” — Xo (Tm

—xn") 2 .

n—2
The function zg — K is an increasing bijection from ]0, r[ to ]0, 2 (

n=2)"2" [ where
1
9\ 72
=(2)7
n

n=2
So, the condition 0 < K < % ("7_2) > is equivalent to 0 < g < r. For zy €]0,r[ we set

Py, (z) = —2™ + 2% + zo"™ — x>
and



w3

fmo dx 5 n TmooxTMdx
90(%):/:60 \/ﬁ’ Y(x0) = (0" — 20") /mo m

Condition (3) becomes

and we get

4. Variations of the function ¢

We have the factorization

PECO (*'L') = (I - :L‘())(Z'm - x)Qwo (17),
with

Quo () = 272 + (2 + 20)2" > + (2 + Timo + 20%)2" ™ 4 ...

xmk — X0

xr — X
b1 m 0

2

Let & = zgcos?t + z,, sin®¢t. Then (x — z0)(xm — ) = (T — o) sin? t cos? t, and

dr = (., — xo) sin 2tdt, so we get

2 dt
o(z) = 2 .
0 \/on (2o cos? t + ,, sin? t)
We have ¢(r) = QL(), and Q.(r)=[1+2+..+(n—-1)]r"2-1=n-2,50

Using Fatou’s lemma we get lim,,_o ¢(zo) > 2,2 \/ﬁ; we have Qo(z) = 2" 2 +

"4 Lt = $1—x”*2, 50 1/Qo(sin®t) = sint—m, which shows that

1—x cost
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lim () = +o0.

xo—0

Py, (0)
—XoTm

The constant term of the polynomial Q. (z) is Q,(0) = > 0, so all the

coefficients of the polynomial @, (x) are positive. Moreover:
Lemma 1 The coefficients of the polynomial Q. (x) are increasing functions of ¢ € [0, 7).
Proof We have to show that for every k € {2,3,...,n — 1}, the function

k k
e — X
Fipgrs - 70
LTm — L0

is increasing on [0, r]. We denote the derivative of x,, as a function of xg by z,,". We have

(T — z0) (k¥ L — kzoF 1) — (2,8 — 20F) (2 — 1)

F/(xo) = (l‘m — 11?0)2 )

SO

F'(x9) >0 < [(k—1Dzm® —kror, '+ 20"zn + [(k — Dao® — kzo o, + 2,7 > 0

= [k—1) = k=2 4 (29 + (k= D (E2) — k(22 1 1) >0,

Tm Tm Tm Tm

. _ 2
Let a = . It follows from relation 202 — 20" = T’ — Ty that x,," 2 = %_g‘n; from

this we see that the function o — g is an increasing bijection from [0,1] to [0,7]. The
preceding condition becomes

[(k—1) — ka + aF|z,, + [(k — 1)a® — ka*~! 4+ 1] > 0.

The coefficient of z,,’ is positive; indeed if we set u(a) = (k — 1) — ka + o, then u(1) =0
and /(o) = k(o' —1) < 0 for 0 < a < 1. Our condition becomes

e (k—1)a® — ka*~t +1
" (k—1) — ka + oF

We denote the second member by Fj(«) and we will show that for every integer k > 1 we
have

Va €]0, 1], Fri1(a) < Fr(a);

then it will be sufficient to show that —x,," < F,,_1(«). We have

kabtt —(k+1)a*+1  (k—1)a* — ka1t +1

F F
k(@) < File) = 5=y (k—1) — ka + o
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— o 4o L 2P (2 -3k 4 (3% - 2)aF — k2 aF T —a+1>0

— (1-a)+o® (1 -a) k"1 -0a3) + Bk -2)a*1-a)>0

= l-a"—ka > (1-a)>0 (4)

Let f(a) = 1— ok —ka™T +ka"t . Then () = —k:a%g(a) with g(a) = o' + AL
Etl s as g(1) = 0 and ¢/(a) = %(a% — 1) < 0 we have g(a) > 0 for 0 < a < 1, hence
f'(a) < 0; as f(1) = 0 we have finally that f(a) >0 for 0 < a < 1.

Let us show now that —z,,," < F,_1(«). It follows from relation z,," —z,,
that the derivative z,,,” satisfies (n2,," "1 — 22,,) T’ = nwe™ 1 — 220, so

2 _ xOn_xOQ

, 2x9 — nxp" ! zo 2 —nxzy" 2

Ty =

2T, — NTm™ Y Ty 2 — na," 2

o aon—21-a?

. 2 — na F——D

o 1—a?
2—ni=2%

(n—2)a™ —na™ 2 +2
—2a"+na?—(n—2)

The denominator is negative because 2z,, — nz,,” ' = nxm(r”_2 — xm”_Q) < 0. Hence
we get

n—2)a" —na"?2+2 n-2)a"t-—m-1a""2+1
2am —na? + (n —2) an~l —(n—1a+ (n—2)

—Zp' < Fho1(a) <= «

— af(n—2)a" —na"? 4+ 2)[a"! — (n - Da+ (n —2)]

—[(n=2)a" ' —(n—-1a""2+1][2a" —na’*+(n—-2)] <0
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= —n-2)(a—1)?*1-a*"?—(n—-1)a""?(1-a?)]<0.

Comparing with (4) we see that the expression between square brackets is positive, which
ends the proof of lemma 1.

Proposition 1 The function ¢ is decreasing on the interval |0, r].

Proof We have

e 1 1
o(z0) = 2/ ( + ) dt.
0 \/on (zgcos?t + xp, sin”t) \/on (zo sin? t 4 x,, cos? t)

Hence it is enough to show that for all ¢ €]0, 7|, the function

1 1
— +
\/QQCO (zg cos?t + xp, sin’ t) \/Q,KO (zgsin®t + x,, cos? t)

is decreasing on |0, 7[. For fixed ¢ €]0, 5[ we set

To

u(zo) = Qu, (10 cos? t + x,, sin®t),
v(xg) = Qu, (zosin®t + 2, cos? t).

It follows from the fact that the coefficients of the polynomial Q,,(x) are positive, that
0 < u < v. From lemma 1 we have in particular that z,,” > —1, so

(zo cos® t + x,, sin? t) = cos® t + x,," sin® t > cos®t — sin®t > 0,

and it follows from lemma 1 that u’ > 0. We will show that (u 4+ v)’ > 0. Then we get

(uv)" = u(v' + 2u') > u(v' +u') > 0, so uv is increasing, and \/% is decreasing; moreover

so L + 1 s decreasing; now (\/La + \%)2 = 4 t 3 T 7 is decreasing, so \/Lﬂ + % is

decreasing.
Let us show that (u+wv) > 0. Let zg = ax,,, a = acos®t+sin’t, b = cos? t +asin®t.
Then

1 (I+a)(a™—a™+1-=0b") 1+ cos(2t)
sin® t cos? ¢ (1—-a)(1—am) cos?t

uU+v= ,

so it is enough to show that the function

I+a)(a™—a"+1-0")
(1—-a)(l—an)

Jriam
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is increasing. Straightforward calculation gives the following

ooy Fo(t)
o) = G apa —any

where
F,(t) = —20*" — 2na™ ™ 4 2na" ™! 4+ 2
+(a™ 4 ") (na" ™ 4+ 20" —na™ 1t —2) +n(a"td + ") (=" 4" + o —1).

We have to show that F,(t) > 0 for every o €]0, 1] and every t €]0, Z[. For ¢t = 0 we have
a=a,b=1,a =1,V =0, and so

Fa(0) = 0.

Hence it is enough to show that F,(t) > 0 for ¢ €]0, 7[. We get

FL(t) = —n(1 — a)?sin(2t) Gy (1)

where
Go(t) =[(n—1)a" +na™t +1](a" 1 — " 1)
+(n—1)(1+a)(1—a™)(a" ?cos*t — b"%sin?t);

but

a" =" = 4" (acos® t 4 sin? t) — b2 (cos® t + asin® t)

= a(a" 2 cos’t — " ?sint) + (a" " Zsin?t — b" "2 cos? t),

SO

Go(t) = a"%(Acos®*t + Bsin?t) — b" " ?(Asin®t + Bcos? t),
with

A=a"—na+n—-1, B=(n—-1)a" +na"" ' + 1.
We have to show that G, (t) < 0. We have
G (t) = sin(2t) G 1 (1),
with
Gani(t)=(B—A)(a" > +b"7?)
+(n—2)(1 — a)[a" 3(Acos®t + Bsin®t) + b" 3(Asin®t + B cos®t)].

10



We have

;,1(15) = (n—2)(1 — a)sin(2t) Gq2(t),
with

Gapo(t)=2(B— A)(a" 2 —b"?)

+(n —3)(1 — a)[a" *(Acos®t + Bsin?t) — b"*(Asin®t + Bcos®t)].
For p e {1,2,....,n — 1} let

Gon(t) = p(B — A)(a" P 4 (—1)pHipn—1-7)
+(n —1- p)(l — Oé)[a”—Q—P(A cos2 t + B sin2 t) + (_1)p—|—1bn—2—p(A sin? ¢ LB o t)]
Then

Ggé7p(t) =(n—1-p)(1 — a)sin(2t) Gapi1(t).
Clearly G (%) = 0, and for even p we have G4, (%) = 0. We have the following

Lemma 2 For every a €]0, 1] we have
a) If n =3, then G,,1(0) > 0.
If n =4, then G,,1(0) =0.
If n>5, and if p is odd, p <n — 2, then G4 ,(0) < 0.
b) Goi(m/4) > 0.
Ifpis odd, 5 <p<mn—1, then Gqp(m/4) <O0.
If pis odd, 3<p<n-—1, then [Gqp(n/4) > 0= Gq p_o(m/4) > 0].
c) G4(0) < 0.

Proof a) If p is odd, we have

Gap(0) =p(B—A)(@" """+ 1)+ (n—1-p)(1 - a)(a"*PA+ B)

=(n-=D[p-Da> P+ (p+1)® P — (n—1—-p)a"* + (p—1)a" +na""!
—na"? —(p—1)a" "'+ (n =1 -p)a" P — (p+ o — (p— 1),
in particular
Gon1(0) = a(n — D[20”"* = (n = 2)a” + (n — 2)a" " — 2.

For n = 3 we get G,1(0) = 2(1 —a?)(1 —a)? > 0. For n = 4 we get G,.1(0) = 0. Let now
n > 5. First we show that G,,1(0) < 0. We have

Ga1(0) = a(n — 1) f(e)

11



with

fla) =2a*"* — (n —2)a" + (n — 2)a™™* - 2.
We get

f'(a) = (n—2)a" *h(a)
with

h(a) = 4a™ —na* +n — 4.
We have h(1) = 0 and h'(a) = 4na®(@™* — 1) < 0, so h(a) > 0 and f is increasing; as
f(1) =0, we have f(a) <0 and G,,1(0) <O0.
Let G p(0) = (n — 1)hy p(ar), then
Pyt pr1(@) = by p(a) = p u(a) +n v(a) + w(a)
with

u(a) _ Oé2n—p o a2n—2—p + an+2 —a" = (a2 . 1)(a2n—2—p + an) < O7

U(Oé) — _an+2_|_oén+1 +an _an—l :Ozn_l(l _a)(&2 o 1) < 0,

U}(Oé) _ 3a2n—1—p . Oé2n—2—p + an+2 o Oén+1 + 20" — " P — an—l—p —a—-1

= (@ = 1)(@2"27 1 am*) 4 (am 1~ 1)(@" P +a) + (0" — 1)(@" 1P +1) < 0,
which implies that h,41p+1(a) < hyp(@). We know that h, 1(o) = G;)‘L’fl(lo) < 0 for all
n > 5, hy1(a) =0, and we have hyo(a) = 4a(a + 1)(a? — 1) < 0, which ends the proof of

a).
b) If p is odd, we get

1+a)t-p
Goplr/1) = (n - 1)UL ()
with
fla) = —(n—2p)a" +na"" ! —na+n— 2p.
We have

f'(a) =n[=(n—2p)a" " + (n = 1)a"* — 1],

() =n(n —1Da"3[—(n - 2p)a+n — 2].
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For p = 1 we have f”(a) =n(n —1)(n —2)a"3(1 —a) > 0 and f/(1) =0,s0 f' <0
on |0,1[; as f(1) =0, we get f > 0 on |0, 1], that is G4 1(7/4) > 0.

For p = n/2 (in case where n/2 is odd) we have f’(a) = n[(n — 1)a™ 2 — 1], so f
vanishes at ag = (n — 2)_ﬁ and f is decreasing on [0, ap] and increasing on [ag, 1]; as
f(0) = f(1) =0 it follows that f < 0 on |0, 1], so G4 p(7/4) < 0.

For p > n/2 we have f” > 0on0,1[; as f/(0) = —n and f/(1) = 2n(p—1), there exists
ap €]0, 1] such that f is decreasing on [0, ap] and increasing on [, 1]; as f(0) =n—2p < 0
and f(1) = 0 it follows that f < 0 on 0,1, so G p(7/4) < 0.

Now let us suppose that G ,(7/4) > 0. We have

fla) =2p(a™ —1) —na" + na"" ' —na+n,

and this expression is a strictly increasing function of p, from which we conclude that
Gap—2(m/4) > 0.

c) We have G, (0) = a" 24— B =0a?""2 —~ (n—1)a" + (n — 1)a™ 2 — 1. Denoting
this expression by f(a) we get f'(a) = (n — 1)a" 3g(a) with g(a) = 2a™ —na? +n — 2.
As g(1) =0 and ¢'(a) = 2na(a"2? — 1) < 0, we have g > 0 on |0, 1], and f is increasing.
As f(1) = 0 we have f < 0 on ]0,1[, so G,(0) < 0.

In order to achieve the proof of proposition 1 we have to show that G, (t) < 0 for all
t €]0,7/4[, all a €]0, 1] and all integer n > 3. We have

Gan-1(t) = (n—1)(B = A1+ (-1)"],

and

B—A=(n-2)(a"—1)+na(a"?-1)<0.

Let us consider first the case n = 3. Then Gy 2(t) = 0, so G4,1(t) is constant. By
lemma 2 this constant is positive, so G, (t) is increasing. As G, (m/4) = 0, we have G, < 0
on |0, /4].

Now let n = 4. Then G, 3(t) = 6(B—A) < 0, s0 G,2(t) is decreasing. As Gy 2(7/4) =
0, we have G2 > 0 on |0,7/4[, so G, 1(t) is increasing. As G,1(0) = 0, we have G, 1 >0
on |0,7/4[, so G,(t) is increasing. As G, (7/4) = 0, we have G, < 0 on |0, 7/4].

Now let n > 5, n odd. Then G4 n—1 =0, s0 Gy n—2(t) is constant. As G4 ,—2(0) <0,
this constant is negative. By lemma 2 there exists an odd integer py (depending on «)
such that G, p(7/4) > 0 and such that for every odd integer p we have

Po<p<n—2= Goplr/4) <0

and

1 <p<po= Gqp(n/4)>0.

For every odd integer p such that pyg < p < n — 2 we then have:

13



a,p+1 - \07 a,p+1 > 07 Goz,p : /_7 Ga,p < 07

SO

Ga,po—l—l : \0; Ga,po—l—l > 07 Ga,po - /+7 Ga,po : [_7+]7
and for every odd integer p such that 1 < p < pg we have:

a,p+1 - \ / G a,p+1 ¢ [+7_]7 Goz,p: — / \4-1-7 Ga,p: [_7+]7

SO

and finally

Go: =N\,
so G, < 0 on ]0,7/4].
For n > 5, n even, we have G ,—1 = 2(n—1)(B—A) < 0, and like before we conclude
that G, < 0 on |0, 7/4].
[

5. Study of the function

We have shown in the preceding paragraph that the function ¢ decreases from +oo

7= on the interval 10,7]. The existence condition (3) for a non-constant solution of

our problem stated in paragraph 2 is ¢(zg) = 2k’ (k integer > 1).
For every [ > 0 our problem has the constant solution hg = ,/-"5. It satisfies

to

3o

oo(l) :=o(hy%g) = (n— 1)(n— 2)(Vy) = i»

\/7 is the only solution, so

u(l) = (n—1)(n —2)(Vy)nin.

< (k+1)2%5. Then there exist zo,(l) €]0,7[, i =

Let k € N* and k22 < [ <
0,i(0) = QL The corresponding solutions h; ; satisfy

2, ..., k, such that ¢(z

oi(1) := o(hy; 2g1) = n(n — 1)(Vy)"» (W) Bt

14



Clearly

p(l) = inf oi(D).

Proposition 2 Forl > % we have p(l) < oo(l).

Proof It is enough to show that there exists a smooth [-periodic function § on R and a
(small) real number ¢ such that the function

h(z) =14 tf(z)

is positive and satisfies o(h™2g;) < o¢(l). For small t we have h™" ~ 1 —ntf + M”Tmt202,
so we get (all integrals are taken on the interval [0,[]):

—-n ¢ n(n+1 0*
[h NZ{l—nthjL%tsz],

and
n—2 2
(fr ™) ™ ~1 [1 — nt# + —"(”jl)tﬁ#} :
Moreover
Sh-2g, = h*sn + (n — 1)(2hR" — nh'?)

= (n—1)(n—2)(1+ 2t0 + t20%) + (n — 1)[2(1 + t0)t0” — nt20""]

= (n—1)(n—2)[1+1(20 + -256") + 12(6* + -25600" — -0"%)],
so we get

shoagh ™~ (n—1)(n—2){1+t[(2—n)0+ —250"] + 1> [2=3n42¢2 4 on=lgg" _ _n_g*]}

and

92 " ’2
fs“glhnN(n—1)(n—2)z{1—(n—2)t¥+t2 "2—§”+2fl +2;§:;fie —nﬁsz }}

We have o(h2g;) = (V)= ([ sp-20.2"") ([ h_”)_n’_tg, SO
a(h™2g)) ~ ao(D)[1 + a(6)t?]

15



with

a(f) = z{(n—=2)[([0)2—1[6*] +1[67?}.

Let 6(z) = sin(#z), then a(f) = 252 + zlig, soal) <0 < [>

function 8 satisfies our conditions.

27

It follows from proposition 2 that for 22— < [ < 2—2"— we have p(l) =

n—2

\/%, (1> \/%), then 20,1 (1) = ¢~ (%) — ¢ ;_2)71: r, and
o1(1) = n(n — 1)(Viy) =27 (4(r)) *
=n(n —1)(Vy)7 27 (r? = r")(2=)"
=n(n = 1)(Vw)" (1= 2) ()"

= (n—1)(n—2)(Vy)7 (-2Z5)*

27r)
’

- 00( n—2

which shows that the function p is continuous at the point \/%

Proposition 3 The function p is differentiable at the point \/%

Proof For | < \/% we have p/(1) = W(Vn)%l%’ SO
n— n— 2 T 2—n
prepr(ig) = PR V)T ()
For | > 225 we have u(l) = o1(1) = n(n — 1)(2Va)* (4( ' (§) %, s0
1 —1(1
’ 2 —1/1 2-n @b (90 (5))
p(l)=m-12Va)" @ (3)™ ,
’ o' (071(3))
and
m 2 2-n .. Y'(s)
gnd( ) = (= (V) () fim £
From z3 — 22, = a8 — 2, and zg # T, We get zg + T, = 2?201 x0Tl so
n—1
14z, = Z[(n —1—d)z~ 2ot 4 iy gt 1,

16
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from which we get 1 + ] (r) = (n —1)[1 + ] (r)], so

z (r)=-1.

m

Let xg = r — h, then z,, = r + h + ah® + bh® + ch* + ... Putting this in relation
23 — 22, = a2l — 27, we get the values of the constants a, b, c:

T =7 h = LR ()2 (D028 gy

Let = zg cos® t + &, sin® t. Then we get after some calculations

Quo(z) = (n—2){1 — %L cos2t - h —

2112 = 2(n — 1) cos 2t — 3(n — 3) cos? 2t]h%} + ...,

1
{1 + 2L cos2t - h+ 25 [3(n+2) — 2(n— 1) cos 2t + 3cos 4t]h?} + ...,
Q:ro('73> vV "

™ n—1)(n+2
QO(I'()) = - 2_[]_ + —( 2i£2 )hZ] -+ ceey
T n—o\n n—1)(n+2
SO
x 2 p— o 2= P (r)
Mmght(\/%) = (TL—]_)(QV )n( 2) 2 (\/n—2) " 1
©"(r)
2 'n—92\2=n T 2-n , p_o\n
=(n—-1)2Va)"(52)7 (F55) " (%2)2
_ (n—1)(n—2) 2 T 2-n
= 2V (=)
:Mgeft(\/%)

Proposition 4 Forl > \/%2 we have o1 (1) < oo(1).

Proof As o1(I) = n(n — 1)(2Vx)# (¥ (x0))» and oo(l) = (n — 1)(n — 2)(2Vx) = (p(z0)) ™,
with 2o = ¢~ 1(%), we have to show that for all 2 €]0, 7],

Y(wo) < (1= 2)% (o).
Let us recall that ¢(zo) = [*" —L& — and ¢(x0) = (20> — xo")% [ 24 Let

20 /Py (@) 0 /Pag (@)’
—2 )
_ z2 _ zg _ Ty
§=\/atoar 1, so = ez Sm =/ 1o T then

17



(0) = Sm ds
L) = s 1 2 n=2 (14s2)%
© (+s?)2\ 1= (af—ap) T

pn—1

+oo
2p)! n—2 [%m (1 2
_ Z ( p) (x(2) . mg)pTQ/ ( + s ) 2 dS’
2°p(p!)? s0 §2P

p=0

Y(zo) = /S:M &

(14s2)%% \/1 — (- ap) T U=

(p—1)n—1
2

“+oo S 2
_ 2p)! o pypngz [T (147
=Lt

p=0

so it is enough to show that for all integer p > 0 and all xg €]0, [ we have

Sm 1 2 p=1)n—-1 . Sm 1 2 pn—1
(1+s7) 2 ds < (1— 2)% %d&
S2p n 32p
So S0
Let
n—1 (p—1)n—1
L [ (14 5%) 75 (14 52)
Fy(wo) = (1~ %)2/ s e
S0 S0

If z9 = r, then sg = s,,, so F(r) = 0. Hence it is enough to show that the function F is
strictly decreasing on |0, r[. we get

2 (22— 2T B () = [(1- 2)% —(1—a7 ) 8 |adal, —[(1-2)5 —(1—a) %) 5 ad,

3

so we have to show that

R N ) kel ke WK
Tah =2 — (12t
ie.
To (1_%)—(1—1'3_2) (ﬂ)% ( _%)%_(1_1’8_2)% -
tm (1=2)= (=2 ) ‘om’ (1-2)F (-2 ?)E
Let a = f—i and u = ﬁll—f;f' Clearly v > 1 and au < 1. Moreover we have

a'/?u < 1. Inequality (5) becomes

2 n

— a —
1 — (qu)? 1 — (aqu)™’

18



i.e.

n—1

(i au) ) 1+u) — %_1(1+au)(kz;0uk>>0. (6)
For even n this inequality reads
(guau)’“ o)1)~ 011 guk R

For each integer k such that 0 < k£ < ”7*2 we have

[(au)® + (aw)" 17*(1 4+ u) — a2 (1 + au)(u® + u"17F)

= (au)k [(1 + (au)n—l—Qk)(l +u) — a%—l—k(l +au)(1+ un—1—2k)]

= (au)k [(1 az—1- k)(l _ <a1/2u)n—2k) + u<1 _ a%—k)(l _ (al/2u)n—2—2l~c)]7

which is positive as a'/?u < 1. This proves inequality (6) in the case n even. For odd n
this inequality reads

(0w + kfj:()[(au)k o)1

i.e.

+ Z ( (1 — a7 17" (1 — (@ 2u)" %) +u(l — a®7F)(1 (a1/2u>n—2—%)}) > 0.
The first term is negative:
(ozu)nT_l(l +u)—az 1+ ozu)unT_1 = —az 1y nTl(l —a/?)(1 — o?u),

19



but it is compensated by the first term in the sum:

—a%_lu%(l —aH(1 - ?u)+ (1 —az (1 —aZu")

=0 :0

as af "l T = o("7)/2(a1/24)"T" , the expression between brackets is positive, which
ends the proof.

Remark 1 Let k be an integer > 1 and let [ > k—2Z

Vn—2"
There exists a unique x x(l) €]0, [ such that o(xor)(l) = ﬁ, and there exists a unique
x0,1(l/k) €]0,r[ such that ¢(xo1)(l/k) = %, SO
.fo,k(l) = Io’l(l/k).
It follows that
or(l) = ko1 (1/k). (7)

By proposition 4 we have k= oy (l/k) < k= oo(l/k) = oo(l), so

(1) < a0(l). 8)
If 2, (1) = ¢ M) — ¢ (2Z) =, and
ok(l) = oo (k—2=). 9)
If | — 400, then zg x(l) — 0, and
a(l) — n(n — 1)(2kVy) 7 [(0)] 7. (9)

In particular o (+o00) = ko (400).

The following proposition shows that 1(0) is finite.

Proposition 5 Let ¢, (zg) = (20 — xon)%ffom m;”d(x)'
\ Faxg T

If n is even, n = 2p, we have

220-2[(p — 1)1
lim ),
Jm 4 (wo) = @p—1),
If n is odd, n = 2p+ 1, we have
(2p)!m
th @Dn(ﬂfo) W

20



Proof We write 9(x¢) in the form

)8 " T "dx TmooxTdx
d(xo) = (1 —2572) 2 (/ ©) W\/i \/P:(:c))

For \/xog < x <r we have z7" < xo_"/z, and as the function x — P, (z) is increasing on
2
[0,7], Py, (z) > Py (+/To) = 20 — xg/ — 23 + a8, so

[ PV
V75 V/Pay (@) \/1—x0 —zo+ )"

which shows that

5 /T 7 "dx
im x

z0—0 VZo 'V Py
As fxm —42=__ is bounded when zy — 0, we have

T/ Pzy(x)

I Tm o = "dy
im zy S
00" r v/ Pro(T)

We have Py, (z) = (2 — z3)(1 — %), and for z¢p < x < /7y,
0

n n n/2 n
n.n-2 _ L — o Lo — 2o
2%0 x2 — 2 < xo —x2 "’
0 0 0
SO
1 1 1
< — <
n,n—2 _ rh oz 51 a1
1— 220 \/1 x2—x2 \/1 _ %o )
1—x
0

It follows that

Let t = y/x? — 23, then
VEO pendy Vro—g dt
Vai—a2 o (12 4 22) "z

and standard calculations show the announced results.

Remark 2 The function n — ,(0) is decreasing, so we have for all integer n > 3,
¥ (0) <, (3) = m/4. Moreover lim,,_,~ ¥, (0) = 0.
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Proposition 6 Let n=4. Then

_ V2 <= (4p)! 2 242p
p(z0) = N Z W(xm —x0)”",
T2 ~ 4p)! 3 2 2)2p
v =7 2w - a1

which shows in particular that the function v is decreasing.

Proof In this case we have 22 + 22, =1 and 0 < o <71 = \/Li < & < 1, so there exists
6 €]0, [ such that xyo = sin6 and x,, = cosf. Let

x? = x5 cos® t + 12, sin? ;

then 2zdr = (22, — 23)sin2tdt, P, (z) = (22 — 23)(22, — 2?) = 1(22, — 23)*sin®2¢,

2% = 1(1 — cos20cos2t), so

P(xo) = (f — %L)z/mm :ﬁ\/%

/2
= \/—5 sin? 20/ dt
4 o (1 —cos26cos2t)5/2

V2 ) i dt
= “(1- 26)? :
8 (1= cos™26) /0 (1 — cos 26 cost)5/2

Let s = cos20 = 22, — x2; then

V2 oo [T (D, . (2p+4) o
¥(wo) = L2(1 - 5 /0 <§::(—1) 3.22(1742_92@_22)@!8 cos t)dt

V2 s (2p+4)! /
=—(1-—s —1)P sP | cosPtdt
g (1= ;( Vs a2 |
V2 2 2Jroo (4p +4)! o [ o
:?(1—3 ) 23.24p+2(2 T 2)1(2 )!Sp/ cos ™ tdt
=0 P \2p)- 0

V2. s (4p + 4)! 2 (20)!
(1—8)23 s

8 25 a2 (2p+ 012 2

—+o0
V2 212 (4p +4)! 2
= 1= g s

o= 3 20072 (2p + 2)1(pl)?
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. 7r\/§ = 4]9 ! 3 2p
-8 2 260 (p)2(2p)! (4p—3)(dp— 1)

p=0

and the formula for p(xg) is obtained in the same way.
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