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Abstract— The Active Apearence Models (AAM) are often techniques and our proposition will be explain. The section

used in Man-Machine Interaction for their ability to align the |\ will presents comparison and we will conclude in section
faces. We propose a new normalization method for AAM based

on distance map in order to strengthen their robustness to
differences in illumination. Our normalization do not use the
photometric normalization protocol classically used in AAM and
is much more simpler to implement. Compared to Distance  This illumination problem in AAM is far from new.

Map AAM performances of [1] and other AAM implementation  Recently, [6] have proposed a two step method. They
which use CLAHE [2] normalization or gradient information, our  first used an edge-filtering pre-processing, using a Gabor

proposition is at the same time much robust to illumination and .
AAM initialization. The tests have been drive in the context of transform, which allows the AAMs to roughly converge

generalization: 10 persons with frontal illumination from M2vTs  t0 the targeted face. And then, they used a patch filtering
database [3] were considered to build the AAM, and 17 persons pre-processing, some kind of adaptive histogram equadizat

under 21 different illuminations from CMU database [4] were method, to refine the convergence. [1] and [7] used Distance
used for the testing base. Map instead of grey-level image texture. Distance Map (DM)
are pictures in which each pixel level is equal to its distanc
to the nearest edge pixel. In [7], six DM per person were
In the context of Man-Machine Interaction, face alignmenhade from six different grayscale pictures. This allowed to
(precise detection of key elements of the face: eyes, nageate an average DM that extracts the constant features of a
and mouth) is a necessary step for face recognition, gesttaee, using Hausdorff Distance [8]. [1] clearly pointed tha
analysis and lip reading. The Active Appearance Modetpialities of DM when used with AAMs. Nevertheless, they
(AAMSs) initially proposed by Cootes in [5] allow to detectimplemented the classical AAM photometric normalization
finely the outlines of those key elements. To do so, the AAMwethod which was time consuming and used some persons
combine shape information with texture information. Indlee from CMU database to learn the model, which was tested on
the AAMs are based on a priori knowledge of shapes (pointther persons from the same database. Therefore the AAM
of interests connected to each other) and shape-free ¢éaxtuearned CMU background information which facilitates the
of a training database. They can thus be used to generad@vergence on the tests images.
a set of plausible representations of shapes and textures of
the learned objects. They also allow the search for objects i In the next section, different techniques will be exposed
images by an optimization process on model parameters,b@fore the presentation of our specific normalization.
order to match the model as well as possible on the image
zone containing the object.

Il. STATE OF THEART

I. INTRODUCTION

I1l. PRE-PROCESSES

After having introduced the AAM, we will rapidly propose
The targeted applications are meant to be used on embedthed different pre-processes to which we will compare our
systems (mobile phones, game consoles) in both indo@roposition explain in section III-C.
and outdoors environments. However, this implies a perfe'&t Active A Model
robustness to illumination variations, and since the AAMEs a" ctive Appearance Models
partially based on texture analysis, they are quite semsiti 1he AAMs are a pattern recognition method proposed in
to illumination conditions. We therefore propose a ne#fie 90's (see [5] and [9]) for medical image processing and
normalization procedure dedicated to the AAM which use tHace analysis. They works in two phases:
Distance Map instead of gray level textures and compare it toe In the 1st phase, they learn how a human face looks
standard methods that have already been proposed to addresslike by creating a mathematical model, using a data-
the specific problem of illumination robustness. base of annoted face pictures. That model includes the
memorization of the mean shape and the mean texture
In the next section, we will present the different methods of a human face, and their main variation modes throw
proposed by the scientific community to improve the AAM  Principal Component Analysis (PCA), according to the
robustness illumination. In section Ill, different well duwn picture learning database. A PCA on a shape training



base and a PCA on a shape-free texture training base are
applied respectively in order to create the statisticapsha
and texture models given by the formulas:

Ti = Loy + &, * b, and 9i = Gmoy + (I)g * bg (1)

. . . Fig. 1. Example of a face search with the standard AAM.
with z; and g; are respectively the synthesized shape 9 P

and texture,z,,,, and gm., the mean shape and the
mean texture®, and®, the matrices of eigenvectors of
shape and texture covariance matrices andndb, the
controlling vectors of the synthesized shape and texture.
Another PCA is then applied on several examples of
which is the concatenation of andb, in order to obtain  Fig. 2. Example of a face search with the AAM and CLAHE process.
the appearance parameter

b=®xc 2

perfectly.
with @ the matrix of PCA eigenvectors: is a vector
controlling b, andb, (equation 2) at the same time, that 2) Gradient texture: CLAHE equalization improve the
is to say the shape (first equation 1) and texture (secomuns in the context of profil or semi-profil illumination.
equation 1) of the model. Then, AAMs create a regressii®r that reason, we extract the gradient norm of the CLAHE
matrix by exploring the possibilities of the model it hagmages to produce the model and the tests images illustrated
just created, allowing the algorithm to predict how tdn Fig 3. However, since the gradient-processed pictures ar
adapt to any situation. not subject to a high variability of luminosity, the photome

« In the 2nd phase, the AAM seeks a face in a picture gyprmalization described above might not be necessary. To
minimizing the difference of the model’s texture to thevaluate this assumption, two sets of tests will be madeér wit
texture it is placed on. That minimization is done througBnd without normalization.
a number of iterations of the following iterated algorithm.
First, the AAMs use the regression matrix to determine 3) Distance Map:Finally, we propose to test the usefulness
which parameter has to be changed, and then, the mo@k|Distance Maps (DM) in AAMs based face alignment

goes through a few tests in order to find the best valii@ethods (see [1] and [7]). These DM are created first by
for that parameter. extracting the edges out of a CLAHE processed picture, and

If a same illumination is used with all the pictures presdntdn€n by assigning to each pixel a level corresponding to
to this algorithm, then it will work perfectly well. However it distance to the nearest edge pixel. The DM is specified
due to the fact that the AAMs is based on textures, aFcording to this equation :
slight modification in illumination will cause a huge loss in DMJi,jl= min (V/(i—-k)?2+(G—1)?) 3)
efficiency. To solve this problem, a photometric normalat {k,iye{E}
has been introduced in that algorithm. It makes sure that eagith pa/[i, j] the value of the DM infi,j] coordinates
picture luminosity has the same first an second order statistyixel, and £ the set of edges pixels coordinates. The idea
[9], thus improving the efficiency of the AAMs. However,is to provide the AAMs with edge information, which isn't
this doesn't solve the main problem, which is the sensjtivilsensitive to illumination. However, since the AAMs need
to the angle of illumination. In order to solve this problemextures to converge with a high efficiency, we provide them
following solutions have been formulated: adaptive higtag yyith a synthetic texture filed only with edge information. din
equalization, gradient texture, and distance maps. although this idea is indeed related to the use of a gradient p
B. Pre-processing for robustness to illumination variaso ~ Process, the edge information is not limited to the pixetsel
1) Adaptive histogram:As Fig 1 shows it, the classical to an edge, but spread throughout th_e entire picture. dem,e_:f

o .’ the AAMs have a lot more informative texture to work with
AAMs works on the original grayscale pictures and nee%nd can converge more easily. See Fig 4 for an example of

few iterations to converge. Like [6], we perform a Contra . . i
Limited Adaptive Histogram Equalization (CLAHE) [Z]ISnpioC\f[vu:Ze AAMs converge easily on a face in a DM-processed

This pre-process divides the picture into 64 tiles, creétes
mapping functions associated to these 64 tiles. Each pixel i
then processed using the 4 adjoining tile’s mapping funstio
the color of the resulting pixel being a bilinear interpalat

of the results given by these 4 mapping functions. The
result is a smooth picture with a much more homogeneous
illumination. As it can be seen in Fig 2, the AAM preceded
by a CLAHE equalization need few iterations to convergeFig. 3. Example of a face search with the AAM and Gradient pssce
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Fig. 4. Example of a face search with the AAM and Distance MaTgss. i
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Fig. 6. The new normalization of Distance Map.
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Fig. 5. Visualization of the problem of the Distance Map with the scale

normalization. Fig. 7. The 10 faces from M2VTS database used in the trainlap@ of
AAMs.

C. Scale Normalization

In the standard use of AAMs, photometric normalizatioby 2 (second line of Fig 6), so the new normalization consists
is an important step of the algorithm. Indeed, it permit® multiply the Distance Map of second line of Fig 6 by 0.5
to compare all texture images despite their different grdyecause to compare this Distance Map to the Distance Map
level dynamics. At the same time, this normalization is dor@ the model (first line of Fig 6) we have a scale of 0.5.
at every computation of the residual error which introduce
complexity and increase time calculation. In addition tBice IV. RESULTS
Maps A.‘AM Of.[l] have been testeo_l with the photometrl_c O™ our AAM algorithm creates the face model in a 64
malization while gray level dynamics only vary according tQ. . . . .

: ; . : xels*64 pixels window so that the mean texture contains
the scale of the model. Indeed, informations contained in D .

X . 430 pixels.

are distances between edges which are larger and smaller whe
the scale of the model is respectively larger and smaller. SO\Ne will compare our brobosition to the Dre-brocesses
we propose to replace the standard photometric normaiizat resented in seF():tion I-B pin Ft)he context of e?nerglization
by a new normalization which consists only to multiply al he AAM will use ten persons with frontal illugr]ninati N from
DM pixels by a scalar. This factor is the scale of the mod SVTS databl;se eFi p; tg Isearn a f;ce model an dotest(; wil
which is the first element of the pose parameter. This n%Vé made on sevefwtegen) ersons from CMU database (Fig 8)
normalization is faster than the photometric normalizgtio P 9

because mean and variance of texture is no longer computlélalder twenty one different illuminations leading to 357ttes

Instead of photometric normalization, the DM is multiplieg Images.

the current model scale given by the pose paramniEter . L I .
g y P P The robustness to the illumination angle will first be il-

DM = (T[1]+ 1)« DM, (4) lustrated, followed by some tests focused on initializatio

The Fig 5 presents the standard Distance Map creation of FﬁnS't'V'ty'
on a simple image in two scale. In the part of the figure
called "Regions of interest warped in a same size” we put t
model in scale of one and two in the same size to have aAll following graphs represent the convergence percentage
comparison of the input image of the residual error when tiversus the angle of illumination. We consider that a model
same model is in scale of one and in a scale of two. We chas converged if the localization error of the eyes and mouth
easily see the problem of the normalization in the Region oénter and the nose (as pointed in Fig 9) are under a threshold
interest: the gray level dynamics of DM of the same objet bof Deye/4, Deye being the distance between the eyes.
in two different scale are very different. So, residual el Figure 10 shows the CMU acquisition system: each person
hedged. is recorded under 21 different illuminations created by a
In the Fig 6 we can see improvements of Distance Maptash system” laid out from the left to right of faces. In
with the new normalization : the gray level dynamics ofhe next graphs, an illumination of 1 means the light came
Distance Maps with the new normalization of the same objbm the left of the subject, and an illumination of 21, that i
but in two different scale are noticeably the same. In thisame from its right; a central illumination being around 1-
example the scale of the model (first line of Fig 6) is mulggli

hEé Sensitivity to the illumination
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Fig. 10. The CMU system of acquisition: positions of 17 of 2sHes (4 left
flashes are not visible in this view) and the camera used fatiog facial

images.

Average corvergence percentage by illumination
i Standard (square) / Adaptative Eyalization (o)
& =222 R ‘s *
. P
o #/ ¥ 1\ \\
? &0
S om 1%, \ e
Fig. 8. The 17 faces from PIE database used in the searchagppif AAMs z X \
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Fig. 11. Convergence comparison between the standard AAis(g) and
AAMs with CLAHE pre-process (0).

Fig. 9. Error localization.

Average comergence percentage by lumination
normesd gradient (sguare) ¢ unnomed gradient (o)
®

ol R ym L
1) Grayscale pictures¥ig 11 shows how much a CLAHE 8 » i ) V‘\
pre-processing brings to the AAM’s robustness to the angle m 7 e I a /'\ /'
of illumination. We can indeed see that, with CLAHE, the e o
AAMs get a 90% rate of successful convergence for the 10 s jz Wi
most central illuminations, whereas without this pre-gsx; B ¢
the AAMs only get a 90% success rate on 4 illuminations. .
10
2) Gradient texture:On Fig 12, we compare the use of S

photometric normalization for gradient-processed pesuand s
as we can see, it is fairly difficult to tell which one is beste WF_ v c ison between AAMs with Gradiesipo
. _ f _ 1g. . onvergence comparison between S wi raai cess
however reta'n the_ normed-gradient pre-process for tfteofes (square) and AAMs with Gradient pre-process but without tpimetric
the study for its slightly better results on average. normalization (o).
We can also see on Fig 13 that although a gradient

pre-process brings a huge improvement for the extreme
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Fig. 13. Convergence comparison between AAMs with CLAHE pmesess Fig. 15. Convergence comparison between AAMs with Distaneg re-
(square) and AAMs with Gradient pre-process (0). process [1](square) and AAMs with Distance Map pre-proeeis the new
photometric normalization (0).
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Fig. 14. Convergence comparison between AAMs with CLAHE pmeesess

(square) and AAMs with Distance Map pre-process with the peatometric  Fig. 16. Convergence comparison in translation betweent#melard AAMs

normalization (o). (square) and AAMs with CLAHE pre-process (0) for only the léhtal
illuminations of the PIE database faces.

illuminations, it also brings a slight loss of about 10% of . L _
successful convergence when the illumination is more aentrB- Sensitivity to the initialization point
The gain obviously comes from the fact that gradient is As we will see, these gains in term of illumination
less sensitive to illumination. And the loss comes from th@bustness come with a gain in terms of a less sensitivity to
fact that the density of information is quite low since onlyhe initialization point. The X-axis in the following figuse
the areas close to an edge have information, while evempresent different initialization of the AAMs around the
pixel of a grayscale picture contains information. Therefo center of the face. We of course kept our results from the
the AAMs will necessarily have some trouble convergingrevious illumination tests, when the AAMs always started
precisely with gradient-processed pictures. That leadt¢6] centered on the targeted face, but we also added 4 starting
chose a two step algorithm: first close in roughly on thgoint on each side of that face, every 2 pixels. Cootes
targeted face using gradient-processed pictures, thaisphg suggested in [10] that the model could be disrupted by 10%
using grayscale pictures. in translation. In our case, the face model is contained id4 a 6
pixels*64 pixels window so that the face model is around 40
3) Distance Map:However, if we use a DM pre-processingpixels wide. So we expect to have an initialization robussne
with our specific normalization, a 2 step algorithm is n@n translation of our algorithm at around 4 pixels.
longer necessary to obtain a precise convergence whatever t
illumination, as we can see in Fig 14. As we can see in the Fig 16 and 17, a CLAHE pre-
The mean convergence ratio is still of 90% for the centrarocessing is as interesting concerning the problem ahlnit
illuminations, and doesn’t go below 75% for the extremgation sensitivity as it was concerning the angle of illoax
illuminations, except for 1 single illumination. But thissult tion. Fig 17 concerns all the 17 faces and all the 21 illumina-
would not be possible without our special normalization. Agons of the CMU database, whereas Fig 16 only deals with
we can see in the Fig 15, if we use a classical photomettlre 10 central illuminations where CLAHE-processed pisur
normalization as in [1], we lose between 10% and 40% bfd a 90% of successful convergence ratio (llluminations 4 t
successful convergence depending on the illuminationidensl4, see Fig 11).
ered. Fig 18, which only deals with the central illuminations
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Fig. 17. Convergence comparison in translation betweentémelard AAMs
(square) and AAMs with CLAHE pre-process (0) for the 21 illmations of
the PIE database faces.
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Fig. 19. Convergence comparison in translation between Ats CLAHE
pre-process (square), AAMs with Distance Map pre-procetk the new
photometric normalization (0) and AAMs with Gradient pre-gess (tri) for

the 21 illuminations of the PIE database faces.
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Fig. 18. Convergence comparison in translation between Addts CLAHE o
pre-process (square), AAMs with Distance Map pre-proceik the new 2]
photometric normalization (0) and AAMs with Gradient pre-qess (tri) for 3
only the 10 central illuminations of the PIE database faces. (3]
[4]

shows that our specifically normalized DM are always better
than CLAHE-processed pictures and almost always better thé
gradient-processed pictures. In Fig 19, which deals with al
illuminations, we can see this tendency clearly confirmed. WI6]
can interpret the dissymmetry of the graph by noticing that t
presence of several objects in the CMU background (on thg
right of each persons) are quite damaging for the DM-based
AAMs. As it can be noticed in Fig 8, the background of the
learning base M2VTS from witch the AAM was created is[g]
uniform, the regression matrices had then not the podyibili

to learn the specific errors coming from the CMU background[g]

V. CONCLUSION

In this article, we have described a new normalizatioA®l
method for the AAM which use Distance Map instead of grey
level pixels texture to improve the illumination robustses
This proposition was compared to other well known tech-
nigues dedicated to illumination sensitivity in the contex
generalization, meaning that face Active Appearance Model
was extracted from a specific database (M2VTS), tests being
made on other persons in different environments (CMU).
Our proposition is more robust both in terms of illumination
angle (around 85% of successful convergence whatever the
illumination), and in terms of initialization (it has an amge of

10% more of successful convergence than a grayscale method,
and this only on the central illuminations, where the gralec

A methods still work). In the future, we might want to try
and explore the possibility of having better results using a
oriented edge extraction method and of course the Distance
Map and specific normalization we described here.
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