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Introduction

Let M be a compact Riemannian manifold of dimension n ≥ 3. If g is a Riemannian metric on M , we denote by s g the scalar curvature and by µ g the canonical measure of the Riemannian manifold (M, g). Moreover, let V (g) = M µ g be the volume, and S(g) = M s g µ g the total scalar curvature of (M, g). We denote by [g] the conformal class of g:

[g] = {f g/f smooth positive function on M }, and by C(M ) the set of all conformal classes of Riemannian metrics on M . Let Riem(M ) be the set of all Riemannian metrics on M . The Einstein-Hilbert functional σ : Riem(M ) → R is given by σ(g) = S(g) (V (g))

n-2 n

.

The volume power in this definition is chosen so that σ is homogeneous. Generally the functional σ is neither bounded from above nor below, but its restriction to every conformal class C ∈ C(M ) is bounded from below; the constant

1 µ C = inf g∈C σ(g)
is called the Yamabe constant of the class C. Moreover, the infimum is always achieved: there exists a metric g ∈ C such that µ C = σ(g); such metrics are called Yamabe metrics. Every Yamabe metric g is a solution of the Yamabe problem, that is s g is constant.

The conformal group of (M, g) is the set of diffeomorphisms φ of M such that

∀g ′ ∈ [g], φ * g ′ ∈ [g].
Let G be a compact subgroup of the conformal group of (M, g), and let

µ G = inf g ′ ∈[g], g ′ G-invariant σ(g ′ ).
Then there exists a conformal G-invariant metric g ′ to g such that σ(g ′ ) = µ G , and so, s g ′ is constant ([Hebey x]).

Position of the problem

Let n be an integer ≥ 3. Let (N, g N ) be a compact connected n -1 dimensional Riemannian manifold. We denote its scalar curvature by s N and its volume by V N . We suppose that the scalar curvature of this manifold is constant positive, equal to the one of the canonical sphere S n-1 , so we have s N = (n -1)(n -2).

On the other hand we consider the circle with length l > 0, that is the Riemannian manifold (S 1 (l) = R/lZ, dt 2 ), where t denotes the parameter on S 1 (l). We take the product manifold M l = S 1 (l) × N and we consider on M l the metric g l given by g l = dt 2 + g N .

Then we have V (g l ) = lV N , s g l = s N , and σ(g l ) = s N (V N )

2 n l 2 n .
Let G l be the set of isometries of M l leaving N invariant. Clearly G l is a compact subgroup of the conformal group of (M l , g l ) and the set H l of G l -invariant metrics that are conformal to g l is the set of metrics that are conformal to g l with a ratio depending only on the variable t ∈ S 1 (l):

σ(g ′ ) = µ G l ,
and s g ′ is constant. It follows from the fact that σ is homogeneous that for each k > 0 we have

µ G l = inf g ′ ∈H l ,s g ′ ≡k σ(g ′ ).
We will consider a module of the form h -2 × id N with h ∈ C ∞ (S 1 (l), R * + ) and denote it simply by h -2 . Then we have

V (h -2 g l ) = V N l 0 h(t) -n dt, so if s h -2 g l is constant we get σ(h -2 g l ) = s h -2 g l (V N ) 2 n l 0 h(t) -n dt 2 n .
We will determine all the functions h such that s h -2 g l ≡ n(n -1), and study the behavior of the function

µ : l → µ G l .

Reduction to an ordinary differential equation and resolution

We consider the metrics of the form h -2 g l , where h denotes a positive function on S 1 (l). That function h may be considered as a function on R having period l.

We have h -2 g l = u 4 n-2 g 2 , where u = h

2-n 2

and g 2 = dt 2 + g N . Clearly s g 2 = s N . Using (1.161 a)) p.59 in [Besse], we see that the scalar curvatures of h -2 g l and g 2 are related by

s h -2 g l = u -4 n-2 s g 2 - 4(n -1) n -2 u -n+2 n-2 u ′′ . We have u ′ = 2-n 2 h -n 2 h ′ and u ′′ = 2-n 2 h -n+2 2 hh ′′ -n 2 h ′2 , hence s h -2 g l = h 2 s N + (n -1)(2hh ′′ -nh ′2 ).
We have s N = (n -1)(n -2), and we impose the condition s h -2 g l ≡ n(n -1). So we get the following differential equation for the module h:

(n -2)h 2 + 2hh ′′ -nh ′2 = n. (1) 
Of course a first solution is given by the case where h is constant equal to n n-2 ; in this case we have

σ(h -2 g l ) = σ(g l ) = (n -1)(n -2)(V N ) 2 n l 2 n .
From now on we will look for non-constant solutions h. After multiplication by h ′ the differential equation ( 1

) becomes (n-2)h 2 h ′ +h n+1 (h -n h ′2 ) ′ = nh ′ , that is (n-2)h 1-n h ′ + (h -n h ′2 ) ′ = nh -n-1 h ′ , and finally (-h 2-n + h -n h ′2 + h -n ) ′ = 0. So there exists a constant K such that -h 2-n + h -n h ′2 + h -n + K = 0, that is h ′2 = -Kh n + h 2 -1.
(2)

For K = 0 the equation becomes h ′2 = h 2 -1 whose solutions h(t) = cosh(t + c) are not periodic. For K = 0 we put

F K (s) = -Ks n + s 2 -1.
Let K < 0. Then the derivative F K ′ (s) = -nKs n-1 + 2s is positive for s > 0, so equation (2) has no periodic solution. Now let K > 0. Then the derivative F K ′ vanishes at the point

s 1 = ( 2 nK ) 1 n-2 . The function F K increases from -1 to F K (s 1 ) on the interval [0, s 1 ] and decreases from F K (s 1 ) to -∞ on the interval [s 1 , +∞[. We have F K (s 1 ) > 0 ⇔ K < 2 n n -2 n n-2 2 . So if K ≥ 2 n n-2 n n-2 2 , we have no solution of equation (2). Let K < 2 n n-2 n n-2
2 . Then the function F K vanishes at two points 0 < s 0 < s m , and is positive on the interval ]s 0 , s m [. Equation ( 2) is now equivalent to

dh F K (h) = ±dt, that is η K (h) = ±t + c, where η K (h) = h s 0 ds F K (s) .
The function η K is well defined on the interval [s 0 , s m ] since s 0 and s m are simple roots of the polynomial F K . We have

η ′ K (h) = 1 √ F K (h)
, so the function η K increases from 0

to η K (s m ) on the interval [s 0 , s m ] and its derivatives at s 0 and s m are +∞. Hence η K admits an inverse function η -1 K which increases from s 0 to s m on the interval [0, η K (s m )] and whose derivatives at 0 and η K (s m ) vanish. Equation (2) becomes

h(t) = η -1 K (±t + c).
It follows that the positive periodic solutions of equation ( 2) are the functions h K,c : t → h K (t + c) where h K is the even, 2η K (s m )-periodic function given by h K (t) = η -1 K (t) for t ∈ [0, η K (s m )]. We are looking for solutions having period l, that is for functions whose smallest positive period is of the form l/k where k is a positive integer. So the non-constant solutions of our problem are the functions h K,c for which there exists a positive integer k such that

η K (s m ) = l 2k . (3) 
For such solution h K,c we have

σ(h K,c -2 g l ) = n(n -1)(V N ) 2 n 2kη K (s m ) 0 h K (t) -n dt 2 n = n(n -1)(V N ) 2 n (2k) 2 n η K (s m ) 0 h K (t) -n dt 2 n = n(n -1)(V N ) 2 n l η K (s m ) 2 n η K (s m ) 0 h K (t) -n h ′ K (t) F K (h K (t)) dt 2 n = n(n -1)(V N ) 2 n l η K (s m ) 2 n s m s 0 t -n F K (t) dt 2 n . Let x = K 1 n-2 s, x 0 = K 1 n-2 s 0 and x m = K 1 n-2 s m . Then F K (s) = K -2 n-2 (-x n + x 2 - K 2 n-2 ), so we get η K (s m ) = x m x 0 dx -x n + x 2 -K 2 n-2 and s m s 0 t -n F K (t) dt = K n n-2 x m x 0 x -n dx -x n + x 2 -K 2 n-2 .
Clearly x 0 and x m are the roots of the polynomial -

x n + x 2 -K 2 n-2 , so K = (x 0 2 -x 0 n ) n-2 2 = (x m 2 -x m n ) n-2 2 .
The function

x 0 → K is an increasing bijection from ]0, r[ to ]0, 2 n n-2 n n-2 2 
[, where

r = 2 n 1 n-2 . So, the condition 0 < K < 2 n n-2 n n-2 2
is equivalent to 0 < x 0 < r. For x 0 ∈]0, r[ we set

P x 0 (x) = -x n + x 2 + x 0 n -x 0 2 and ϕ(x 0 ) = x m x 0 dx P x 0 (x) , ψ(x 0 ) = (x 0 2 -x 0 n ) n 2
x m

x 0

x -n dx P x 0 (x) .

Condition (3) becomes

ϕ(x 0 ) = l 2k and we get

σ(h K,c -2 g l ) = n(n -1)(V N ) 2 n ψ(x 0 ) ϕ(x 0 ) 2 n l 2 n .

Variations of the function ϕ

We have the factorization

P x 0 (x) = (x -x 0 )(x m -x)Q x 0 (x), with Q x 0 (x) = x n-2 + (x m + x 0 )x n-3 + (x m 2 + x m x 0 + x 0 2 )x n-4 + ... +(x m n-3 + x m n-4 x 0 + ... + x 0 n-3 )x + (x m n-2 + x m n-3 x 0 + ... + x 0 n-2 -1) = n-1 k=1 x m k -x 0 k x m -x 0 x n-1-k -1. Let x = x 0 cos 2 t + x m sin 2 t. Then (x -x 0 )(x m -x) = (x m -x 0 ) 2 sin 2 t cos 2 t, and dx = (x m -x 0 ) sin 2tdt, so we get ϕ(x 0 ) = 2 π 2 0 dt Q x 0 (x 0 cos 2 t + x m sin 2 t) . We have ϕ(r) = π √ Q r (r) , and Q r (r) = [1 + 2 + ... + (n -1)]r n-2 -1 = n -2, so ϕ(r) = π √ n -2 . Using Fatou's lemma we get lim x 0 →0 ϕ(x 0 ) ≥ 2 π 2 0 dt √ Q 0 (sin 2 t) ; we have Q 0 (x) = x n-2 + x n-3 + ... + x = x 1-x n-2 1-x , so Q 0 (sin 2 t) = sin t √ 1-sin 2n-4 t cos t
, which shows that lim

x 0 →0 ϕ(x 0 ) = +∞.
The constant term of the polynomial

Q x 0 (x) is Q x 0 (0) = P x 0 (0)
-x 0 x m > 0, so all the coefficients of the polynomial Q x 0 (x) are positive. Moreover:

Lemma 1 The coefficients of the polynomial Q x 0 (x) are increasing functions of x 0 ∈ [0, r].
Proof We have to show that for every k ∈ {2, 3, ..., n -1}, the function

F : x 0 → x m k -x 0 k x m -x 0 is increasing on [0, r].
We denote the derivative of x m as a function of x 0 by x m ′ . We have

F ′ (x 0 ) = (x m -x 0 )(kx m k-1 x m ′ -kx 0 k-1 ) -(x m k -x 0 k )(x m ′ -1) (x m -x 0 ) 2 , so F ′ (x 0 ) > 0 ⇐⇒ [(k -1)x m k -kx 0 x m k-1 + x 0 k ]x m ′ + [(k -1)x 0 k -kx 0 k-1 x m + x m k ] > 0 ⇐⇒ (k -1) -k x 0 x m + x 0 x m k x m ′ + [(k -1) x 0 x m k -k x 0 x m k-1 + 1] > 0. Let α = x 0 x m . It follows from relation x 0 2 -x 0 n = x m 2 -x m n that x m n-2 = 1-α 2 1-α n ; from this we see that the function α → x 0 is an increasing bijection from [0, 1] to [0, r]. The preceding condition becomes [(k -1) -kα + α k ]x m ′ + [(k -1)α k -kα k-1 + 1] > 0. The coefficient of x m ′ is positive; indeed if we set u(α) = (k -1) -kα + α k , then u(1) = 0 and u ′ (α) = k(α k-1 -1) < 0 for 0 < α < 1. Our condition becomes -x m ′ < (k -1)α k -kα k-1 + 1 (k -1) -kα + α k .
We denote the second member by F k (α) and we will show that for every integer k ≥ 1 we have

∀α ∈]0, 1[, F k+1 (α) < F k (α);
then it will be sufficient to show that -x m ′ < F n-1 (α). We have

F k+1 (α) < F k (α) ⇐⇒ kα k+1 -(k + 1)α k + 1 k -(k + 1)α + α k+1 < (k -1)α k -kα k-1 + 1 (k -1) -kα + α k ⇐⇒ -α 2k+1 + α 2k + k 2 α k+2 + (2 -3k 2 )α k+1 + (3k 2 -2)α k -k 2 α k-1 -α + 1 > 0 ⇐⇒ (1 -α) + α 2k (1 -α) -k 2 α k-1 (1 -α 3 ) + (3k 2 -2)α k (1 -α) > 0 ⇐⇒ (1 -α)[(α k -1) 2 -k 2 α k-1 (α -1) 2 ] > 0 ⇐⇒ (1 -α) 3 1 -α k 1 -α 2 -k 2 α k-1 > 0 ⇐⇒ 1 -α k 1 -α -kα k-1 2 > 0 ⇐⇒ 1 -α k -kα k-1 2 (1 -α) > 0 (4) ⇐⇒ 1 -α k -kα k-1 2 + kα k+1 2 > 0. Let f (α) = 1 -α k -kα k-1 2 + kα k+1 2 . Then f ′ (α) = -kα k-3 2 g(α) with g(α) = α k+1 2 + k-1 2 - k+1 2 α; as g(1) = 0 and g ′ (α) = k+1 2 (α k-1 2 -1) < 0 we have g(α) > 0 for 0 < α < 1, hence f ′ (α) < 0; as f (1) = 0 we have finally that f (α) > 0 for 0 < α < 1. Let us show now that -x m ′ < F n-1 (α). It follows from relation x m n -x m 2 = x 0 n -x 0 2 that the derivative x m ′ satisfies (nx m n-1 -2x m )x m ′ = nx 0 n-1 -2x 0 , so x m ′ = 2x 0 -nx 0 n-1 2x m -nx m n-1 = x 0 x m 2 -nx 0 n-2 2 -nx m n-2 = α 2 -nα n-2 1-α 2 1-α n 2 -n 1-α 2 1-α n = α (n -2)α n -nα n-2 + 2 -2α n + nα 2 -(n -2) . The denominator is negative because 2x m -nx m n-1 = nx m (r n-2 -x m n-2 ) < 0. Hence we get -x m ′ < F n-1 (α) ⇐⇒ α (n -2)α n -nα n-2 + 2 2α n -nα 2 + (n -2) < (n -2)α n-1 -(n -1)α n-2 + 1 α n-1 -(n -1)α + (n -2) ⇐⇒ α[(n -2)α n -nα n-2 + 2][α n-1 -(n -1)α + (n -2)] -[(n -2)α n-1 -(n -1)α n-2 + 1][2α n -nα 2 + (n -2)] < 0 ⇐⇒ -(n -2)(α -1) 2 [1 -α 2n-2 -(n -1)α n-2 (1 -α 2 )] < 0.
Comparing with (4) we see that the expression between square brackets is positive, which ends the proof of lemma 1.

Proposition 1 The function ϕ is decreasing on the interval ]0, r[.

Proof We have ϕ(x 0 ) = 2 π 4 0 1 Q x 0 (x 0 cos 2 t + x m sin 2 t) + 1 Q x 0 (x 0 sin 2 t + x m cos 2 t) dt.
Hence it is enough to show that for all t ∈]0, π 4 [, the function

x 0 → 1 Q x 0 (x 0 cos 2 t + x m sin 2 t) + 1 Q x 0 (x 0 sin 2 t + x m cos 2 t) is decreasing on ]0, r[. For fixed t ∈]0, π 4 [ we set u(x 0 ) = Q x 0 (x 0 cos 2 t + x m sin 2 t), v(x 0 ) = Q x 0 (x 0 sin 2 t + x m cos 2 t).
It follows from the fact that the coefficients of the polynomial Q x 0 (x) are positive, that 0 < u < v. From lemma 1 we have in particular that x m ′ > -1, so

(x 0 cos 2 t + x m sin 2 t) ′ = cos 2 t + x m ′ sin 2 t > cos 2 t -sin 2 t > 0,
and it follows from lemma 1 that u ′ > 0. We will show that (u + v) ′ > 0. Then we get (uv

) ′ = u(v ′ + v u u ′ ) > u(v ′ + u ′ ) > 0,
so uv is increasing, and 2 √ uv is decreasing; moreover

1 u + 1 v ′ = - 1 v 2 v 2 u 2 u ′ + v ′ < 0, so 1 u + 1 v is decreasing; now ( 1 √ u + 1 √ v ) 2 = 1 u + 1 v + 2 √ uv is decreasing, so 1 √ u + 1 √ v is decreasing. Let us show that (u + v) ′ > 0. Let x 0 = αx m , a = α cos 2 t + sin 2 t, b = cos 2 t + α sin 2 t. Then u + v = 1 sin 2 t cos 2 t (1 + α)(α n -a n + 1 -b n ) (1 -α)(1 -α n ) - 1 + cos(2t) cos 2 t ,
so it is enough to show that the function

f t : α → (1 + α)(α n -a n + 1 -b n ) (1 -α)(1 -α n )
is increasing. Straightforward calculation gives the following

f ′ t (α) = F α (t) (1 -α) 2 (1 -α n ) 2 where F α (t) = -2α 2n -2nα n+1 + 2nα n-1 + 2 +(a n + b n )(nα n+1 + 2α n -nα n-1 -2) + n(a n-1 a ′ + b n-1 b ′ )(-α n+2 + α n + α 2 -1).
We have to show that F α (t) > 0 for every α ∈]0, 1[ and every t ∈]0, π 4 [. For t = 0 we have a = α, b = 1, a ′ = 1, b ′ = 0, and so

F α (0) = 0.
Hence it is enough to show that F ′ α (t) > 0 for t ∈]0, π 4 [. We get

F ′ α (t) = -n(1 -α) 2 sin(2t)G α (t) where G α (t) = [(n -1)α n + nα n-1 + 1](a n-1 -b n-1 ) +(n -1)(1 + α)(1 -α n )(a n-2 cos 2 t -b n-2 sin 2 t); but a n-1 -b n-1 = a n-2 (α cos 2 t + sin 2 t) -b n-2 (cos 2 t + α sin 2 t) = α(a n-2 cos 2 t -b n-2 sin 2 t) + (a n-2 sin 2 t -b n-2 cos 2 t), so G α (t) = a n-2 (A cos 2 t + B sin 2 t) -b n-2 (A sin 2 t + B cos 2 t), with A = α n -nα + n -1, B = (n -1)α n + nα n-1 + 1.
We have to show that G α (t) < 0. We have

G ′ α (t) = sin(2t) G α,1 (t), with G α,1 (t) = (B -A)(a n-2 + b n-2 ) +(n -2)(1 -α)[a n-3 (A cos 2 t + B sin 2 t) + b n-3 (A sin 2 t + B cos 2 t)]. with f (α) = 2α 2n-4 -(n -2)α n + (n -2)α n-4 -2.
We get

f ′ (α) = (n -2)α n-5 h(α) with h(α) = 4α n -nα 4 + n -4.
We have h(1) = 0 and h ′ (α) = 4nα 3 (α n-4 -1) < 0, so h(α) > 0 and f is increasing; as f (1) = 0, we have f (α) < 0 and G α,1 (0

) < 0. Let G α,p (0) = (n -1)h n,p (α), then h n+1,p+1 (α) -h n,p (α) = p u(α) + n v(α) + w(α) with u(α) = α 2n-p -α 2n-2-p + α n+2 -α n = (α 2 -1)(α 2n-2-p + α n ) < 0, v(α) = -α n+2 + α n+1 + α n -α n-1 = α n-1 (1 -α)(α 2 -1) < 0, w(α) = 3α 2n-1-p -α 2n-2-p + α n+2 -α n+1 + 2α n -α n-p -α n-1-p -α -1 = (α -1)(α 2n-2-p + α n+1 ) + (α n-1 -1)(α n-p + α) + (α n -1)(α n-1-p + 1) < 0, which implies that h n+1,p+1 (α) < h n,p (α). We know that h n,1 (α) = G α,1 (0) n-1
< 0 for all n ≥ 5, h 4,1 (α) = 0, and we have h 4,2 (α) = 4α(α + 1)(α 2 -1) < 0, which ends the proof of a). b) If p is odd, we get

G α,p (π/4) = (n -1) (1 + α) n-1-p 2 n-2-p f (α) with f (α) = -(n -2p)α n + nα n-1 -nα + n -2p.
We have

f ′ (α) = n[-(n -2p)α n-1 + (n -1)α n-2 -1], f ′′ (α) = n(n -1)α n-3 [-(n -2p)α + n -2].
For p = 1 we have f ′′ (α) = n(n -1)(n -2)α n-3 (1 -α) > 0 and f ′ (1) = 0, so f ′ < 0 on ]0, 1[; as f (1) = 0, we get f > 0 on ]0, 1[, that is G α,1 (π/4) > 0.

For p = n/2 (in case where n/2 is odd) we have f ′ (α) = n[(n -1)α n-2 -1], so f ′ vanishes at α 0 = (n -2) -1 n-2 and f is decreasing on [0, α 0 ] and increasing on [α 0 , 1]; as f (0) = f (1) = 0 it follows that f < 0 on ]0, 1[, so G α,p (π/4) < 0.

For p > n/2 we have f ′′ > 0 on ]0, 1[; as f ′ (0) = -n and f ′ (1) = 2n(p-1), there exists α 0 ∈]0, 1[ such that f is decreasing on [0, α 0 ] and increasing on [α 0 , 1]; as f (0) = n-2p < 0 and f (1) = 0 it follows that f < 0 on ]0, 1[, so G α,p (π/4) < 0. Now let us suppose that G α,p (π/4) ≥ 0. We have

f (α) = 2p(α n -1) -nα n + nα n-1 -nα + n,
and this expression is a strictly increasing function of p, from which we conclude that

G α,p-2 (π/4) > 0. c) We have G α (0) = α n-2 A -B = α 2n-2 -(n -1)α n + (n -1)α n-2 -1. Denoting this expression by f (α) we get f ′ (α) = (n -1)α n-3 g(α) with g(α) = 2α n -nα 2 + n -2.
As g(1) = 0 and g ′ (α) = 2nα(α n-2 -1) < 0, we have g > 0 on ]0, 1[, and f is increasing. As f (1) = 0 we have f < 0 on ]0, 1[, so G α (0) < 0.

In order to achieve the proof of proposition 1 we have to show that G α (t) < 0 for all t ∈]0, π/4[, all α ∈]0, 1[ and all integer n ≥ 3. We have

G α,n-1 (t) = (n -1)(B -A)[1 + (-1) n ],
and

B -A = (n -2)(α n -1) + nα(α n-2 -1) < 0.
Let us consider first the case n = 3. Then G α,2 (t) = 0, so G α,1 (t) is constant. By lemma 2 this constant is positive, so G α (t) is increasing. As G α (π/4) = 0, we have G α < 0 on ]0, π/4[.

Now let n = 4. Then G α,3 (t) = 6(B-A) < 0, so G α,2 (t) is decreasing. As G α,2 (π/4) = 0, we have G α,2 > 0 on ]0, π/4[, so G α,1 (t) is increasing. As G α,1 (0) = 0, we have G α,1 > 0 on ]0, π/4[, so G α (t) is increasing. As G α (π/4) = 0, we have G α < 0 on ]0, π/4[. Now let n ≥ 5, n odd. Then G α,n-1 = 0, so G α,n-2 (t) is constant. As G α,n-2 ( 
0) < 0, this constant is negative. By lemma 2 there exists an odd integer p 0 (depending on α) such that G α,p (π/4) ≥ 0 and such that for every odd integer p we have

p 0 < p ≤ n -2 ⇒ G α,p (π/4) < 0 and 1 ≤ p < p 0 ⇒ G α,p (π/4) > 0.
For every odd integer p such that p 0 < p ≤ n -2 we then have:

G α,p+1 : ց 0 , G α,p+1 > 0, G α,p : ր -, G α,p < 0, so G α,p 0 +1 : ց 0 , G α,p 0 +1 > 0, G α,p 0 : -ր + , G α,p 0 : [-, +],
and for every odd integer p such that 1 ≤ p < p 0 we have:

G α,p+1 : ց ր 0 , G α,p+1 : [+, -], G α,p : -ր ց + , G α,p : [-, +], so G α,1 : [-, +],
and finally

G α : -ց ր 0 , so G α < 0 on ]0, π/4[.
For n ≥ 5, n even, we have G α,n-1 = 2(n -1)(B -A) < 0, and like before we conclude that G α < 0 on ]0, π/4[.

Study of the function µ

We have shown in the preceding paragraph that the function ϕ decreases from +∞ to π √ n-2 on the interval ]0, r]. The existence condition (3) for a non-constant solution of our problem stated in paragraph 2 is ϕ(x 0 ) = l 2k , (k integer ≥ 1). For every l > 0 our problem has the constant solution h 0 ≡ n n-2 . It satisfies

σ 0 (l) := σ(h -2 0 g l ) = (n -1)(n -2)(V N ) 2 n l 2 n .
For l ≤ 2π √ n-2 this is the only solution, so

µ(l) = (n -1)(n -2)(V N ) 2 n l 2 n . Let k ∈ N * and k 2π √ n-2 < l ≤ (k + 1) 2π √ n-2 . Then there exist x 0,i (l) ∈]0, r[, i = 1, 2, ..., k, such that ϕ(x 0,i (l)) = l 2i .
The corresponding solutions h l,i satisfy

σ i (l) := σ(h l,i -2 g l ) = n(n -1)(V N ) 2 n ψ(x 0,i (l)) ϕ(x 0,i (l)) 2 n l 2 n = n(n -1)(2iV N ) 2 n [ψ(x 0,i (l))] 2 n .
Clearly

µ(l) = inf 0≤i≤k σ i (l).
Proposition 2 For l > 2π √ n-2 we have µ(l) < σ 0 (l). Proof It is enough to show that there exists a smooth l-periodic function θ on R and a (small) real number t such that the function

h(x) = 1 + tθ(x)
is positive and satisfies σ(h -2 g l ) < σ 0 (l). For small t we have h -n ∼ 1 -ntθ + n(n+1) 2 t 2 θ 2 , so we get (all integrals are taken on the interval [0, l]):

h -n ∼ l 1 -nt θ l + n(n+1) 2 t 2 θ 2 l , and 
h -n -n-2 n ∼ l 1 -nt θ l + n(n+1) 2 t 2 θ 2 l . Moreover s h -2 g l = h 2 s N + (n -1)(2hh ′′ -nh ′2 ) = (n -1)(n -2)(1 + 2tθ + t 2 θ 2 ) + (n -1)[2(1 + tθ)tθ ′′ -nt 2 θ ′ 2 ] = (n -1)(n -2) 1 + t(2θ + 2 n-2 θ ′′ ) + t 2 (θ 2 + 2 n-2 θθ ′′ -n n-2 θ ′ 2 ) , so we get s h -2 g l h -n ∼ (n -1)(n -2) 1 + t (2 -n)θ + 2 n-2 θ ′′ + t 2 n 2 -3n+2 2 θ 2 + 2 n-1 n-2 θθ ′′ -n n-2 θ ′ 2 and s h -2 g l h -n ∼ (n-1)(n-2)l 1-(n-2)t θ l +t 2 n 2 -3n+2 2 θ 2 l +2 n-1 n-2 θθ ′′ l -n n-2 θ ′ 2 l . We have σ(h -2 g l ) = (V N ) 2 n ( s h -2 g l h -n ) h -n -n-2 n , so σ(h -2 g l ) ∼ σ 0 (l)[1 + α(θ)t 2 ] with α(θ) = 1 l 2 (n -2) ( θ) 2 -l θ 2 + l θ ′2 . Let θ(x) = sin( 2π l x), then α(θ) = 2-n 2 + 2π 2 l 2 , so α(θ) < 0 ⇐⇒ l > 2π √ n-2 .
Hence this function θ satisfies our conditions.

It follows from proposition 2 that for 2π

√ n-2 < l ≤ 2 2π √ n-2 we have µ(l) = σ 1 (l). If l → 2π √ n-2 , (l > 2π √ n-2 ), then x 0,1 (l) = ϕ -1 ( l 2 ) → ϕ -1 ( π √ n-2 ) = r, and 
σ 1 (l) → n(n -1)(V N ) 2 n 2 2 n (ψ(r)) 2 n = n(n -1)(V N ) 2 n 2 2 n (r 2 -r n )( π r n √ n-2 ) 2 n = n(n -1)(V N ) 2 n 1 -2 n ( 2π √ n-2 ) 2 n = (n -1)(n -2)(V N ) 2 n ( 2π √ n-2 ) 2 n = σ 0 ( 2π √ n-2 ), which shows that the function µ is continuous at the point 2π √ n-2 . Proposition 3 The function µ is differentiable at the point 2π √ n-2 . Proof For l < 2π √ n-2 we have µ ′ (l) = 2(n-1)(n-2) n (V n ) 2 n l 2-n n , so µ ′ lef t ( 2π √ n-2 ) = (n-1)(n-2) n (2V n ) 2 n ( π √ n-2 ) 2-n n . For l > 2π √ n-2 we have µ(l) = σ 1 (l) = n(n -1)(2V n ) 2 n (ψ(ϕ -1 ( l 2 ))) 2 n , so µ ′ (l) = (n -1)(2V n ) 2 n (ψ(ϕ -1 ( l 2 ))) 2-n n ψ ′ (ϕ -1 ( l 2 )) ϕ ′ (ϕ -1 ( l 2 ))
, and

µ ′ right ( 2π √ n-2 ) = (n -1)(2V n ) 2 n (ψ(r)) 2-n n lim s→r ψ ′ (s) ϕ ′ (s) . From x 2 0 -x 2 m = x n 0 -x n m and x 0 = x m we get x 0 + x m = n-1 i=o x n-1-i 0 x i m , so 1 + x ′ m = n-1 i=o [(n -1 -i)x n-2-i 0 x i m + ix n-1-i 0 x i-1 m x ′ m ], from which we get 1 + x ′ m (r) = (n -1)[1 + x ′ m (r)], so x ′ m (r) = -1. Let x 0 = r -h, then x m = r + h + ah 2 + bh 3 + ch 4 + .... Putting this in relation x 2 0 -x 2 m = x n 0 -x n m ,
we get the values of the constants a, b, c:

x m = r + h -n-1 3r h 2 + ( n-1 3r ) 2 h 3 -(n-1)(19n 2 -23n+58) 540r 3 h 4 + ... Let x = x 0 cos 2 t + x m sin 2 t.
Then we get after some calculations

Q x 0 (x) = (n -2){1 -n-1 3r cos 2t • h -n-1 36r 2 [12 -2(n -1) cos 2t -3(n -3) cos 2 2t]h 2 } + ..., 1 
Q x 0 (x) = 1 √ n -2 {1 + n-1 6r cos 2t • h + n-1 72r 2 [3(n + 2) -2(n -1) cos 2t + 3 cos 4t]h 2 } + ..., ϕ(x 0 ) = π √ n -2 [1 + (n-1)(n+2) 24r 2 h 2 ] + ..., ψ(x 0 ) = π √ n -2 ( n-2 n ) n 2 [1 + (n-1)(n+2) 24r 2 h 2 ] + ..., so µ ′ right ( 2π √ n-2 ) = (n -1)(2V n ) 2 n ( n-2 n ) 2-n 2 ( π √ n-2 ) 2-n n ψ ′′ (r) ϕ ′′ (r) = (n -1)(2V n ) 2 n ( n-2 n ) 2-n 2 ( π √ n-2 ) 2-n n ( n-2 n ) n 2 = (n-1)(n-2) n (2V n ) 2 n ( π √ n-2 ) 2-n n = µ ′ lef t ( 2π √ n-2 ). Proposition 4 For l > 2π √ n-2 we have σ 1 (l) < σ 0 (l). Proof As σ 1 (l) = n(n -1)(2V N ) 2 n (ψ(x 0 )) 2 n and σ 0 (l) = (n -1)(n -2)(2V N ) 2 n (ϕ(x 0 )) 2 n , with x 0 = ϕ -1 ( l
2 ), we have to show that for all x 0 ∈]0, r[,

ψ(x 0 ) < (1 -2 n ) n 2 ϕ(x 0 ).
Let us recall that ϕ(x 0 ) =

x m x 0 dx √ P x 0 (x) and ψ(x 0 ) = (x 0 2 -x 0 n ) n 2 x m x 0 x -n dx √ P x 0 (x) . Let s = x 2 x 2 0 -x n 0 -1, s 0 = x n-2 0 1-x n-2 0 , s m = x n-2 m 1-x n-2 m ; then ϕ(x 0 ) = s m s 0 ds (1 + s 2 ) 1 2 1 -(x 2 0 -x n 0 ) n-2 2 (1+s 2 ) n 2 s 2 = +∞ p=0 (2p)! 2 2p (p!) 2 (x 2 0 -x n 0 ) p n-2 2 s m s 0 (1 + s 2 ) pn-1 2 s 2p ds, ψ(x 0 ) = s m s 0 ds (1 + s 2 ) n+1 2 1 -(x 2 0 -x n 0 ) n-2 2 (1+s 2 ) n 2 s 2 = +∞ p=0 (2p)! 2 2p (p!) 2 (x 2 0 -x n 0 ) p n-2 2 s m s 0 (1 + s 2 ) (p-1)n-1 2 s 2p ds,
so it is enough to show that for all integer p ≥ 0 and all x 0 ∈]0, r[ we have

s m s 0 (1 + s 2 ) (p-1)n-1 2 s 2p ds < (1 -2 n ) n 2 s m s 0 (1 + s 2 ) pn-1 2 s 2p ds. Let F p (x 0 ) = (1 -2 n ) n 2 s m s 0 (1 + s 2 ) pn-1 2 s 2p ds - s m s 0 (1 + s 2 ) (p-1)n-1 2 s 2p
ds.

If x 0 = r, then s 0 = s m , so F (r) = 0. Hence it is enough to show that the function F is strictly decreasing on ]0, r[. we get

2 n-2 (x 2 0 -x n 0 ) 1+ p(n-2) 2 F ′ p (x 0 ) = [(1-2 n ) n 2 -(1-x n-2 m ) n 2 ]x n 2 m x ′ m -[(1-2 n ) n 2 -(1-x n-2 0 ) n 2 ]x n 2
0 , so we have to show that

x ′ m < x n 2 0 x n 2 m (1 -2 n ) n 2 -(1 -x n-2 0 ) n 2 (1 -2 n ) n 2 -(1 -x n-2 m ) n 2 , i.e. x 0 x m (1 -2 n ) -(1 -x n-2 0 ) (1 -2 n ) -(1 -x n-2 m ) < x 0 x m n 2 (1 -2 n ) n 2 -(1 -x n-2 0 ) n 2 (1 -2 n ) n 2 -(1 -x n-2 m ) n 2 . ( 5 
) Let α = x 0 x m and u = n n-2 1-α n-2
1-α n . Clearly u > 1 and αu < 1. Moreover we have α 1/2 u < 1. Inequality (5) becomes

1 -u 2 1 -(αu) 2 < α n 2 -1 1 -u n 1 -(αu) n , i.e. n-1 k=0 (αu) k (1 + u) -α n 2 -1 (1 + αu) n-1 k=0 u k > 0. (6)
For even n this inequality reads

n-2 2 k=0 [(αu) k + (αu) n-1-k ] (1 + u) -α n 2 -1 (1 + αu) n-2 2 k=0 (u k + u n-1-k ) > 0.
For each integer k such that 0 ≤ k ≤ n-2 2 we have

[(αu) k + (αu) n-1-k ](1 + u) -α n 2 -1 (1 + αu)(u k + u n-1-k ) = (αu) k (1 + (αu) n-1-2k )(1 + u) -α n 2 -1-k (1 + αu)(1 + u n-1-2k ) = (αu) k (1 -α n 2 -1-k )(1 -(α 1/2 u) n-2k ) + u(1 -α n 2 -k )(1 -(α 1/2 u) n-2-2k ) ,
which is positive as α 1/2 u < 1. This proves inequality (6) in the case n even. For odd n this inequality reads (αu)

n-1 2 + n-3 2 k=0 [(αu) k + (αu) n-1-k ] (1 + u) -α n 2 -1 (1 + αu) u n-1 2 + n-3 2 k=0 (u k + u n-1-k ) > 0, i.e. (αu) n-1 2 (1 + u) -α n 2 -1 (1 + αu)u n-1 2 + n-3 2 k=0 (αu) k (1 -α n 2 -1-k )(1 -(α 1/2 u) n-2k ) + u(1 -α n 2 -k )(1 -(α 1/2 u) n-2-2k ) > 0.
The first term is negative:

(αu) n-1 2 (1 + u) -α n 2 -1 (1 + αu)u n-1 2 = -α n 2 -1 u n-1 2 (1 -α 1/2 )(1 -α 1/2 u),
but it is compensated by the first term in the sum:

-α n 2 -1 u n-1 2 (1 -α 1/2 )(1 -α 1/2 u) + (1 -α n 2 -1 )(1 -α n 2 u n ) = (1 -α 1/2 )(1 -α 1/2 u) n-3 j=0 α j/2 n-1 j=0 (α 1/2 u) k -α n 2 -1 u n-1 2 ; as α n 2 -1 u n-1 2 = α ( n-3 2 )/2 (α 1/2 u) n-1
2 , the expression between brackets is positive, which ends the proof.

Remark 1 Let k be an integer ≥ 1 and let l > k 2π √ n-2 . There exists a unique x 0,k (l) ∈]0, r[ such that ϕ(x 0,k )(l) = l 2k , and there exists a unique x 0,1 (l/k) ∈]0, r[ such that ϕ(x 0,1 )(l/k) = l 2k , so

x 0,k (l) = x 0,1 (l/k).
It follows that

σ k (l) = k 2 n σ 1 (l/k). (7) 
By proposition 4 we have k

2 n σ 1 (l/k) < k 2 n σ 0 (l/k) = σ 0 (l), so σ k (l) < σ 0 (l). (8) If l → k 2π √ n-2 , then x 0,k (l) = ϕ -1 ( l 2k ) → ϕ -1 ( π √ n-2 ) = r, and 
σ k (l) → σ 0 (k 2π √ n-2 ). (9) 
If l → +∞, then x 0,k (l) → 0, and

σ k (l) → n(n -1)(2kV N ) 2 n [ψ(0)] 2 n . (9) 
In particular σ k (+∞) = k 2 n σ 1 (+∞). The following proposition shows that ψ(0) is finite.

Proposition 5 Let ψ n (x 0 ) = (x 0 2 -x 0 n ) n 2 x m x 0 x -n dx √ P x 0 (x)
.

If n is even, n = 2p, we have

lim x 0 →0 ψ n (x 0 ) = 2 2p-2 [(p -1)!] 2 (2p -1)! . If n is odd, n = 2p + 1, we have lim x 0 →0 ψ n (x 0 ) = (2p)!π 2 2p+1 (p!) 2 . Proof We write ψ(x 0 ) in the form ψ(x 0 ) = (1 -x n-2 0 ) n 2 x n 0 √ x 0 x 0 x -n dx P x 0 (x) + r √ x 0 x -n dx P x 0 (x) + x m r
x -n dx P x 0 (x) .

For √ x 0 ≤ x ≤ r we have x -n ≤ x 0 -n/2 , and as the function

x → P x 0 (x) is increasing on [0, r], P x 0 (x) ≥ P x 0 ( √ x 0 ) = x 0 -x n/2 0 -x 2 0 + x n 0 , so x n 0 r √ x 0 x -n dx P x 0 (x) ≤ x n-1 2 0 r - √ x 0 1 -x n 2 -1 0 -x 0 + x n-1 0 ,
which shows that lim

x 0 →0
x n 0 r √ x 0

x -n dx P x 0 (x) = 0.

As

x m r dx √ P x 0 (x)
is bounded when x 0 → 0, we have lim

x 0 →0
x n 0 x m r

x -n dx P x 0 (x) = 0.

We have P x 0 (x) = (x 2 -x 2 0 ) 1 - Proof In this case we have x 2 0 + x 2 m = 1 and 0 < x 0 < r = 1 √ 2 < x m < 1, so there exists θ ∈]0, π 4 [ such that x 0 = sin θ and x m = cos θ. Let

x 2 = x 2 0 cos 2 t + x 2 m sin 2 t; then 2xdx = (x 2 m -x 2 0 ) sin 2tdt, P x 0 (x) = (x 2 -x 2 0 )(x 2 m -x 2 ) = 1 4 (x 2 m -x 2 0 ) 2 sin 2 2t, x 2 = 1 2 (1 -cos 2θcos2t), so ψ(x 0 ) = (x 2 0 -x 4 0 ) 2 

  The function n → ψ n (0) is decreasing, so we have for all integer n ≥ 3, ψ n (0) ≤ ψ n (3) = π/4. Moreover lim n→∞ ψ n (0) = 0. particular that the function ψ is decreasing.

  for ϕ(x 0 ) is obtained in the same way.

We have

. Clearly G α ( π 4 ) = 0, and for even p we have G α,p ( π 4 ) = 0. We have the following Lemma 2 For every

For n = 4 we get G α,1 (0) = 0. Let now n ≥ 5. First we show that G α,1 (0) < 0. We have G α,1 (0) = α(n -1)f (α)