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1 Introduction

The paper by Y. Wang and D. H. Zhou [1] presents an approach of sensor gain fault detection of
nonlinear systems. The fisrt step of this approach consists on the location of the sensor gain faults that
can be estimated. The proposed algorithm is based on the computation of the failure matrix D such that
the zeros of the linear part of the system (A, 0, C, D) are stable. The second step is the simultaneous
estimation of the state and the fault vectors using the singular systems representation given in [2]. Finally,
the sensor gain faults are estimated using an adaptive estimator. This paper is an interesting contribution
to the sensor gain faults diagnosis of nonlinear systems provided that the proposed approach gives both
the location and the estimation of the failure. This discussion focuses on the existence conditions of
the simultaneous estimation of the state and the fault vector and on the selection of the conditionnally
identifiable faults. It is shown first that the detectability of the pair (A,C) is not necessary and only
the measurement provided by the conditionally detectable sensors are necessary to estimate the state of
the system. An estimation of the fault vector f is then given by the output of the observer using the
conditionally identifiable sensors. Thereafter, we claim that the simultaneous estimation scheme can be
simplified using a low order observer and without using descriptor systems formulation. An nth-order
state observer and a qth-order functional observer which estimates the conditionally identifiable faults
are then proposed. Finally, an algorithm to determine the matrix D based on a detectability condition
is exhibited.

2 On the existence conditions of the observer

This section is devoted to the analysis of the existence conditions of the observer proposed in [1] when
the singular systems description is used. More precisely, the necessary condition of the linear part of the
system is investigated using an output transformation. The singular state-space formulation is therefore
not necessary.

2.1 Problem reformulation using an output transformation

In this section, it is assumed that the conditionnally identifiable sensor gain faults, i.e. the matrix
D, have been computed using the algorithm proposed by Y. Wang and D. H. Zhou [1]. The considered
system is given by eq. (12) in the paper [1]

ẋ = Ax + g(x, u, t) + Bu (1a)
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y = Cx + DfD (1b)

with x ∈ IRn, fD ∈ IRq, y ∈ IRm and rank D = q. As in [1] (Assumption 2), g(x, u, t) is assumed to be
globally Lipschitz with respect to x :

‖g(x1, u, t)− g(x2, u, t)‖ 6 λ ‖x1 − x2‖ ,∀u, ∀t > 0 (2)

where λ > 0 is the Lipschitz constant.
First, we propose an output transformation to isolate the free fault component y1 of the measurement

equation to the faulty measurement y2. Thereafter, it will be shown that only y1 is necessary to estimate
the state x and y2 is only used to deduce the sensor fault estimation f using the state estimation. Recall
that the matrix D is of full column rank, i.e. rank D = q, with at most only one ’1’ in each row. Then
there exist two non singular permutation matrices V ∈ IRm×m and W ∈ IRq×q such that

V DW =
[

0
Iq

]
, V C =

[
C1

C2

]
,

[
y1

y2

]
= V y and f = W T fD (3)

Using this output transformation, the system (1) is then equivalent to

ẋ = Ax + g(x, u, t) + Bu (4a)
y1 = C1x (4b)
y2 = C2x + f (4c)

with y1 ∈ IRm1 (m = m1 + q). In the sequel and without loss of generality, we assume that the system
is of the form (4). Notice that equations (4b) and (4c) correspond to the structure of matrix D given by
eq. (7) in [1].

2.2 State and sensor fault estimation using a singular systems framework

2.2.1 Existence conditions of the observer

Using the approach given in [2], the authors rewrite system (4) as a singular system as follows

Eẋ = Mx + g(x, u, t) + Bu (5a)
y = Hx (5b)

with

x =
[
x
f

]
, E =

[
In 0

]
,M =

[
A 0

]
,H =

[
C1 0
C2 Iq

]
It is easy to see that system (5) is observable at infinity [3] since rank

[
E
H

]
= dim x = n + q. It follows

from this property that the necessary condition for the existence of an observer is reduced to the following
detectability condition [3, 4]

rank
[
µE −M

H

]
= n + q,∀µ ∈ C,Re(µ) > 0 (6)

which can be expressed (see [2]) as minimum phase condition by the use of the expressions of matrices
E, M and H

rank
[
µE −M

H

]
= rank

[
µIn −A 0

C D

]
= n + q,∀µ ∈ C,Re(µ) > 0

⇐⇒ rank

µIn −A 0
C1 0
C2 Iq

 = n + q,∀µ ∈ C,Re(µ) > 0 (7)

⇐⇒ rank
[
µIn −A

C1

]
= n,∀µ ∈ C,Re(µ) > 0 (8)
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The detectability of the singular system (5) is then reduced to the detectability of the pair (A,C1)
which is more tractable than condition (13) in [1]. Thus, the detectability of the pair (A,C) given by
Assumption 1 in [1] is not necessary. Note first that the detectability of the pair (A,C) implies the
detectability of the pair (A,C1) and the converse is not true. For linear systems, i.e. g(x, u, t) = 0, the
detectability of the pair (A,C1) is a necessary and sufficient condition for observer design. In addition,
as it will be shown in section 4, detectability condition (8) is more tractable for the computation of the
matrix D.

2.2.2 On the relations between the choice of the generalized inverse and the observer’s
structure

This section is devoted to the choice of the generalized inverse of the matrix
[

E
H

]
. It will be shown

that the system description (5) makes it possible to light the parts of y1 and y2 in the observer design.
The proposed observer given in [1] (eq. (20)) can be rewritten as follows

ż = Nz + L1y1 + L2y2 + Pg(x̂, u, t) + PBu (9a)
x̂ = z1 + Q11y1 + Q12y2 (9b)
f̂ = z2 + Q21y1 + Q22y2 (9c)

with z1 ∈ IRn, z2 ∈ IRq and

z =
[
z1

z2

]
, P =

[
P1

P2

]
, Q =

[
Q11 Q12

Q21 Q22

]
where matrices P and Q are given by the generalized inverse of the full rank matrix

[
E
H

]
[
P Q

]
=

[
E
H

]†
such that

[
E
H

]† [
E
H

]
= In+q (10)

All generalized inverses of full rank matrices can be parametrized by matrices α with detα 6= 0 and β
such that [5]

α

[
E
H

]
=

[
E1

E2

]
with detE1 6= 0 and

[
E
H

]†
=

[
(E−1

1 − βE2E
−1
1 ) β

]
α (11)

Applying relation (11) with

α =

In 0 0
0 0 Iq

0 Im1 0

 ,

[
E1

E2

]
=

 In 0

C2 Iq

C1 0

 , E−1
1 =

[
In 0
−C2 Iq

]
and β =

[
β1

β2

]
(12)

yields [
E
H

]†
=

[
In − β1C1 β1 0
−C2 − β2C1 β2 Iq

]
=

[
P1 Q11 Q12

P2 Q21 Q22

]
(13)

Then, for all generalized inverses of
[

E
H

]
, we have Q12 = 0 and Q22 = Iq. In addition, matrices Q11

and Q21 are arbitrary since Q11 = β1 and Q21 = β2.
Using relations (24) and (25) in [1] and the generalized inverse (13), one obtains[
L1 L2

]
= F + NQ = F + (PM − FH)Q = F (I −HQ) + PMQ

=
[
F11 F12

F21 F22

] [
In − C1β1 0
−C2β1 − β2 0

]
+

[
(In − β1C1)Aβ1 0
−(C2 + β2C1)Aβ1 0

]
=

[
L1 0

]
(14)

or equivalently L2 = 0 for all generalized inverses of matrix
[

E
H

]
, and the observer (9) becomes

ż = Nz + L1y1 + Pg(x̂, u, t) + PBu (15a)
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x̂ = z1 + β1y1 (15b)
f̂ = z2 + β2y1 + y2 (15c)

Notice that, for all generalized inverses of
[

E
H

]
, only measurement y1 is needed in the state observer

(15a) and for the estimation x̂ in (15b) while the measurement y2 is used to deduce the fault estimation.
If the Moore-Penrose generalized inverse is used as in [1] (see eq. (19) in [1]), one obtains

[
P Q

]
=

[
E
H

]†
=

([
ET HT

] [
E
H

])−1 [
ET HT

]
=

[
(In + CT

1 C1)−1 (In + CT
1 C1)−1CT

1 0
−C2(In + CT

1 C1)−1 −C2(In + CT
1 C1)−1CT

1 Iq

]
=

[
P1 Q11 Q12

P2 Q21 Q22

]
(16)

which corresponds to

β =
[
β1

β2

]
=

[
β1

−C2β1

]
=

[
(In + CT

1 C1)−1CT
1

−C2(In + CT
1 C1)−1CT

1

]
=

[
Q11

Q21

]
(17)

.
A more simple generalized inverse can be choosen as follows

[
P Q

]
=

[
E
H

]†
=

[
P 1 Q11 Q12

P 2 Q21 Q22

]
=

[
In 0 0
−C2 0 Iq

]
(18)

which corresponds to the case β = 0 and the observer (9) or (15) can be simplified as

ż = Nz + L1y1 + L2y2 + Pg(x̂, u, t) + PBu (19a)
x̂ = z1 (19b)
f̂ = z2 + y2 (19c)

In comparison with the observer (15), the measurement y1 does not act in an explicit way on the
outputs x̂ and f̂ of the observer.

Using again relations (24) and (25) in [1] and the generalized inverse (18), the observer (19) is given
by

N = PM − FH =
[

In

−C2

] [
A 0

]
−

[
F11 F12

F21 F22

] [
C1 0
C2 Iq

]
=

[
A− F11C1 − F12C2 −F12

−C2A− F21C1 − F22C2 −F22

]
(20)

and [
L1 L2

]
= F + NQ =

[
F11 F12

F21 F22

]
+

[
A− F11C1 − F12C2 −F12

−C2A− F21C1 − F22C2 −F22

] [
0 0
0 Iq

]
=

[
F11 0
F21 0

]
(21)

Remark 1. For all generalized inverses of matrix
[

E
H

]
we have Q12 = 0 and L2 = 0 then y2 is not used

in the dynamics of the observer nor in the state estimation x̂. y2 acts only on the fault estimation f̂
(observers output) what suggests using only relations (4a) and (4b) to estimate x. In addition, for the
choice of the generalized inverse given by (18), the measurement y1 affects the estimations of x and f
after being filtered in (19a), i.e. the measurement noises in y1 are filtered in (19). This is not the case
if the Moore-Penrose generalized inverse is chosen as in [1].

Remark 2 (The Moore-Penrose generalized inverse with block-diagonal measurement out-
put matrix). Without loss of generality, assume that rank C = m or rank C1 = m1 and rank C2 = q
with m = m1 + q. Then there exists a non singular matrix G ∈ IRn×n such that[

C1 0
0 C2

]
=

[
C1

C2

]
G, x̃ =

[
x̃1

x̃2

]
= G−1x, Ã = G−1AG, g̃(x̃, u, t) = G−1g(x, u, t), B̃ = G−1B (22)
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then the system (4) is equivalent to
˙̃x = Ãx̃ + g̃(x̃, u, t) + B̃u (23a)

y1 = C1x̃1 (23b)
y2 = C2x̃2 + f (23c)

with x̃1 ∈ IRn1, x̃2 ∈ IRn2 et n = n1 + n2. The Moore-Penrose generalized inverse (16) gives[
P̃ Q̃

]
=

[
E
H

]†
=

([
ET HT

] [
E
H

])−1 [
ET HT

]

=

 (In1 + C
T
1 C1)−1 0 (In1 + C

T
1 C1)−1C

T
1 0

0 In2 0 0

0 −C2 0 Iq

 =

[
P̃1 Q̃11 Q̃12

P̃2 Q̃21 Q̃22

]
(24)

and the observer (15) becomes
˙̃z = Ñ z̃ + L̃1y1 + P̃ g̃(̂̃x, u, t) + P̃ B̃u (25a)̂̃x = z̃1 + Q̃11y1 (25b)
f̂ = z̃2 + y2 (25c)

Using (13), the observation error e = x̂− x can be rewritten as

e = z + (QH − In+q)x =
[
z1

z2

]
+

([
Q11 0
Q21 Iq

][
C1 0
C2 Iq

]
−

[
In 0
0 Iq

])[
x
f

]
=

[
z1 + (Q11C1 − In)x
z2 + (Q21C1 + C2)x

]
(26)

For the Moore-Penrose generalized inverse (16) used in [1], we obtain

e =
[

z1 − ((In + CT
1 C1)−1)x

z2 + (C2(In + CT
1 C1)−1)x

]
(27)

Then in the observer (15) with generalized inverse (16), z1 is an estimation of (In + CT
1 C1)−1x and z2

is an estimation of −C2(In + CT
1 C1)−1x = −C2z1. For the observer (19), the observation error becomes

e =
[

z1 − x
z2 + C2x

]
(28)

and z1 is then an estimation of x while z2 is an estimation of −C2x = −C2z1. In both cases, z2 is not
useful since it is a linear combination of z1. Thus, it seems interesting to estimate either x (nth-order
observer) or C2x (qth-order observer) without using a singular system framework. That will be the topics
of sections 3.1 and 3.2.

2.2.3 On the LMI (eq. (27) in [1]) and sufficient conditions

The parameter µ > 0 in the LMI (eq. (27) in [1]) is not useful since left and rigth-multiplying this

LMI by
1

λ
√

µ
I2n+q yields[

XPM + MT P T X −RH −HT RT + In+q XP

P T X
−1
λ2

In

]
< 0 (29)

Then the observer proposed by Wang et Zhou [1] exists if [6]

1. the function g(x, t, u) verifies the Lipschitz condition (2),

2. there exist matrices R and X = X
T

> 0 such that the LMI (29) is satisfied with F = R−1X and
N = PM − FH.

The above conditions are equivalent to the existence of a gain matrix F such that (PM − FH) is

stable and
∥∥(sIn+q − (PM − FH))−1P

∥∥
∞ <

1
λ

where

ė = (PM − FH)e + Pg(x̂, u, t)− g(x, u, t)) (30)
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3 State and sensor fault estimation without the singular systems frame-
work

It was shown in the previous development that the measurement y2 is not used in the dynamics of the
observer nor in the state estimation x̂ and a necessary condition is the detectability of the pair (A,C1).
The main idea is then the synthesis of an nth order observer which dynamics has only y1 as input and y2

is used in the observers output f̂ .

3.1 nth order observers synthesis

By the use of the preceding arguments and as suggested by the structure of the observer (15) it is
rather normal to propose an nth order Kalman like observer of the following form

˙̂x = Ax̂ + g(x̂, u, t) + Bu + L(y1 − C1x̂) (31a)
f̂ = y2 − C2x̂ (31b)

It was proved by Rajamani [6] that the dynamical system (31a) is an observer for the system (4a)-(4b)
if there exists a gain matrix L verifying (A− LC1) stable (i.e. the pair (A,C1) must be detectable) and∥∥(sIn − (A− LC1))−1

∥∥
∞ <

1
λ

or equivalently if there exist matrices X = XT > 0 and Z such that the
following LMI is satisfied [

XA + AT X − ZC1 − CT
1 ZT + In X

X
−1
λ2

In

]
< 0 (32)

with L = X−1Z. Then we have

ė = (A− LC1)e + g(x̂, u, t)− g(x, u, t)) (33)

The observation error e = x̂ − x is then asymptotically stable. Now, let ef = f̂ − f be the fault
estimation error then

ef = (C2x + f − C2x̂)− f = −C2e (34)

thus one can see thaf ef decays to zero if e is asymptotically stable. Notice that, under the existence
conditions given above there exists a reduced-order observer for the Lipschitz nonlinear system (4) (see
[7]).

3.2 qth order functional observer

An another approach consists on using a qth order functional observer which estimates C2x since
the estimation of the state x is not necessarily useful to identify the faults f . Using (4c), let ν be the
functional to be estimated

ν = C2x (35)

with ν ∈ IRq. Without loss of generality, we assume that

rank C = rank
[
C1

C2

]
= rankC1 + rank C2 = m (36)

A qth order functional observer can be expressed as follows

ẇ = Nw + Ly1 + Pg(ν̂, u, t) + PBu (37a)
ν̂ = w + Qy1 (37b)
f̂ = y2 − ν̂ (37c)

with w ∈ IRq.
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Necessary conditions for the existence of the observer (37) are given by [8]

rank


C2A
C1A
C1

C2

 = rank

C1A
C1

C2

 (38a)

rank

µC2 − C2A
C1A
C1

 = rank

C1A
C1

C2

 ,∀µ ∈ C,Re(µ) > 0 (38b)

In the case of functional observers for nonlinear Lipschitz systems, the necessary condition (38b)
replaces the detectability condition (8). The synthesis of functional observer (37) takes as a starting
point the results in [8, 9, 10]. The matrices of the functional observer are given by

N = (C2AM†)MN −KM(Im+m∞ −MM†)MN = N∞ −KMN∈ (39a)

Q = (C2AM†)MQ −KM(Im+m∞ −MM†)MQ = Q∞ −KMQ∈ (39b)

L = (C2AM†)ML −KM(Im+m∞ −MM†)ML +NQ (39c)
P = C2 −QC1 (39d)

with

M =

 C2

C1

C1A

 ,MN =

 Iq

0m1×q

0m1×q

 ,ML =

 0q×m1

Im1

0m1×m1

 ,MQ =

 0q×m1

0m1×m1

Im1


where KM ∈ IRq×(m+m1) is a gain matrix to be computed. Let e = C2x− ν̂ be the estimation error which
dynamic’s is driven by

ė = Ne + P (g(ν, u, t)− g(ν̂, u, t)) (40)

The system (37) is a functional observer for the system (4) if conditions (2) and (38) are verified and
if there exist matrices X = XT > 0 and Z such that the following LMI is satisfied[

XN1 + NT
1 X − ZN2 −NT

2 ZT + Iq X(C2 −Q1C1) + ZQ2C1

(C2 −Q1C1)T X + CT
1 QT

2 ZT −1
λ2

In

]
< 0 (41)

with KM = X−1Z and N = N1−KMN2. Note first that the detectability of the pair (N1, N2) is equivalent
to condition (38b). In addition the LMI (41) is equivalent to the minimization of the H∞ norm of the

transfert function between r = g(ν, u, t)−g(ν̂, u, t) and e and can be expressed as
∥∥(sIq −N)−1P

∥∥
∞ <

1
λ

(see [6]).

4 Computation of the matrix D

Following the previous development, we propose an algorithm to compute the matrices D and C1.
Since the matrices D and D are composed of ei (see notations in [1]), the problem consists in choosing
the minimal number of rows ci of C such that the rank condition (8) is satisfied. The index i of the
selected row ci corresponds to the column vector ei composing the matrix D. Let Ω be the set of unstable
eigenvalues of A.

Step 1 for i = 1 : m,
Ct = ci;
do TEST
end for i.
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Step 2 for i = 1 : m− 1,
for j = i + 1 : m,

Ct =
[
ci

cj

]
;

do TEST
end for j,
end for i,

Step 3 for i = 1 : m− 2,
for j = i + 1 : m− 1,
for k = j + 1 : m,

Ct =

ci

cj

ck

;

do TEST
end for k,
end for j,
end for i,
...

Step m Ct = C, no sensor gain fault can be estimated.
STOP.

Step m+1 C1 = Ct;
BREAK.

where

TEST : if rank
[
µIn −A

Ct

]
= n, ∀µ ∈ Ω,

then goto step m + 1.

Let us note that if there are q conditionally identifiable sensors, then the maximum number q of
combinations of rows ci to be tested is given by the following formula

q =
m−q∑
r=1

Cm
r =

m−q∑
r=1

m!
(m− r)!r!

(42)

For the case treated in the example in [1], m = 4 and q = 3 then q = 4!
3! = 4.

5 Conclusion

Through this discussion paper, we provide simple ideas to improve, in a way, the interesting work
presented in [1].
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