
HAL Id: hal-00143363
https://hal.science/hal-00143363

Submitted on 25 Apr 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Symbolic sensors
Eric Benoit, Laurent Foulloy

To cite this version:
Eric Benoit, Laurent Foulloy. Symbolic sensors. International Symposium on Artificial Intelligence
Based Measurement and Control, Sep 1991, Kyoto, Japan. pp.131-136. �hal-00143363�

https://hal.science/hal-00143363
https://hal.archives-ouvertes.fr


1

Abstract 

This paper deals with sensors which compute and report linguistic assessments of their values.Such sensors,
called symbolic sensors are a natural extension of smart ones when working with control systems which use
artificial intelligence based technics. After having recalled the smart sensor concepts, this paper introduces the
symbolic sensor ones. Links between the physical world and the symbolic one are described. It is then shown
how Zadeh’s approximate reasoning theory provides a smart way to implement symbolic sensors. Finally, since
the symbolic sensor is a general component, a functional adaptation to the measurement context is proposed.
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Introduction

The concept of smart sensors or intelligent sensors intro-
duced several years ago, is not so easy to define (Giachino
[7]). One of the principal reasons is that many sensors use
silicon as a transducer and have data processing integrated
on the same medium (Jordan [8], Wadley [14], Muller [11]).
Therefore, some authors consider these integrated sensors as
intelligent ones (Middelhoeck [10], Yamasaki [15]) whereas
for other authors a microprocessor based sensor should be
considered as intelligent. As for us, we think that if one
wishes to introduce intelligence into the sensors, it is legiti-
mate to wonder about what kind of intelligence is to be
thought of. We consider that an intelligent sensor should
own four basic mechanisms: learning, faculty of reasoning,
perception (the main part of the sensor) and communication.
Such a sensor has not been realized yet. Each simplified im-
plementation of these mechanisms leads to one possible
“definition” of the intelligent sensor.

Nowadays, it is generally admitted that the characteristic
functionality of a smart sensor should be its ability to com-
municate with a communication bus or network, to verify
the correctness of the measurement and to adapt itself when
the environment is changing (Giachino [7], Burd [3], Bois
[2]). One possible comparison between an analog sensor
and a smart sensor (see Fig. 1.) has been proposed by
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Favenec [6]. However, this comparison should be discussed
since the sensor should be an analog one and be intelligent in
the sense defined previously.

Fig. 1. Comparison between a smart sensor and an analog one 

Symbolic sensor 

Nowadays, control systems become more and more com-
plex. Artificial intelligence technics have been introduced to
handle this complexity by means of new types of controllers
(expert controller, intelligent controller, fuzzy controller...). As
a consequence, such controllers are using more and more the
symbolic coding. Rule based coding is certainly the most pop-
ular due to numbers of expert systems. For example, one can
write the following rule for a temperature control problem.

if temperature is high then reduce the control
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However, even if controllers become more abstract, the per-
ception and the control actions are still performed on the real
world. Most often measurements are numerical values (e.g. the
temperature in the previous example) which are converted in
the controller itself. This numerical to symbolic interface can
obviously be transferred into a sensor, leading to a new kind of
components that we propose to call: symbolic sensors. 

Definition: a symbolic sensor is a smart sensor
which can create and handle one or several sym-
bolic informations relative to the measurement.

Just as smart sensors are the logical evolution from the ana-
logical ones due to the extensive use of microprocessors, sym-
bolic sensors can be seen as a natural consequence of symbolic
based technics. Transferring the symbolic conversion into the
sensor introduces specific problems that are emphasized in the
following.

The relativity of the “symbolic measurement”.

The use of a symbolic information leads us to wonder about
the symbol semantics. Let us take an example in the robotics
field. Assume the robot owns a distance sensor which currently
returns 10cm for the distance between its tool and a workpiece.
Considering an insertion task, the measurement semantics
could certainly be “the distance is long” while in a painting
case it may become “the distance is short”. Just as for human
beings, the semantics depends on the context in which the task
is to be realized. Therefore, the sensor cannot be considered
any longer as an independent organ, but must be seen as being
part of the perception mechanism in which we include deci-
sions and actions. From this fundamental property, one can
conclude that the symbolic sensor must be configurated (by a
supervisor for instance) with respect to the measurement con-
text. We exhibit here one of the major differences between a
symbolic sensor and a symbolic conversion within a controller
or an expert system: the symbolic sensor is a general compo-
nent that can be reconfigured to adapt itself to the measure-
ment context. Since symbolic sensors keep all smart sensor
properties, a first functional scheme can be the following one:

Fig. 2. Internal scheme of a symbolic sensor

The symbolic sensor concept will be emphasized in the fol-
lowing by a formal description of the links between the sym-
bolic domain and the numerical one (Luzeaux [9]).

Symbolic sensor
Physical 

Transducer Conditioner

Computation device

Communication interface

Symbolic and numerical 

Communication bus

phenomenon

signal
processing

decision
device

Knowledge
base

informations



4

Translation, concepts and interpretation

Let L be the symbolic domain and E be the numerical one.
The meaning of a symbolic value will be called a translation
and be defined as an injective application from the symbolic set
to the set of the subsets of the numerical domain (injectivity in-
sures that two identical symbols have the same translation).

τ: L → P(E)
The association of a symbolic value and its translation is

called a concept. The symbolic measurement will be obtained
by means of a new application from the numerical domain to
the symbolic one, called an interpretation.

ι: E → L
Relations between the translation and the interpretation are

summarized in Fig. 3.

Fig. 3. Relations between a translation and
 an interpretation

 These definitions have been used to implement symbolic
sensors based on crisp sets coding (Benoit [1]). Several condi-
tions on translations have been assumed: 

• Intersections between translations are empty.
• The numerical domain is ordered with a relation noted <E.
• Any translation is an interval: 

∀L ∈ L,  ∀x, y ∈ τ(L) such that x <E y,  ∀z ∈ E

x <E z <E y ⇒ z ∈ τ(L)

The numerical to symbolic interface is realized by the inter-
pretation function. The simplest way to interpret a measure-
ment x is to return the symbol L such that x belongs to its
translation.

L = ι(x) if x ∈τ(L)
This relationship is an application when τ(L) is a partition

on E. 

From concepts to fuzzy concepts

 In the next sections, the problem of symbolic sensors deal-
ing with imprecise or uncertain knowledge is addressed (for ex-
ample, a zero detector should certainly work more around zero
than at zero precisely). Zadeh’s approximate reasoning theory
provides a smart tool for implementing the numeric to symbol-
ic interface. Therefore the material presented in the following
is not really new in terms of symbolic manipulations based on
fuzzy set (see Zadeh [17], [17]) but it provides a quite powerful
way for implementing symbolic sensors. To extend the previ-
ous section to the fuzzy case, fuzzy intervals have to be defined.
Let us recall that a fuzzy interval is a fuzzy subset on the set of
real numbers such that (Zadeh [16])

L E

τL A = τ(L)

A ∈P(E)
x

ι
••
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∀ u, v, ∀ x ∈ [u, v], µQ(x) ≥ min(µQ(u), µQ(v))
A fuzzy concept can be defined as the association of a sym-

bol L and a fuzzy translation (i.e. a fuzzy interval). Two kinds
of fuzzy intervals are usually recognized (Eshragh [5]):

• Fuzzy intervals defined as non decreasing or non in-
creasing functions (“S” curves).
• Fuzzy intervals defined as a non increasing then non de-
creasing function (“Π” curves).

A general definition of fuzzy intervals by means of a param-
etrized class of functions (L-R functions) has been proposed by
Dubois [4]. Fig. 4. presents several examples of fuzzy con-
cepts.

Fig. 4. Several possible definitions of the concept
 distance_is_long

Creating new concepts

Obviously, it is a tedious task to specify each translation of
the symbols. Moreover, in this case, one can say that the sensor
is no more smart. The symbolic sensor works with several sym-
bols which are in relation by means of the semantics. Let us
take the example of a temperature measurement. A semantic
relation links the symbolic values hot and very_hot due to the
order relation on the numerical domain. This relationship be-
tween all the symbols should be managed by the sensor itself.
Defining a new concept leads to give a new symbol and its
translation. Modifiers, usually called linguistic hedges, can be
introduced to perform such an operation. Each operation in the
symbolic domain is linked to an operation on the numerical
one. Let us begin with crisp sets, a function F operating in the
symbolic domain is defined.

F: L → L 

L1 ❘→  L2 = F(L1)
Now a function fF operating on the numerical domain is in-
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troduced:

fF: P(E) → P(E) 
 τ(L1)  ❘→ τ(L2) = τ(F(L1)) = fF(τ(L1))

Links between these functions are represented in Fig. 5.

Fig. 5. Creating a new concept

The crisp case can be extended easily to the fuzzy one. The
definition domain of fF becomes the set of fuzzy subsets of E
with the following relation on membership functions:

 µτ(L2) (x) = µτ(F(L1)) (x)= fF(µτ(L1)(x))

To simplify the reading, µτ(L2) will be written µL2. A more
general definition has been proposed by Novak [12]:

 µτ(L2) (x) = µτ(F(L1)) (x)= mF(µτ(L1)(qF(x)))

mF: [0,1] → [0,1] is a modifier for the hedge F while qF is a
translator. Since two types of intervals have been defined, it is
legitimate to define transformations between them. Four trans-
formations can be exhibited:

• “S” curve to “S” curve
• “Π” curve to “Π” curve
• “Π” curve to “S” curve
• “S” curve to “Π” curve

Only the first three transformations seem to be of some in-
terest for symbolic sensors: they are presented in the following.

“S” curve to “S” curve operators.

 These operators are well known, most of them have been in-
troduced by Zadeh [17]. Let C be a fuzzy concept and  µC its
associated translation, the new generated concept and its trans-
lation will be respectively noted C1 and  µC1. Several classical
operators are recalled below:

Based on Novak ‘s definition, the translator is the identity
for all previous cases. Let us also recall that binary operators
such as C1 and C2, C1 or C2 are commonly defined by means
of T-norms and T-conorms (see for example Pedrycz [13]).

A first example of a symbolic sensor can now be given. Sev-
eral symbolic informations are sent to the sensor via the com-
munication bus (see Fig. 6.). The first one, called the “generic
concept”, is used by the sensor to define all the other concepts.
Here, it is defined by an arctangent function “centered” in 5m.

L E
τL1 A = τ(L1)

•

L2•

F fF

B = τ(F(L1))

Symbolic domain Numerical domain
C1 = very (C)

C1 = not(C) 

C1 = more_or_less(C)

µC1(x)  = µ2
C(x)

µC1(x)  = 1- µC(x)

µC1(x)   µ1/2
C(x) 
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Fig. 6. Configuration of a symbolic sensor

Once these informations have been sent, the sensor is able to
provide symbolic measurements. Therefore, it can return, for a
given measurement, either the symbolic value (based on the in-
terpretation function) or the grade of membership for each
symbol in the lexical domain (the numerical value and many
other informations such that identification, installation date, re-
vision date... can also be obtained) (see Fig. 9.). Based on con-
figuration informations, the sensor generates membership
functions for all the measurement domain (see Fig. 7.). 

Fig. 7. New concepts generated from the generic one
 distance_is_long

“ Π” curve to “ Π” curve operators

Operators defined by Zadeh act through left composition of
functions. Since “Π” curves are not injective, these operators
cannot be used to generate a new “Π” curve from a “Π” curve.
To define such a new concept, one solution is to apply a trans-
lation. Using Novak’s definition, one will now have the identity
as modifier and x ❘→ x ± ∆ as translator. This operation can
also be seen as the convolution of the initial concept by a de-
layed Dirac’s distribution. Just as composition, convolution
could be taken as a general mechanism to define new hedges.
Using previous writing conventions, new operators can be in-
troduced: two of them are given below (δ is the Dirac’s distri-
bution and  ∗ the convolution operation).

 

Let us give an example for a symbolic sensor dealing with
“Π” curves. The generic concept is defined by a normalized
gaussian function. 
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Obviously, operators more_than and less_than give new
gaussian functions defined by:

µmore_than(C)(x)   = gaussian(mc + ∆, σc, x)

µless_than(C)(x) = gaussian(mc − ∆, σc, x)

The translation value can be chosen such that the initial and
the new concepts have intersecting points where the grade of
membership is 0.5. For gaussian functions we have: 

Fig. 8. shows the example of a simple symbolic sensor deal-
ing with three concepts defined from the generic one:
distance_is_correct. Once again, the sensor generates the con-
cept translations from configuration informations. The sensor
can then be queried as shown in Fig. 9.

Fig. 8. Symbolic sensor based on “Π” curves

Fig. 9. Querying the sensor
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“ Π” curve to “S” curve operators

To define the last type of operators, let us assume that two
opposite notions exist (e.g. cold / warm, far / close, heavy /
light...). They will be noted N and N in the following. Let C be
a concept defined by a “Π” curve and m be a modal value of
this concept (i.e. µC(m) = 1). Two operators and their respec-
tive reciprocals can be defined as follows:

∃ x1  ≥ m such that ∀ x > x1,
               µmore_N_than(C)(x) = µless_N_than(C)(x) > µC(x) and 
               µmore_N_than(C)  is a non decreasing function

∃ x2  ≤ m such that ∀ x < x2,
               µless_N_than(C)(x) = µmore_N_than(C)(x) < µC(x) and
               µless_N_than(C)  is a non increasing function

Several definitions are possible for these operators, Eshragh
and Mamdani [5] have proposed two operators above and be-
low which verify the previous properties. Let us recall their
definitions:

 

Once again, let us build a simple symbolic sensor dealing
with “Π” to “S” operators from a generic concept defined as a
gaussian function (see Fig. 10.).

Fig. 10. Symbolic sensor using “Π” to “S” operators.

All the previous examples can be run with other generic
functions (e.g. triangle, trapezoidal,....), assuming they are
known by the sensor (i.e. they belong to the database). Only the
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generic concept parameters have to be changed in configura-
tions.

Taking environment into account

 In the preceding, the generic concept has been taken as an a
priori information given to the sensor (every other concepts is
automatically worked with by means of operators). This ap-
proach preserves the semantics between concepts but does not
guarantee the coherence of symbolic interpretations with res-
pect to the measurement context (e.g. based on its configura-
tion, the sensor returns distance_is_very_long while for the
given context it should have returned distance_is_long). There-
fore, taking the environment into account is nothing more than
adapting the interpretation to the measurement context. Several
approaches are possible, a first one based on qualitative learn-
ing with a teacher has been proposed in Benoit [1]. A function-
al approach which modifies interpretations through
composition is presented here.

Assume the generic concept and the new generated ones are
defined on the numerical domain E called the ideal universe.
Let E’ be the measurement domain and h be a function, called
the adaptation function, from E’ to E (see Fig. 11.)

Fig. 11. Adapting the sensor to the environment

 The interpretation of a measurement for crisp set is now:
 L = ι(h(x)) if x ∈τ(L)

To run this approach, the adaptation function should be sent
to the symbolic sensor. However, all adaptation functions
should have specific properties that preserve the coherence of
configuration informations. Especially, the generic concept
definition point should not be changed by the adaptation func-
tion, furthermore the interpretation should remain linear
around this point. Let mc be the generic concept definition
point, the two previous properties lead to:

h(mc) = mc and h’(mc) = 1 
Effects of the adaptation function on the measurement do-

main are called semantic properties (compressing or expand-
ing the definition domain, expanding after a particular
measurement...). The choice of a “good” adaptation function
(i.e. having particular semantic properties and the previous
mathematical properties) is not so easy. One solution is to
choose an adaptation function having the desired semantics,
then apply a transformation to get the mathematical properties.
Let g be a function with the desired semantics at point xp, then
the adaptation function can be defined as follows (it is assumed
that g’(xp) ≠ 0):

h(x) = a.g(x- mc + xp) + b
a = 1 / g’(xp) et b = mc - g(xp) / g’(xp)

L E
τL1

ι ••

E’

x
•

h
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From these considerations, let us give four examples of
functions g with interesting semantic properties:
• expand_before_expand_after g(x) = argsh(k.x)
• compress_before_compress_afterg(x) = sh(k.x) 
• compress_before_expand_after g(x) = sh(k.x) if x ≥ 0

g(x) =argsh(k.x) else
• expand_before_compress_after g(x) =argsh(k.x) if x ≥ 0

g(x) = sh(k.x) else
These functions have been chosen due to their asymptotic

properties and their behavior around the origin (here xp = 0).
Fig. 12. shows resulting adaptation functions h for the generic
concept definition point in 5 m. Fig. 12. presents the member-
ship functions for a symbolic sensor dealing with seven con-
cepts defined from a gaussian generic one whose definition
point is in 5m: the adaptation function is obtained from the g
compress_before_expand_after function. 

Fig. 12. Adaptating the sensor to the context
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Conclusion

Implementing a part of the knowledge and of the decision
process into symbolic sensors results from the same logical
evolution that lead to integrate analog to digital conversion and
signal processing into smart sensors several years ago. This de-
centralization effort is devoted to the development of more ab-
stract control systems that are able to work with high level
informations.
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