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Email: {denis.giri, maxime.rosenwald, benjamin.villeneuve, sylvain.legallou, renaud.seguier}@supelec.fr

Abstract— The Active Apearence Models (AAM) are often
used in Man-Machine Interaction for their ability to align the
faces. We propose a new normalization method for AAM based
on distance map in order to strengthen their robustness to
differences in illumination. Our normalization do not use the
photometric normalization protocol classically used in AAM and
is much more simpler to implement. Compared to Distance
Map AAM performances of [1] and other AAM implementation
which use CLAHE [2] normalization or gradient information, our
proposition is at the same time much robust to illumination and
AAM initialization. The tests have been drive in the context of
generalization: 10 persons with frontal illumination from M2VTS
database [3] were considered to build the AAM, and 17 persons
under 21 different illuminations from CMU database [4] were
used for the testing base.

I. I NTRODUCTION

In the context of Man-Machine Interaction, face alignment
(precise detection of key elements of the face: eyes, nose
and mouth) is a necessary step for face recognition, gesture
analysis and lip reading. The Active Appearance Models
(AAMs) initially proposed by Cootes in [5] allow to detect
finely the outlines of those key elements. To do so, the AAMs
combine shape information with texture information. Indeed,
the AAMs are based on a priori knowledge of shapes (points
of interests connected to each other) and shape-free textures
of a training database. They can thus be used to generate
a set of plausible representations of shapes and textures of
the learned objects. They also allow the search for objects in
images by an optimization process on model parameters, in
order to match the model as well as possible on the image
zone containing the object.

The targeted applications are meant to be used on embedded
systems (mobile phones, game consoles) in both indoors
and outdoors environments. However, this implies a perfect
robustness to illumination variations, and since the AAMs are
partially based on texture analysis, they are quite sensitive
to illumination conditions. We therefore propose a new
normalization procedure dedicated to the AAM which use the
Distance Map instead of gray level textures and compare it to
standard methods that have already been proposed to address
the specific problem of illumination robustness.

In the next section, we will present the different methods
proposed by the scientific community to improve the AAM
robustness illumination. In section III, different well known

techniques and our proposition will be explain. The section
IV will presents comparison and we will conclude in section
V.

II. STATE OF THE ART

This illumination problem in AAM is far from new.
Recently, [6] have proposed a two step method. They
first used an edge-filtering pre-processing, using a Gabor
transform, which allows the AAMs to roughly converge
to the targeted face. And then, they used a patch filtering
pre-processing, some kind of adaptive histogram equalization
method, to refine the convergence. [1] and [7] used Distance
Map instead of grey-level image texture. Distance Map (DM)
are pictures in which each pixel level is equal to its distance
to the nearest edge pixel. In [7], six DM per person were
made from six different grayscale pictures. This allowed to
create an average DM that extracts the constant features of a
face, using Hausdorff Distance [8]. [1] clearly pointed outthe
qualities of DM when used with AAMs. Nevertheless, they
implemented the classical AAM photometric normalization
method which was time consuming and used some persons
from CMU database to learn the model, which was tested on
other persons from the same database. Therefore the AAM
learned CMU background information which facilitates the
convergence on the tests images.

In the next section, different techniques will be exposed
before the presentation of our specific normalization.

III. PRE-PROCESSES

After having introduced the AAM, we will rapidly propose
the different pre-processes to which we will compare our
proposition explain in section III-C.

A. Active Appearance Models

The AAMs are a pattern recognition method proposed in
the 90’s (see [5] and [9]) for medical image processing and
face analysis. They works in two phases:

• In the 1st phase, they learn how a human face looks
like by creating a mathematical model, using a data-
base of annoted face pictures. That model includes the
memorization of the mean shape and the mean texture
of a human face, and their main variation modes throw
Principal Component Analysis (PCA), according to the
picture learning database. A PCA on a shape training



base and a PCA on a shape-free texture training base are
applied respectively in order to create the statistical shape
and texture models given by the formulas:

xi = xmoy + Φx ∗ bx and gi = gmoy + Φg ∗ bg (1)

with xi and gi are respectively the synthesized shape
and texture,xmoy and gmoy the mean shape and the
mean texture,Φx andΦg the matrices of eigenvectors of
shape and texture covariance matrices andbx andbg the
controlling vectors of the synthesized shape and texture.
Another PCA is then applied on several examples ofb

which is the concatenation ofbx andbg in order to obtain
the appearance parameterc:

b = Φ ∗ c (2)

with Φ the matrix of PCA eigenvectors.c is a vector
controlling bx andbg (equation 2) at the same time, that
is to say the shape (first equation 1) and texture (second
equation 1) of the model. Then, AAMs create a regression
matrix by exploring the possibilities of the model it has
just created, allowing the algorithm to predict how to
adapt to any situation.

• In the 2nd phase, the AAM seeks a face in a picture by
minimizing the difference of the model’s texture to the
texture it is placed on. That minimization is done through
a number of iterations of the following iterated algorithm.
First, the AAMs use the regression matrix to determine
which parameter has to be changed, and then, the model
goes through a few tests in order to find the best value
for that parameter.

If a same illumination is used with all the pictures presented
to this algorithm, then it will work perfectly well. However,
due to the fact that the AAMs is based on textures, any
slight modification in illumination will cause a huge loss in
efficiency. To solve this problem, a photometric normalization
has been introduced in that algorithm. It makes sure that each
picture luminosity has the same first an second order statistics
[9], thus improving the efficiency of the AAMs. However,
this doesn’t solve the main problem, which is the sensitivity
to the angle of illumination. In order to solve this problem,
following solutions have been formulated: adaptive histogram
equalization, gradient texture, and distance maps.

B. Pre-processing for robustness to illumination variations

1) Adaptive histogram:As Fig 1 shows it, the classical
AAMs works on the original grayscale pictures and need
few iterations to converge. Like [6], we perform a Contrast
Limited Adaptive Histogram Equalization (CLAHE) [2].
This pre-process divides the picture into 64 tiles, createsthe
mapping functions associated to these 64 tiles. Each pixel is
then processed using the 4 adjoining tile’s mapping functions,
the color of the resulting pixel being a bilinear interpolation
of the results given by these 4 mapping functions. The
result is a smooth picture with a much more homogeneous
illumination. As it can be seen in Fig 2, the AAM preceded
by a CLAHE equalization need few iterations to converge

Fig. 1. Example of a face search with the standard AAM.

Fig. 2. Example of a face search with the AAM and CLAHE process.

perfectly.

2) Gradient texture: CLAHE equalization improve the
results in the context of profil or semi-profil illumination.
For that reason, we extract the gradient norm of the CLAHE
images to produce the model and the tests images illustrated
in Fig 3. However, since the gradient-processed pictures are
not subject to a high variability of luminosity, the photometric
normalization described above might not be necessary. To
evaluate this assumption, two sets of tests will be made: with
and without normalization.

3) Distance Map:Finally, we propose to test the usefulness
of Distance Maps (DM) in AAMs based face alignment
methods (see [1] and [7]). These DM are created first by
extracting the edges out of a CLAHE processed picture, and
then by assigning to each pixel a level corresponding to
its distance to the nearest edge pixel. The DM is specified
according to this equation :

DM [i, j] = min
{k,l}∈{E}

(
√

(i − k)2 + (j − l)2) (3)

with DM [i, j] the value of the DM in [i, j] coordinates
pixel, and E the set of edges pixels coordinates. The idea
is to provide the AAMs with edge information, which isn’t
sensitive to illumination. However, since the AAMs need
textures to converge with a high efficiency, we provide them
with a synthetic texture filed only with edge information. And
although this idea is indeed related to the use of a gradient pre-
process, the edge information is not limited to the pixels close
to an edge, but spread throughout the entire picture. Therefore,
the AAMs have a lot more informative texture to work with
and can converge more easily. See Fig 4 for an example of
how the AAMs converge easily on a face in a DM-processed
picture.

Fig. 3. Example of a face search with the AAM and Gradient process.



Fig. 4. Example of a face search with the AAM and Distance Map process.

Fig. 5. Visualization of the problem of the Distance Map without the scale
normalization.

C. Scale Normalization

In the standard use of AAMs, photometric normalization
is an important step of the algorithm. Indeed, it permits
to compare all texture images despite their different gray
level dynamics. At the same time, this normalization is done
at every computation of the residual error which introduce
complexity and increase time calculation. In addition, Distance
Maps AAM of [1] have been tested with the photometric nor-
malization while gray level dynamics only vary according to
the scale of the model. Indeed, informations contained in DM
are distances between edges which are larger and smaller when
the scale of the model is respectively larger and smaller. So
we propose to replace the standard photometric normalization
by a new normalization which consists only to multiply all
DM pixels by a scalar. This factor is the scale of the model
which is the first element of the pose parameter. This new
normalization is faster than the photometric normalization,
because mean and variance of texture is no longer computed.
Instead of photometric normalization, the DM is multipliedby
the current model scale given by the pose parameterT :

DM = (T [1] + 1) ∗ DM, (4)

The Fig 5 presents the standard Distance Map creation of [1]
on a simple image in two scale. In the part of the figure 5
called ”Regions of interest warped in a same size” we put the
model in scale of one and two in the same size to have a
comparison of the input image of the residual error when the
same model is in scale of one and in a scale of two. We can
easily see the problem of the normalization in the Region of
interest: the gray level dynamics of DM of the same objet but
in two different scale are very different. So, residual error is
hedged.

In the Fig 6 we can see improvements of Distance Maps
with the new normalization : the gray level dynamics of
Distance Maps with the new normalization of the same objet
but in two different scale are noticeably the same. In this
example the scale of the model (first line of Fig 6) is multiplied

Fig. 6. The new normalization of Distance Map.

Fig. 7. The 10 faces from M2VTS database used in the training phase of
AAMs.

by 2 (second line of Fig 6), so the new normalization consists
to multiply the Distance Map of second line of Fig 6 by 0.5
because to compare this Distance Map to the Distance Map
of the model (first line of Fig 6) we have a scale of 0.5.

IV. RESULTS

Our AAM algorithm creates the face model in a 64
pixels*64 pixels window so that the mean texture contains
1430 pixels.

We will compare our proposition to the pre-processes
presented in section III-B in the context of generalization:
the AAM will use ten persons with frontal illumination from
M2VTS database (Fig 7) to learn a face model and tests will
be made on seventeen persons from CMU database (Fig 8)
under twenty one different illuminations leading to 357 test
images.

The robustness to the illumination angle will first be il-
lustrated, followed by some tests focused on initialization
sensitivity.

A. Sensitivity to the illumination

All following graphs represent the convergence percentage
versus the angle of illumination. We consider that a model
has converged if the localization error of the eyes and mouth
center and the nose (as pointed in Fig 9) are under a threshold
of Deye/4, Deye being the distance between the eyes.

Figure 10 shows the CMU acquisition system: each person
is recorded under 21 different illuminations created by a
”flash system” laid out from the left to right of faces. In
the next graphs, an illumination of 1 means the light came
from the left of the subject, and an illumination of 21, that it
came from its right; a central illumination being around 10-12.



Fig. 8. The 17 faces from PIE database used in the searching phase of AAMs
displayed under the 21 different illuminations.

Fig. 9. Error localization.

1) Grayscale pictures:Fig 11 shows how much a CLAHE
pre-processing brings to the AAM’s robustness to the angle
of illumination. We can indeed see that, with CLAHE, the
AAMs get a 90% rate of successful convergence for the 10
most central illuminations, whereas without this pre-process,
the AAMs only get a 90% success rate on 4 illuminations.

2) Gradient texture:On Fig 12, we compare the use of
photometric normalization for gradient-processed pictures, and
as we can see, it is fairly difficult to tell which one is best. We
however retain the normed-gradient pre-process for the rest of
the study for its slightly better results on average.

We can also see on Fig 13 that although a gradient
pre-process brings a huge improvement for the extreme

Fig. 10. The CMU system of acquisition: positions of 17 of 21 flashes (4 left
flashes are not visible in this view) and the camera used for creating facial
images.

Fig. 11. Convergence comparison between the standard AAMs (square) and
AAMs with CLAHE pre-process (o).

Fig. 12. Convergence comparison between AAMs with Gradient pre-process
(square) and AAMs with Gradient pre-process but without photometric
normalization (o).



Fig. 13. Convergence comparison between AAMs with CLAHE pre-process
(square) and AAMs with Gradient pre-process (o).

Fig. 14. Convergence comparison between AAMs with CLAHE pre-process
(square) and AAMs with Distance Map pre-process with the newphotometric
normalization (o).

illuminations, it also brings a slight loss of about 10% of
successful convergence when the illumination is more central.
The gain obviously comes from the fact that gradient is
less sensitive to illumination. And the loss comes from the
fact that the density of information is quite low since only
the areas close to an edge have information, while every
pixel of a grayscale picture contains information. Therefore,
the AAMs will necessarily have some trouble converging
precisely with gradient-processed pictures. That lead [6]to
chose a two step algorithm: first close in roughly on the
targeted face using gradient-processed pictures, then precisely
using grayscale pictures.

3) Distance Map:However, if we use a DM pre-processing
with our specific normalization, a 2 step algorithm is no
longer necessary to obtain a precise convergence whatever the
illumination, as we can see in Fig 14.

The mean convergence ratio is still of 90% for the central
illuminations, and doesn’t go below 75% for the extreme
illuminations, except for 1 single illumination. But this result
would not be possible without our special normalization. As
we can see in the Fig 15, if we use a classical photometric
normalization as in [1], we lose between 10% and 40% of
successful convergence depending on the illumination consid-
ered.

Fig. 15. Convergence comparison between AAMs with Distance Map pre-
process [1](square) and AAMs with Distance Map pre-processwith the new
photometric normalization (o).

Fig. 16. Convergence comparison in translation between the standard AAMs
(square) and AAMs with CLAHE pre-process (o) for only the 10 central
illuminations of the PIE database faces.

B. Sensitivity to the initialization point

As we will see, these gains in term of illumination
robustness come with a gain in terms of a less sensitivity to
the initialization point. The X-axis in the following figures
represent different initialization of the AAMs around the
center of the face. We of course kept our results from the
previous illumination tests, when the AAMs always started
centered on the targeted face, but we also added 4 starting
point on each side of that face, every 2 pixels. Cootes
suggested in [10] that the model could be disrupted by 10%
in translation. In our case, the face model is contained in a 64
pixels*64 pixels window so that the face model is around 40
pixels wide. So we expect to have an initialization robustness
in translation of our algorithm at around 4 pixels.

As we can see in the Fig 16 and 17, a CLAHE pre-
processing is as interesting concerning the problem of initial-
ization sensitivity as it was concerning the angle of illumina-
tion. Fig 17 concerns all the 17 faces and all the 21 illumina-
tions of the CMU database, whereas Fig 16 only deals with
the 10 central illuminations where CLAHE-processed pictures
had a 90% of successful convergence ratio (Illuminations 4 to
14, see Fig 11).

Fig 18, which only deals with the central illuminations



Fig. 17. Convergence comparison in translation between the standard AAMs
(square) and AAMs with CLAHE pre-process (o) for the 21 illuminations of
the PIE database faces.

Fig. 18. Convergence comparison in translation between AAMswith CLAHE
pre-process (square), AAMs with Distance Map pre-process with the new
photometric normalization (o) and AAMs with Gradient pre-process (tri) for
only the 10 central illuminations of the PIE database faces.

shows that our specifically normalized DM are always better
than CLAHE-processed pictures and almost always better than
gradient-processed pictures. In Fig 19, which deals with all
illuminations, we can see this tendency clearly confirmed. We
can interpret the dissymmetry of the graph by noticing that the
presence of several objects in the CMU background (on the
right of each persons) are quite damaging for the DM-based
AAMs. As it can be noticed in Fig 8, the background of the
learning base M2VTS from witch the AAM was created is
uniform, the regression matrices had then not the possibility
to learn the specific errors coming from the CMU background.

V. CONCLUSION

In this article, we have described a new normalization
method for the AAM which use Distance Map instead of grey
level pixels texture to improve the illumination robustness.
This proposition was compared to other well known tech-
niques dedicated to illumination sensitivity in the context of
generalization, meaning that face Active Appearance Model
was extracted from a specific database (M2VTS), tests being
made on other persons in different environments (CMU).
Our proposition is more robust both in terms of illumination
angle (around 85% of successful convergence whatever the
illumination), and in terms of initialization (it has an average of

Fig. 19. Convergence comparison in translation between AAMswith CLAHE
pre-process (square), AAMs with Distance Map pre-process with the new
photometric normalization (o) and AAMs with Gradient pre-process (tri) for
the 21 illuminations of the PIE database faces.

10% more of successful convergence than a grayscale method,
and this only on the central illuminations, where the grayscale
methods still work). In the future, we might want to try
and explore the possibility of having better results using an
oriented edge extraction method and of course the Distance
Map and specific normalization we described here.

REFERENCES

[1] S. Le Gallou, G. Breton, C. Garcia, and R. Séguier, “Distance maps :
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