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C. Atindogbe∗ L. Berard-Bergery†
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Abstract

We study Weyl structures on lightlikes hypersurfaces endowed with a
conformal structure of certain type and specific screen distribution: the
Weyl screen structures. We investigate various differential geometric
properties of Einstein-Weyl screen structures on lightlike hypersurfaces
and show that, for ambiant Lorentzian space R

n+2

1
and a totally um-

bilical screen foliation, there is a strong interplay with the induced
(Riemannian) Weyl-structure on the leaves. Finally, we establish nec-
essary and sufficient conditions for a Weyl structure defined by the
1−form of an almost contact structure given by an additional complex
structure in case of an ambiant Kaehler manifold to be closed.

Key words: Lightlike hypersurface, screen distribution, Einstein-Weyl struc-
ture.

MSC subject classification (2000): 53C50, 53C05, 53C25.

1 Introduction

Pseudo-Riemannian manifolds (M,g) with dimM = n > 4 and sgn(g) =
(n − 1, 1) are natural generalizations of (4-dimensional model) spacetime
of general relativity. Lightlike hypersurfaces in (M,g) are models of differ-
ent types of horizons separating domains of (M,g) with different physical
properties.

As it is well known, contrary to timelike and spacelike hypersurfaces, the
geometry of lightlike hypersurfaces is different and rather difficult since the
normal bundle and the tangent bundle have non-zero intersection.
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Being lighlike manifold is invariant under conformal change of the metric,
along with many geometric objects. Thus, it is more suitable to study
geometry of lightlike hypersurfaces within the framework of conformal class
of degenerate metrics.

In a Riemannian setting, manifolds Mn with conformal structure [g]
and torsion-free connection D, such that parallel translation induces con-
formal transformations, are called Weyl manifolds. They are said to be
Einstein-Weyl if the symmetric trace-free part of the Ricci tensor of the
(Weyl) connection D vanishes. If D is locally the Levi-Civita connection
of a compatible metric in [g], the structure is said to be closed, and the
(D-compatible) metric is locally Einstein [10, 11, 12].

In [7], Duggal and Bejancu introduced a main tool in studying the ge-
ometry of a lightlike hypersurface: the screen distributions. The latter
is used to constrtuct a lightlike transversal vector bundle which is non-
intersecting to the lightlike tangent bundle. It is now well-known that a
suitable choice of screen distribution has produced substantial result in light-
like geometry[7, 4]. Based on this, we brief in section 2 basic informations
on normalizations, induced geometric objects [7] and pseudo-inversion of
degenerate metrics [3].In section 3, we define Weyl screen structure (Def-
inition 3.2), and prove a result on model space of Weyl screen structures
on the (conformal) lightlike hypersurface. Therefater, we study and relate
curvature and Ricci tensors of the Weyl connection, along with its scalar
curvature to their respective analogous for a given representative element in
the conformal class. In section 4, we consider Einstein-Weyl screen struc-
tures and establish a necessary and sufficient condition for a Weyl screen
structure to be Einstein-Weyl. Section 5 is devoted to a special case of
total umbilicity of the screen foliation involved in Definition 3.2. Also, in
ambiant Lorentzian case, we prove that there is a strong interplay between
Einstein-Weyl screen structures on the conformal lightlike hypersurface and
the (induced) one on the (Riemannian) screen foliation. Section 6 deals with
lightlike real hypersurfaces of Kahler manifolds.

2 Preliminaries on Lightlike hypersurfaces

Let M be a hypersurface of an (n + 2)−dimensional pseudo-Riemannian
manifold (M,g) of index 0 < ν < n + 2. In the classical theory of nonde-
generate hypersurfaces, the normal bundle has trivial intersection {0} with
the tangent one and plays an important role in the introduction of main
geometric objects. In case of lightlike (degenerate, null) hypersurfaces, the
situation is totally different. The normal bundle TM⊥ is a rank-one distri-
bution over M : TM⊥ ⊂ TM and then coincide with the so called radical
distribution RadTM = TM ∩ TM⊥. Hence,the induced metric tensor field
g is degenerate and has rank n. The following characterisation is proved in
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[7].

Proposition 2.1 Let (M,g) be a hypersurface of an (n + 2)−dimensional
pseudo-Riemannian manifold (M,g). Then the following assertions are
equivalent.

(i) M is a lightlike hypersurface of M .

(ii) g has constant rank n on M .

(iii) TM⊥ = ∪x∈MTxM
⊥ is a distribution on M .

A complementary bundle of TM⊥ in TM is a rank n nondegenerate distri-
bution over M . It is called a screen distribution on M and is often denoted
by S(TM). A lightlike hypersurface endowed with a specific screen distri-
bution is denoted by the triple (M,g, S(TM)). As TM⊥ lies in the tangent
bundle, the following result has an important role in studyng the geometry
of a lightlike hypersurface.

Proposition 2.2 ([7]) Let (M,g, S(TM)) be a lightlike hypersurface of (M,g)
with a given screen distribution S(TM). Then there exists a unique rank 1
vector subbundle tr(TM) of TM |M , such that for any non-zero section ξ of
TM⊥ on a coordinate neighbourhood U ⊂ M , there exists a unique section
N of tr(TM) on U satisfyng

g(N, ξ) = 1 (1)

and
g(N,N) = g(N,W ) = 0, ∀ W ∈ Γ(ST |U ). (2)

Here and in the sequel we denote by Γ(E) the F(M)−module of smooth
sections of a vector bundle E over M , F(M) being the algebra of smooth
functions on M . Also, by ⊥ and ⊕ we denote the orthogonal and non-
orthogonal direct sum of two vector bundles. By proposition 2.2 we may
write down the following decompositions.

TM = S(TM) ⊥ TM⊥, (3)

TM |M = TM ⊕ tr(TM) (4)

and

TM |M = S(TM) ⊥ (TM⊥ ⊕ tr(TM)) (5)

As it is well known, we have the following:
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Definition 2.1 Let (M,g, S(TM)) be a lightlike hypersurface of (M,g) with
a given screen distribution S(TM). The induced connection, say ∇, on M

is defined by
∇XY = Q(∇XY ), (6)

where ∇ denotes the Levi-civita connection on (M,g) and Q is the projection
on TM with respect to the decomposition (4).

Remark 2.1 Notice that the induced connection ∇ on M depends on both
g and the specific given screen distribution S(TM) on M .

By respective projections Q and I −Q, we have Gauss an Weingarten for-
mulae in the form

∇XY = ∇XY + h(X,Y ) ∀X,Y ∈ Γ(TM), (7)

∇XV = −AVX + ∇t
XV ∀X ∈ Γ(TM), ∀ V ∈ Γ(tr(TM)). (8)

Here, ∇XY and AVX belong to Γ(TM). Hence
• h is a Γ(tr(TM))-valued symmetric F(M)-bilinear form on Γ(TM),
• AV is an F(M)-linear operator on Γ(TM), and
• ∇t is a linear connection on the lightlike transversal vector bundle

tr(TM).
Let P denote the projection morphism of Γ(TM) on Γ(S(TM)) with

respect to the decomposition (3). We have

∇XPY =
⋆
∇X PY + h∗(X,PY ) ∀X,Y ∈ Γ(TM), (9)

∇XU = −
⋆
AU X + ∇∗t

XU ∀X ∈ Γ(TM), ∀ U ∈ Γ(TM⊥). (10)

Here
⋆
∇X PY and

⋆
AU X belong to Γ(S(TM)),

⋆
∇ and ∇∗tare linear

connection on S(TM) and TM⊥, respectively. Hence
• h∗ is a Γ(TM⊥)-valued F(M)-bilinear form on Γ(TM) × Γ(S(TM)),

and
•

⋆
AU is a Γ(S(TM))-valued F(M)-linear operator on Γ(TM).

They are the second fundamental form and the shape operator of the screen
distribution, respectively.

Equivalently, consider a normalizing pair {ξ,N} as in the proposition 2.2.
Then, (7) and (8) take the form

∇XY = ∇XY +B(X,Y )N ∀X,Y ∈ Γ(TM |U ), (11)
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and
∇XN = −ANX + τ(X)N ∀X ∈ Γ(TM |U ), (12)

where we put locally on U ,

B(X,Y ) = g(h(X,Y ), ξ) (13)

τ(X) = g(∇t
XN, ξ) (14)

It is important to stress the fact that the local second fundamental form B

in (13) does not depend on the choice of the screen distribution.
We also define (locally) on U the following:

C(X,PY ) = g(h∗(X,PY ), N), (15)

ϕ(X) = −g(∇⋆t
Xξ,N). (16)

Thus, one has for X ∈ Γ(TM)

∇XPY =
⋆
∇X PY + C(X,PY )ξ (17)

∇Xξ = −
⋆
Aξ X + ϕ(X)ξ (18)

It is straighforward to verify that for X,Y ∈ Γ(TM)

B(X, ξ) = 0 (19)

B(X,Y ) = g(
⋆
Aξ X,Y ) (20)

⋆
Aξ ξ = 0 (21)

The linear connection
⋆
∇ from (9)is a metric connection on S(TM) and

we have for all tangent vector fields X, Y and Z in TM

(∇Xg) (Y,Z) = B(X,Y )η(Z) +B(X,Z)η(Y ). (22)

with
η(·) = g(N, ·). (23)

The induced connection ∇ is torsion-free, but not necessarily g-metric.
Also, on the geodesibility of M the following is known.

Theorem 2.1 ([7, p.88]) Let (M,g, S(TM)) be a lightlike hypersurface of
a pseudo-Riemannian manifold (M,g). Then the following assertions are
equivalent:
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(i) M is totally geodesic.

(ii) h (or equivalently B) vanishes identically on M .

(iii)
⋆
AU vanishes identically on M , for any U ∈ Γ(TM⊥)

(iv) The connection ∇ induced by ∇ on M is torsion-free and metric.

(v) TM⊥ is a parallel distribution with respect to ∇.

(vi) TM⊥ is a Killing distribution on M .

It turns out that if (M,g) is not totally geodesic, there is no connection that
is, at the same time, torsion-free and g-metric.

2.1 Pseudo-inversion of degenerate metrics

A large class of differential operators in differential geometry is intrinsically
defined by means of the dual metric g∗ on the dual bundle Γ(T ∗M) of 1-
forms on M . If the metric g is nondegenerate, the tensor field g∗ is nothing
but the inverse of g. We brief here construction of some of these operators
in case the metric g is degenerate and refer the reader to [3] for more details.

Let (M,g, S(TM)) be a lightlike hypersurface and {ξ,N} be a pair of
(null-) vectors given by the normalizing Proposition 2.2. Consider on M

the one-form defined by

η(·) = g( N , · ) (24)

For all X ∈ Γ(TM),
X = PX + η(X)ξ

and η(X) = 0 if and only if X ∈ Γ(S(TM)). Now, we define ♭ by

♭ : Γ(TM) −→ Γ(T ∗M)

X 7−→ X♭

such that
X♭ = g( X , · ) + η(X)η( · ) (25)

Clearly, such a ♭ is an isomorphism of Γ(TM) onto Γ(T ∗M), and gener-
alize the usual nondegenerate theory. In the latter case, Γ(S(TM)) coincide
with Γ(TM), and as a consequence the 1−form η vanishes identically and
the projection morphism P becomes the identity map on Γ(TM). We let
♯ denote the inverse of the isomorphism ♭ given by (25). For X ∈ Γ(TM)
(resp. ω ∈ T ∗M), X♭ (resp. ω♯) is called the dual 1−form of X (resp. the
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dual vector field of ω) with respect to the degenerate metric g. It follows
(25) that if ω is a 1-form on M , we have for X ∈ Γ(TM)

ω(X) = g(ω♯,X) + ω(ξ)η(X) (26)

Now we introduce the so called associate non degenerate metric g̃ to the
degenerate metric g as follows. For X,Y ∈ Γ(TM), define g̃ by

g̃(X,Y ) = X♭(Y ) (27)

Clearly,g̃ defines a non degenerate metric on M and play an important role
in defining the usual differential operators gradient, divergence, laplacian
with respect to degenerate metric g on lightlike hypersurfaces. Also, obseve
that g̃ coincides with g if the latter is not degenerate. The (0, 2) tensor field
g[ · , · ], inverse of g̃ is called the pseudo-inverse of g. Finally, we state the
following result ([3]).

Proposition 2.3 Let (M,g, S(TM)) be a lightlike hypersurface of a pseudo-
Riemannian (n+ 2)-dimensional manifold (M,g).We have

(i) for any smooth function f : U ⊂M → R,

gradgf = g[αβ]fα∂β (28)

where fα = ∂f
∂xα , ∂β = ∂

∂xβ , α, β = 0, · · · , n;

(ii) For any vector field X on U ⊂M ,

divgX =
∑

α,β

g[α, β]g̃(∇∂α
X,∂β) (29)

(iii) for smooth function f : U ⊂M → R

∆gf =
∑

αβ

g[α, β]g̃(∇∂α
gradgf, ∂β) (30)

where {∂0 := ξ, ∂1, · · · , ∂n} is any quasiorthonormal frame field on M adapted
to the decomposition (3).

In index free notation, (28) can be written in the form g̃(∇gf,X) = df(X)
which defines the gradient of the scalar function f with respect to the de-
generate metric g. With nondegenerate g, one has g̃ = g so that (i) − (iii)
generalize the usual known formulae to the degenerate set up.

From now on, unless otherwise stated, the ambiant manifold (M,g) has
a Lorentzian signature so that all lighlike hypersurfaces considered are of
signature (0, n). In particular, it follows that any screen distribution is
Riemannian.
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As it is well known (theorem 2.1), only totally geodesic lightlike hyper-
surfaces do have their induced connection metric and torsion-free. In the
next section and the remainder of the text, only such lightlike hypersurfaces
will be in consideration. Also, being lightlike is invariant under conformal
change of the metric. Athough, for (M,g0) totally geodesic, not all met-
rics in the conformal class of g0 guarantee this geometric condition. In
this respect, we consider appropriate conformal structure on a given totally
geodesic (M,g0).

3 Weyl screen structures

Let (M,g0) be a totally geodesic hypersurface in a (n + 2)−dimensional
pseudo-Riemannian manifold (M,g). Consider on M conformal metrics of
the form g = e−2fg0 with X(f) = 0 for X ∈ TM⊥ = span{ξ} i.e f is
constant on ξ − orbits. These metrics endow M with a special conformal
structure we denote by c = [g0]0. For each metric g ∈ c, (M,g) is also
totally geodesic, and there exists a g−compatible torsion-free connection
∇g. Throughout the text, M , endowed with this conformal structure is
denoted (M, c).

Definition 3.1 A Weyl structure relative to (M, c) is a symmetric linear
connection D on M that preserves the structure. More precisely, D satisfies

(i) D is torsion-free

(ii) For g in the conformal class c, there exists a unique 1−form θ on M

such that
Dg = −2θ ⊗ g (31)

Remark 3.1 Conditions (i) and (ii) in definition 3.1 determine a Weyl
structure modulo S2T ∗M ⊗ TM⊥

Lemma 3.1 The Kernel TM⊥ (= RadTM = Ker g) of g is parallel with
respect to any Weyl structure D on (M, c). Furthermore, up to a renormal-
ization, one can choose ξ ∈ TM⊥ so that Dξξ = 0 and for any g ∈ c, there
exists a torsion-free g-compatible linear connection Dg with Dg

ξξ = 0.

Proof Let X,Y,Z ∈ Γ(TM) and g ∈ c. From (31) we have

X · g(Y,Z) − g(DXY,Z) − g(Y,DXZ) = −2θ(X) g(Y,Z)

Then for Z ∈ RadTM, one has g(Y,DXZ) = 0 ∀ Y ∈ Γ(TM). Thus DXZ ∈
RadTM ∀ Z ∈ RadTM . Now let ξ ∈ RadTM , we have Dξξ = ψ(ξ)ξ. If
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ψ(ξ) = 0 then there is nothing more to prove. Otherwise, choose on the null
integral curve Cof ξ a new parameter t∗(t) such that

d2t∗

dt2
− ψ(

d

dt
)
dt∗

dt
= 0

with d
dt =: ξ. Such a parameter always exists on C and one has D d

dt∗

d
dt∗ = 0.

Now, let g ∈ c and Dg
1 be a torsion-free g-compatible connection. Then,

0 = Dξξ = D
g
1ξξ + S(ξ, ξ)ξ where S ∈ S2T ∗M . If Dg

1ξξ = 0 then there is

nothing more to prove. Otherwise, change Dg
1 in Dg

2 = D
g
1 + S ⊗ ξ. Such a

D
g
2 is a torsion-free linear g-compatible connection on M and D2

g
ξξ = 0 and

the proof is complete.�

Remark 3.2 From lemma 3.1 it follows that the element S ∈ S2T ∗M mod-
ulo which the Weyl structure is determined satisfies S(ξ, ξ) = 0 for a suit-
able choice of the torsion-free g-compatible metric Dg of g. The element
S ∈ S2T ∗M is entirely determined by the following.

Definition 3.2 Let (M, c, S(TM)) be a totally geodesic lightlike hypersur-
face (M,g0) endowed with the conformal structure c = [g0]0, and an inte-
grable screen distribution S(TM). A Weyl screen structure D relative to
(M, c, S(TM)) is a Weyl structure for which S(TM) is parallel, that is for
all tangent vector fields X and Y in TM ,

DXPY ∈ Γ(S(TM)) (32)

Note. Throughout the text, we sometimes consider the quadruplet
(M, c,D, S(TM)) (as in Definition 3.2) as the Weyl screen structure. Also,
vector fields tangent to leaves of the refered screen distribution are called
horizontal.

Lemma 3.2 Let D be a Weyl screen structure on (M, c, S(TM)). Let
Ω1

hor(M) denote the space of horizontal 1−form on M , that is ω ∈ Ω1
hor(M)

if and only if ω(X) = 0 for all X ∈ RadTM .

(i) For any g ∈ c, θg ∈ Ω1
hor(M).

(ii) For g ∈ c there exists a unique θg ∈ Ω1
hor(M)and a unique S ∈ S2T ∗M

such that for X,Y ∈ Γ(TM),

DXY = D
g
XY + θg(X)Y + θg(Y )X − g(X,Y )θ

♯g
g − S(X,Y )ξ (33)

where θ
♯g
g is the dual of θg with respect to the degenerate metric g and

the screen distribution S(TM). Furthermore,
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S(X,Y ) =















0 if X,Y ∈ RadTM

C(X,Y ) + η(X)θg(Y ) if (X,Y ) ∈
Γ(TM) × Γ(S(TM))

(34)

where C denotes the second fundamental form of S(TM) in (M,g).

Proof Let X ∈ RadTM , Y,Z ∈ Γ(TM). From (31) and lemma 3.1 we
have LXg0(Y,Z) = −2 θg0

(X)g0(Y,Z). But (M,g0) is totally geodesic and
LXg0 = 0 (theorem 2.1). Thus, θg0

(X) = 0 X ∈ RadTM . For g =
e−2fg0 ∈ c,we have θg = θg0

+ df with df(X) = 0 ∀ X ∈ RadTM . Thus,
θg(X) = θg0

(X) + df(X) = 0 ∀ X ∈ RadTM and (i) is proved.
Now,let us write for a choice of g ∈ c and for all X,Y ∈ Γ(TM)

DXY = D
g
XY + θ̃XY (35)

where Dg
XY is the torsion-free g-compatible linear connection pointed out

in lemma 3.1. As D and Dg are torsion-free, one has

θ̃XY = θ̃YX (36)

Taking into account (35), (36) and the g-compatibility of Dg one has

g(θ̃XY,Z) + g(Y, θ̃XZ) = 2θg(X)g(Y,Z) (37)

By circular permutation in (37) and taking into account (36) one has

g(θ̃XY,Z) = θg(X)g(Y,Z) + θg(Y )g(X,Z) − θg(Z)g(X,Y )

As θg is horizontal (from (i)) its g−dual θ
♯g
g is a horizontal vector field and

from (26) one can write θg(Z) = g(Z, θ
♯g
g ). It follows that

θ̃XY = θg(X)Y + θg(Y )X − g(X,Y )θ
♯g
g − S(X,Y )ξ

for some S ∈ S2T ∗M . Also, from (17) we have

D
g
XPY =

⋆
∇

g

X PY + C(X,PY )ξ

where
⋆
∇

g

is the induced Levi-Civita connection by Dg on the screen dis-
tribution and C the second fundamental form of the screen distribution in
(M,g). Thus

DXPY =
⋆
∇

g

X PY + θg(X)PY + θg(Y )PX − g(X,Y )θ
♯g
g

+ [C(X,PY ) + η(X)θg(Y ) − S(X,PY )] ξ (38)
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Observe that, since θg is a horizontal 1−form, one has θ
♯g
g ∈ Γ(S(TM)).

From (iii) in definition 32, S(TM) is D−parallel if and only if the term in
bracket vanihes identically on M . it follows that for

X,Y ∈ Γ(TM), S(X,PY ) = C(X,PY ) + η(X)θg(Y ) (39)

In particular

∀ Y ∈ Γ(TM), S(ξ, PY ) = S(PY, ξ) = C(ξ, PY ) + θg(Y ) (40)

Finally, S(ξ, ξ) = 0 follows remark 3.2 and the proof is complete.

Remark 3.3 (a) From S(ξ, ξ) = 0 and (40) one can write

∀ Y ∈ Γ(TM), S(ξ, PY ) = S(PY, ξ) =: C(ξ, PY ) + θg(Y ). (41)

(b) Clearly, for a given g ∈ c, among all g−compatible torsion-free linear
connections, there is only one which satisfies (33). Thus, if we take
our data for a Weyl screen structure on (M,S(TM)) to be g ∈ c and
the 1−form θg, D = Dg + θ̃ is uniquely determined.

The curvature tensor of the Weyl screen structure D is defined by

RD(X,Y ) = D[X,Y ] − [DX ,DY ] (42)

and we let RicD denote the Ricci curvature of D. It is defined to be the
trace of the map Z 7→ RD(X,Z)Y . For a representative g ∈ c and a
g−quasiorthonornal frame field (Xα)α on M ,

RicD(X,Y ) = g[αβ]g̃(RD(X,Xα)Y,Xβ) (43)

and clearly, the right hand side of (43) does not change under conformal
rescaling in c. The scalar curvature ScalD of D is defined by

ScalD = trc(Ric
D)

Observe that ScalD is not a function on M , but for a choice of a metric
g ∈ c, it is defined by

ScalDg = trg(Ric
D) (44)

Proposition 3.1 Suppose D = Dg + θ̃ where g ∈ c and θg the 1−form
associated to the paire {D, g}. Then

RD(X,Y ) = Rg(X,Y ) − 2dθg(X,Y )id

+

(

D
g
Y θ

♯g
g − θ(Y )θ

♯g
g +

1

2
|θ

♯g
g |2gY

)

∧X
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−

(

D
g
Xθ

♯g
g − θ(X)θ

♯g
g +

1

2
|θ

♯g
g |2gX

)

∧ Y

− (Kg(X,Y ) −Kg(Y,X)) ξ (45)

with

Kg(X,Y ) = iY (Dg
XS) + S(Y, θ

♯g
g )iXg + S(Y, ξ)iXS + ϕg(X)iY S

where ((M,g) being totally geodesic) the 1−form ϕg is defined by Dg
Xξ =

ϕg(X)ξ, and X ∧ Y = g(X, ·)Y − g(Y, ·)X.

Proof This is a standard computation using (33) and the curvature
formula (42).�

The following lemma gives expression of Kg(X,Y ) − Kg(Y,X) for hori-
zontal X and Y in terms of the second fundamental form C of the screen
distribution S(TM).

Lemma 3.3 For X,Y ∈ Γ(S(TM)), we have

Kg(X,Y ) −Kg(Y,X) = η(R̄(X,Y )Z)

+
[

g(X,Z)c(Y, θ
♯g
g ) − g(Y,Z)c(X, θ

♯g
g )

]

+ [C(X,Z)C(ξ, Y ) − C(Y,Z)C(ξ,X)]
+ [θg(Y )C(X,Z) − θg(X)C(Y,Z)] (46)

where R̄ is the ambiant Riemannian curvature of (M,e−2f̄ g), with f̄ |M =
f and C the second fundamental form of the screen distribution S(TM).

Proof This is a direct use of (39), (41) and the Gauss-Codazzi equation
for the screen distribution,

η(R̄(X,Y )Z) = (Dg
XC)(Y,Z) − (Dg

Y C)(X,Z)
ϕg(X)C(Y,Z) − ϕg(Y )C(X,Z). (47)

Taking into account (45) and (43), we get

Proposition 3.2 The Ricci curvature of D is given by

RicD(X,Y ) = Ricg(X,Y ) − 2dθg(X,Y ) + (1 − n)(Dg
Xθg)(Y )

+(n− 1)θg(X)θg(Y ) + (1 − n)g(X,Y )|θ
♯g
g |2g

−g(X,Y )δgθg +
(

[(Dg
XS)(ξ, Y ) − (Dg

ξS)(X,Y )]

+g(X,Y )S(ξ, θ
♯g
g ) − S(ξ,X)S(ξ, Y ) + ϕg(X)S(ξ, Y )

)

(48)
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Proposition 3.3 Let D be a Weyl structure on (M, c, S(TM)), then, for
g ∈ c,

ScalDg = scalg − (n− 1)2|θ
♯g
g |2g + (1 − 2n)δgθg + (n − 1)ϕg(θ

♯g
g )

+divgiξS − trg(Dg
ξS) + nS(ξ, θ

♯g
g )

−|(iξS)♯g |2g + g(ϕ
♯g
g , (iξS)♯g ) (49)

Proof We have

ScalDg = g[αβ]RicD(Xα,Xβ)

where (Xα)α is a quasiorthonormal frame field on M adapted to the decom-
position (3). Then using the above Ricci formula leads to,

RicD(Xα,Xβ) = Ricg(Xα,Xβ) − 2dθg(Xα,Xβ) + (1 − n)(Dg
Xα
θg)(Xβ)

+(n− 1)θg(Xα)θg(Xβ) + (1 − n)gαβ |θ
♯g
g |2g − gαβδ

gθg

+
(

[(Dg
Xα
S)(ξ,Xβ) − (Dg

ξS)(Xα,Xβ)] + gαβS(ξ, θ
♯g
g )

−S(ξ,Xα)S(ξ,Xβ) + ϕg(Xα)S(ξ,Xβ)) .

with δgθg := divgθ
♯g
g . Contracting with g[αβ] and a straighforward com-

putation give relation (49).

4 Einstein-Weyl screen structures

Note that as D is not a metric connection on M , its Ricci curvature is
not necessarily symmetric. The quadruplet (M, c, S(TM),D) defines an
Einstein-Weyl screen structure ifD is a Weyl screen structure on (M, c, S(TM))
and the symmetrised Ricci tensor of D is proportional to g pointwise. Equiv-
alently, there exist a function ∧ ∈ C∞(M) such that

RicD(X,Y ) + RicD(Y,X) = ∧ g(X,Y ), (50)

for all tangent vectors X, Y ∈ TM . The function ∧ (depends on g ∈ c and
) is called the Einstein-Weyl function of the structure with respect to g.

By (48) one has

RicD(X,Y ) +RDic(Y,X) = Ricg(X,Y ) +Rgic(Y,X) + D(θg)(X,Y )

+2g(X,Y )
{

(1 − n)|θ
♯g
g |2g − δgθg

+S(ξ, θ
♯g
g )

}

(51)

where
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D(θg)(X,Y ) = (1 − n)
[

(Dg
Xθg)(Y ) + (Dg

Y θg)(X) − 2θg(X)θg(Y )
]

+
[

(Dg
XS)(ξ, Y ) + (Dg

Y S)(ξ,X)
]

+ [ϕg(X)S(ξ, Y ) + ϕg(Y )S(ξ,X)]

−2
[

(Dg
ξS)(X,Y ) + S(ξ,X)S(ξ, Y )

]

(52)

Also, on the symmetry of Ricg note that

Ricg(X,Y ) −Ricg(Y,X) = 2dϕg(X,Y ). (53)

for all tangent vectors X, Y in TM . Then, it follows (52) and (53)

Proposition 4.1 The quadruplet (M, c, S(TM),D) defines a Einstein-Weyl
screen structure if and only if D is defined by (33) for all g ∈ c and the Ricci
curvature of g satisfies

Ricg = dϕg −
1

2
D(θg) + ∧̄g, (54)

where ∧̄ is related to ∧ in (50) by

∧̄ =
1

2
∧ −

[

(1 − n)|θ
♯g
g |2g − δgθg + S(ξ, θ

♯g
g )

]

(55)

with D(θg) given by (52).

5 Totally umbilical screen foliation.

The screen distribution S(TM) is said to be totally umbilical if there exist
a function λ ∈ C∞(M) such that

C(X,PY ) = λg(X,Y ), (56)

for all tangent vectors X, Y in TM . Then, (34) becomes

S(X,Y ) = λg(X,Y ) + η(X)θg(Y ), (57)

for (X,Y ) ∈ Γ(TM) × Γ(S(TM)).
In particular,

S(ξ,X) =: S(X, ξ) = θg(X) (58)

for all X in Γ(TM).

Lemma 5.1 For g ∈ c and for all tangent vectors X, Y and Z in Γ(TM),
(

Dg
ZS

)

(X,Y ) = (Z · λ)g(X,Y ) +
[

θg(X)(Dg
Zη)(Y ) + θg(Y )(Dg

Zη)(X)
]

+
[

η(X)(Dg
Zθg)(Y ) + η(Y )(Dg

Zθg)(X)
]

(59)
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Proof. Let (X,Y ) ∈ Γ(TM) × Γ(S(TM)), it is immediate using (57) that,
for Z ∈ Γ(TM),

(

D
g
ZS

)

(X,Y ) = (Z ·λ)g(X,Y )+(Dg
Zη)(X)θg(Y )+(Dg

Zθg)(Y )η(X). (60)

Now for (X,Y ) ∈ Γ(TM) × Γ(TM) observe that

(

D
g
ZS

)

(X,Y ) =
(

D
g
ZS

)

(X,PY ) + η(Y )
(

D
g
ZS

)

(ξ, PX)

and then, using (60) and the fact that θg and η are horizontal and vertical
respectively, lead to relation (59).

In particular, for all tangent vectors X, Y in TM ,

(

D
g
XS

)

(ξ, Y ) = (Dg
Xθg)(Y ) − ϕg(X)θg(Y ). (61)

and
(

D
g
ξS

)

(X,Y ) = (ξ ·λ)g(X,Y ) + (Dg
ξθg)(X)η(Y ) + (Dg

ξθg)(Y )η(X), (62)

which arises from (59) and the fact that η is parallel along the ξ−orbits.
we also have the following fact.

Proposition 5.1 Assume that (M, c, S(TM),D) is an Einstein-Weyl screen
structure with totally umbilical S(TM), then

(i)
(Dg

ξθg)(X) = 0, ∀ X ∈ Γ(TM). (63)

and
(Dg

ξS)(X,Y ) = (ξ · λ)g(X,Y ) (64)

for all tangent vectors X,Y in Γ(TM).

(ii)

RicD(X,Y ) = Ricg(X,Y ) − 2dθg(X,Y ) + (2 − n)(Dg
Xθg)(Y )

+(n− 2)θg(X)θg(Y ) + (2 − n)|θ
♯g
g |2gg(X,Y )

−g(X,Y )δgθg − (ξ · λ)g(X,Y ). (65)

(iii)

ScalDg = scalg + (2 − n)(n− 1)|θ
♯g
g |2g + 2(1 − n)δgθg + nϕg(θ

♯g
g )

−n(ξ · λ). (66)

where λ is given by (56).
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Proof. Note that Ricg(ξ, Y ) = Ricg(Y, ξ) = 0 and 2dϕg(ξ, Y ) =
Ricg(ξ, Y ) − Ricg(Y, ξ) = 0 . Then, as the structure is Einstein-Weyl, by
(54), we have D(θg)(ξ,X) = 0 for all tangent vector X in Γ(TM). Thus,
(63) follows (62) setting Y = ξ, and sustitution in (52). Thereafter, (62)
reduces to (64) and (i) is proved. Now, (65) and (66) are just rewriting of
(48) and (49) respectively, taking into account (i) and (57) and the proof is
complete.

Note. All metric g ∈ c = [g0]0 will be called the trivial extension of its
restriction g′ ∈ c′ = [g′0] on the horizontal.

Lemma 5.2 If (M,g) is totally geodesic in flat (M,g) then for all horizontal
vector fields X and Y , one has

Ricg(X,Y ) = Ricg
′

(X,Y ), (67)

where g′ is the restriction of g on the horizontal.

Proof. For horizontal vector fields X and Y , one has

Ricg(X,Y ) = g[αβ]g̃(Rg(X,Xα)Y,Xβ)

= gijg(Rg(X,Xi)Y,Xj) + g̃(Rg(X, ξ)Y, ξ)

On the other hand, for horizontal X,Y and Z one has

Rg(X,Y )Z =
⋆
R (X,Y )Z +

{

[(
⋆
∇

g′

Y C)(X,Z) − (
⋆
∇

g′

X C)(Y,Z)]

+[C(X,Z)ϕg(Y ) − C(Y,Z)ϕg(X)]} ξ

where
⋆
R denotes the curvature tensor of the induced Levi-Civita connction

⋆
∇

g′

on the horizontal. Hence,

Ricg(X,Y ) = gijg(
⋆
R (X,Xi)Y,Xj) + g̃(Rg(X, ξ)Y, ξ)

= g
′ijg′(

⋆
R (X,Xi)Y,Xj) + g̃(Rg(X, ξ)Y, ξ)

= Ricg
′

(X,Y ) + g̃(Rg(X, ξ)Y, ξ)

Finally, as (M,g) is totally geodesic in M which is flat, we have [7, page 97 ]

Rg(X, ξ)Y = R(X, ξ)Y = 0.

Thus,

Ricg|hor = Ricg
′

. (68)
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Remark 5.1 Under hypothesis of lemma 5.2, since Ricg(ξ,X) = Ricg(X, ξ),
it follows (68) that on leaves of the integrable screen distribution, one has

scalg|M ′ = scalg
′

(69)

where M ′ is any leaf of S(TM).

Note. For a Weyl screen structure D relative to (M, c, S(TM)), as for
any g ∈ c, the associate 1−form θg is horizontal,we will indistinctly note by
θg its restriction on the horizontal. Thus, for horizontal vectors X, Y , we
have

(

Dg
Xθg

)

(Y ) = X · θg(Y ) − θg(
⋆
∇

g′

X Y + C(X,Y )ξ) =

(

⋆
∇

g′

X θg

)

(Y ). (70)

Now, we state the following.

Theorem 5.1 Let (M, c, S(TM),D) be an Einstein-Weyl screen structure
quadruplet in the Lorentzian space R

n+2
1 and D′ the (Riemannian) induced

Weyl structure by D on the conformal structure (M ′, c′) where M ′ is a leaf
of the totally umbilical integrable screen distribution S(TM)and c′ = c|M ′ .
Then,

(a) D′ is a (Riemann) Einstein-Weyl structure relative to (M ′, c′). Fur-
thermore, the Einstein-Weyl functions ∧ and ∧′ relative to g ∈ c and
g′ = g|M ′ ∈ c′ respectively, are related along M ′ by

1

2
(∧ − ∧′) = ϕg(θ

♯g
g ) + 2(ξ · λ). (71)

(b) If the screen foliation is compact and the Cotton-York tensor [12] of
D′ vanishes identically, then the Weyl screen structure D relative to
(M, c, S(TM)) is closed.

(c) Along compact leaves of S(TM), the trivial extension g to (M, c) of
the Gauduchon metric [10] associated to (M ′, c′,D′) satisfies

(i)

Scalg − (n+ 2)|θ
♯g
g |2g = G, (72)

(ii)

ScalDg + n(n− 4)|θ
♯g
g |2g − (3 − 2n)ϕg(θ

♯g
g ) + n(ξ · λ) = G (73)

where G is the Gauduchon constant [10].
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Proof. Let X, Y be horizontal vector fields. By use of ( 54), lemma 5.2,
(61) and (64), we have

Ricg
′

(X,Y ) = Ricg(X,Y )

= dϕg(X,Y ) −
1

2
D(θg)(X,Y )

+

[

1

2
∧−[(2 − n)|θ

♯g
g |2g − δgθg − 2(ξ · λ)]

]

g(X,Y ).

where ∧ is the Einstein-Weyl function with respect to g ∈ c. Hence, from
(70) we have

Ricg
′

(X,Y ) = dϕg(X,Y ) −
1

2
D′(θg)(X,Y )

+

[

1

2
∧ −[(2 − n)|θ

♯g
g |2g − δgθg − 2(ξ · λ)]

]

g′(X,Y ).

with

D′(θg)(X,Y ) = (2 − n)

[

(
⋆
∇

g′

X θg)(Y ) + (
⋆
∇

g′

Y θg)(X) − 2θ(X)θ(Y )

]

(74)

The symmetry of the (0, 2)−tensors Ricg
′
, D′(θg) and g′ leads to dϕg(X,Y ) =

0 and

Ricg
′

(X,Y ) = −
1

2
D′(θg)(X,Y )+

+

[

1

2
∧′ −[(2 − n)|θ

♯g
g |2g′ − δg′θg′ ]

]

g′(X,Y ). (75)

with
∧′ = ∧ − 2

[

ϕg(θ
♯g
g ) + 2(ξ · λ)

]

.

It follows (75) that (M ′, c′,D′) is an Einstein-Weyl structure on the Rie-
mannian leaf M ′ [11] with Einstein-Weyl function ∧′ relative to g′ as given
in (71).

Now, let g ∈ c denote the trivial extension of the standard metric of
(M ′, c′,D′) and θg the associated 1−form. We show that dθg = 0. Suppose
M ′ is a compact leaf of S(TM) and that the Cotton-York tensor of D′

vanishes identically. Then, we know by Ianov result in [12] that
⋆
∇

g′

θg = 0

where
⋆
∇

g′

is the Levi-Civita connection of g′ = g|M
′ the standard metric of

(M ′, c′,D′). Then using (70), we have for horizontal vector fields X and Y ,

(

D
g
Xθg

)

(Y ) =

(

⋆
∇

g′

X θg

)

(Y ) = 0.
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Finally, using (63) and the fact that θg is horizontal, we deduce that θg is
parallel with respect to Dg, that is Dg = 0. Hence, dθg = 0 and θgis closed
and (b) is proved.

Note that we have[10] on (M ′, c′,D′, )

ScalD
′

g′ = Scalg
′

+ 2(n− 1)δg′θg′ − (n − 1)(n− 2)|θ
♯g′

g′ |
2
g′ . (76)

Also, the following relation defines the Gauduchon’s constant G:

ScalD
′

g′ + n(n− 4)|θ
♯g′

g′ |
2
g′ = G (77)

Then, (i) in (c) is a simple consequence of remark 5.1. On the other
hand, using (66), remark 5.1 and (76), one has along M ′

ScalDg |M ′ = ScalD
′

g′ − 4(n − 1)δg′θg + (3 − 2n)ϕg(θ
♯g
g ) − n(ξ · λ). (78)

So,

ScalDg |M ′ + n(n− 4)|θ
♯g
g |2g + 4(n − 1)δg′θg

−(3 − 2n)ϕg(θ
♯g
g ) + n(ξ · λ) = ScalD

′

g′ + n(n− 4)|θ
♯g′

g′ |
2
g′ . (79)

Then, (ii) follows (79) and (77) and the proof is complete.

6 Lightlike real hypersurfaces of Kaehler mani-

folds

Let (M,g0, J) be a real 2m−dimensional (m > 1) indefinite almost hermi-
tian manifold, where g0 is a pseudo-Riemannian metric of index q = 2ν,
0 < ν < m. Let (M, c = [g0]0) be a lightlike hypersurface of M endowed
with the conformal structure c = [g0]0 where g0 is the degenerate induced
metric on M by g0. As the ambiant manifold M has an additional structure
J , it is possible to construct a particular screen distribution on M such that
J(TM⊥)⊕J(tr(TM)) be a vector subbundle of S(TM) of rank 2 [7]. More
precisely, there exists a nondegenerate almost complex distribution D0 with
respect to J such that

S(TM) =
(

J(TM⊥) ⊕ J(tr(TM))
)

⊥ D0. (80)

Then, the tangent bundle TM splits as follows

TM =
(

J(TM⊥) ⊕ J(tr(TM))
)

⊥ D0 ⊥ TM⊥. (81)

Consider

∆ =
(

J(TM⊥) ⊥ TM⊥)
)

⊥ D0 ⊂ TM, (82)
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and let σ and Q be the projection morphisms of TM on ∆ and J(tr(TM)),
respectively. Also, consider the two isotropic vector fielfs U = −JN and
V = −Jξ. Now, define on M ,

θ0(X) = g0(X,V ) (83)

and for g = e−2fg0 ∈ c, associate the 1-form

θg(X) = θ0(X) + df. (84)

For all tangent vector X in TM , one has

X = σX + θ0(X)U (85)

and
JX = FX + θ0(X)N (86)

where F is (1, 1)−tensor globally defined on M by F = J ◦σ. It follows that

F 2X = −X + θ0(X)U, θ0(U) = 1, (87)

that is (F, θ0, U) defines an almost contact structure on M [7].
Note. For the remainder of the text, (M,g0, J) is a Kaehler manifold.

We prove the following technical result.

Lemma 6.1 For all tangent vector fields X, Y in TM ,

(i)
(

D
g0

X θ0
)

(Y ) = θ0(Y )ϕg0
(X) −B(X,FY );

(ii)
(

D
g0

XF
)

(Y ) = θ0(Y )ANX −B(X,Y )U ;

(iii) ϕg0
(X) = − θ0

(

Dg0

X

)

;

(iv) Dg0

X θ
♯g0

0 = F (
⋆
Aξ X) + ϕg0

(X)θ
♯g0

0 .

Proof. Note that η(θ
♯g0

0 ) = 0, and θ
♯g0

0 = V . Then we have

(

D
g0

X θ0
)

(Y ) = (Dg0

X g0)(Y, θ
♯g0

0 ) + g0(Y,D
g0

X θ
♯g0

0 )

= B(θ
♯g0

0 ,X)η(Y ) − g0(Y,D
g0

X Jξ). (88)

Also, as J is parallel with respect to the Levi-Civita connection on M , we
have

Dg0

X Jξ = −J(
⋆
Aξ X) − ϕg0

(X)θ
♯g0

0 −B(X,Jξ)N.

Then, contracting by Y with respect g0 leads to

g0(D
g0

X Jξ, Y ) = g0(D
g0

X Jξ, Y ) = B(X,FY ) − ϕg0
(X)θ0(Y ) +B(X,V )η(Y ).

Substituting in (88) gives (i).
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Now, we have

(Dg0

X F )(Y ) = ∇X(FY ) −B(X,FY )N − F (Dg0

X Y ), (89)

with ∇ the Levi-Civita connection of (M,g0). As FY = JY − θ0(X)N , one
has by a straightforward use of Gauss-Codazzi formulae

∇X(FY ) = F (Dg0

X Y ) +B(X,FY )N + θ0(Y )ANX −B(X,Y )U,

whose subtitution in (89) leads to (ii).
From (i), one has,

(Dg0

X θ0)(U) = ϕg0
(X) −B(X,FU)

As FU = 0, this is equivalent to

ϕg0
(X) = (Dg0

X θ0)(U) = X · θ0(U) − θ0(D
g0

XU) = −θ0(D
g0

XU)

Finally, replacing Y by ξ in (ii), we have

0 = (Dg0

X F )(ξ) = Dg0

X (Fξ) − F (Dg0

X ξ)

= D
g0

X (Jξ) − F (−
⋆
Aξ X + ϕg0

(X)ξ)

= −Dg0

X θ
♯g0

0 + F (
⋆
Aξ X) + ϕg0

(X)θ
♯g0

0 ,

which gives (iv) and the proof is complete.

Corollary 6.1 Let (M, c = [g0]0) be a conformal structure on the totally
geodesic lightlike hypersurface (M,g0) of the Kaehler manifold (M,g0J).
Then,

(i)
(

D
g0

X θ0
)

(Y ) = θ0(Y )ϕg0
(X)

(ii) Dg0

X θ
♯g0

0 = ϕg0
(X)θ

♯g0

0 .

Proof. Follows lemma 6.1 and theorem 2.1.�
Suppose the second fundamental form of the screen distribution given

by (80) is symmetric on S(TM) so that the latter is integrable. Consider

on (M, c, S(TM)) the Weyl screen structure DJ defined by (33) where for

each g ∈ c the associated 1−form θg is given by (84). For DJ to be closed
we prove the following.

Theorem 6.1 The Weyl structure DJ relative to (M, c, S(TM)) is closed
if and only if the 1−forms θ0 and ϕg0

are proportional.
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Proof. For all tangent vector fields X, Y in TM , we have

dθ0(X,Y ) =
1

2

[

D
g0

X θ0(Y ) −D
g0

Y θ0(X)
]

and by use of corollary 6.1, one has

dθ0(X,Y ) =
1

2
[ϕg0

(X)θ0(Y ) − ϕg0
(Y )θ0(X)]

=
1

2
[ϕg0

∧ θ0] (X,Y ).

Thus, θ0 is closed if and only θ0 and ϕg0
are proportional.
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