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The q-Weyl group of a q-Schur algebra

Pierre Baumann

Abstract

The q-Schur algebras of Dipper and James are quotients of the quantized enveloping
algebras Uq(glm) of Drinfeld and Jimbo. The q-Weyl group of Uq(glm) (also known as
Lusztig’s automorphisms braid group) induces a group of inner automorphisms of the q-
Schur algebras. We describe precisely elements in the q-Schur algebras that define these
inner automorphisms. This description allows us to recover certain known properties
of the q-Weyl group.

Introduction

Let G be a complex reductive Lie group, g its Lie algebra, and W the Weyl group (relative
to some torus and some Borel subgroup B), with its standard generators {s1, . . . , sℓ}. Let

W̃ be the braid group of W , that is the group with generators {s̄1, . . . , s̄ℓ} and relations
s̄is̄j s̄i · · · = s̄j s̄is̄j · · · , with mij factors in each side, (mij) being the Coxeter matrix. There

are several morphisms of W̃ into G (see [25]), through which W̃ acts on the integrable g-
modules, and hence (by the adjoint action) on the enveloping algebra U(g). One can imbed

U(g) and the group algebra CG into a bigger algebra Û(g), so that these actions of W̃ on

U(g) become the restrictions of inner automorphisms of Û(g).
Let Uq(g) be the Drinfeld–Jimbo quantization of U(g) : this is a Hopf algebra over the

field Q(v) of rational functions (with q = v2). Lusztig, Levendorskii and Soibelman have

defined invertible elements s̄1, . . . , s̄ℓ in some completion Ûq(g) of Uq(g). These elements

define a morphism W̃ →
(
Ûq(g)

)×

, so that W̃ acts on the integrable Uq(g)-modules, this

construction being a deformation of the classical case.
One of the results of Lusztig, Levendorskii and Soibelman is that if g is of type A, D or

E, and if M is the q-deformation of the adjoint g-module, then the action of W̃ on the zero-
weight subspace of M satisfies quadratic relations and factorizes through the Hecke algebra
of W (at the value q of the parameter). This result may be proved by a simple computation
[22, § 1][20, Sect. 4].

Another way to see that is the following. The Hecke algebra admits a geometric re-
alization in terms of double B-cosets in G, hence in terms of G-orbits of pairs of flags
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(f, f ′) ∈ (G/B)2. In the same vein, Beilinson, Lusztig and MacPherson [1] have constructed
certain finite-dimensional algebras Sd

q(m) in terms of the geometry of relative positions of
two m-step filtrations in a d-dimensional vector space, and have shown that these algebras
were epimorphic images of Uq(glm). (Du [8] has observed that the algebra Sd

q(m) was iso-
morphic to the q-Schur algebra of Dipper and James, the construction of Beilinson, Lusztig
and MacPherson being the translation in a geometric framework of the original algebraic

definition.) It is easy to see that Sd
q(m) is a quotient not only of Uq(glm) but even of Ûq(glm).

It therefore makes sense to consider the images in Sd
q(m) of the generators s̄1, . . . , s̄m−1 of the

q-Weyl group of Uq(glm). Despite the complicated original definition of the s̄i, these images
have a very simple description, that enables us to give a perhaps more conceptual proof (in
case A) of the result of Lusztig, Levendorskii and Soibelman recalled above.

Section 1 of this paper is aimed at giving a unified treatment of the basic facts concern-
ing the quantized enveloping algebras Uq(glm), the q-Schur algebras Sd

q(m), and the spaces
Sd

q (M
∗
m,n) of homogeneous functions of degree d on the quantum spaces of matrices of size

m × n. Section 1 is supplemented by an appendix explaining how to deduce from a simple
argument (given in the non-quantum case by J. A. Green [11]) the standard basis theorems
for Sd

q (M
∗
m,n) and Sd

q(m) (proved algorithmically in [15] and [12]). In Section 2, we recall
the definition of the q-Weyl group of Uq(glm) and explain how to compute the images of the
generators s̄1, . . . , s̄m−1 under the epimorphism Uq(glm) ։ Sd

q(m). Our main result there is
Theorem 3. Section 3 deals with applications of this result. We explain how to recover the
quantum Schur-Weyl duality from a quantum (glm, gln)-duality and how all this is related
to the aforementioned result of Lusztig, Levendorskii and Soibelman.

1 q-Deformations

1.1 Basic notations

Let m be a positive integer. We denote by Pm the free Z-module with basis (ε1, . . . , εm).
Elements of Pm are called weights. A weight λ = λ1ε1 + · · ·+ λmεm is said to be polynomial
(respectively dominant) if all the λi are non-negative (respectively if λ1 ≥ · · · ≥ λm). The
degree of a weight λ = λ1ε1 + · · · + λmεm is the integer |λ| = λ1 + · · · + λm. The simple
roots are the elements αi = εi− εi+1 (for 1 ≤ i ≤ m−1). We endow Pm with the bi-additive
form Pm × Pm → Z defined by (εi|εj) = δij (Kronecker’s symbol). The symmetric group on
m letters Sm acts on the set {ε1, . . . , εm}, hence acts Z-linearly on Pm. The image W of
Sm in Aut(Pm) is generated by the simple reflections si :

(
Pm → Pm, λ 7→ λ− (αi|λ)αi

)
(for

1 ≤ i ≤ m− 1).
Our ground ring will be the field Q(v) of rational functions in v over the rational numbers,

although most of our constructions are valid over an arbitrary commutative base ring. We
put q = v2. The q-numbers, q-factorials and q-binomial coefficients are defined as in [23]:

[n] = vn−v−n

v−v−1 , [n]! =
∏n

i=1[i],
[
n
k

]
= [n]!

[k]![n−k]!
.
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1.2 Quantized enveloping algebra

Let m be a positive integer and let (aij)1≤i,j≤m−1 be the Cartan matrix: aij = (αi|αj).

Definition 1 [17] The quantized enveloping algebra Uq(glm) is the Q(v)-algebra presented
by the generators Kλ (for λ ∈ Pm), E1, . . . , Em−1 and F1, . . . , Fm−1, with the relations:

Kλ Kµ = Kλ+µ (for λ, µ ∈ Pm),

Kλ Ei = v(λ|αi)Ei Kλ and Kλ Fi = v−(λ|αi)Fi Kλ (for λ ∈ Pm and 1 ≤ i ≤ m− 1),
∑1−aij

r=0 (−1)r
[
1−aij

r

]
Er

i EjE
1−aij−r
i = 0 (for 1 ≤ i 6= j ≤ m− 1),

∑1−aij

r=0 (−1)r
[
1−aij

r

]
F r

i FjF
1−aij−r
i = 0 (for 1 ≤ i 6= j ≤ m− 1),

[Ei, Fj ] = δij
Kαi
−K−αi

v − v−1
(for 1 ≤ i, j ≤ m− 1).

It is a Hopf algebra when endowed with the coproduct ∆ and the counit ε given by:

∆(Kλ) = Kλ ⊗Kλ, ε(Kλ) = 1 (for λ ∈ Pm),

∆(Ei) = Ei ⊗Kαi
+ 1⊗ Ei, ε(Ei) = 0 (for 1 ≤ i ≤ m− 1),

∆(Fi) = Fi ⊗ 1 + K−αi
⊗ Fi, ε(Fi) = 0 (for 1 ≤ i ≤ m− 1).

The natural Uq(glm)-module is the vector space Vm with basis (e1, . . . , em), and the action
of Uq(glm) is given by:

Kλ · ek = v(λ|εk)ek (for λ ∈ Pm and 1 ≤ k ≤ m),

Ei · ek = δi+1,k ei and Fi · ek = δi,k ei+1 (for 1 ≤ i ≤ m− 1 and 1 ≤ k ≤ m).

The dual of Vm is a right Uq(glm)-module. We will denote it by V ∗
m and we will denote by

(f1, . . . , fm) the basis dual to (e1, . . . , em).
The comultiplication of Uq(glm) allows to endow the tensor power (Vm)⊗d with the struc-

ture of a Uq(glm)-module. We will denote by ej1,...,jd
the element ej1 ⊗ · · · ⊗ ejd

in (Vm)⊗d.
Analogously, (V ∗

m)⊗d is a right Uq(glm)-module, with basis fi1,...,id.
The subalgebra U0 generated in Uq(glm) by the elements Kλ is commutative. A vector

e in a Uq(glm)-module is said to be of weight λ ∈ Pm if the action of U0 on e is scalar and
given by the character Kµ 7→ v(λ|µ). A left Uq(glm)-module M will be called a weight module
if it is the sum of its weight subspaces:

M =
⊕

λ∈Pm
{e ∈M | ∀µ ∈ Pm, Kµ · e = v(λ|µ)e}.

The module M is said to be polynomial (respectively polynomial of degree d) if all the
weights occurring in the sum are polynomial (respectively polynomial of degree d).

Finally, there is an involutive antiautomorphism of algebras Φ : Uq(glm) → Uq(glm)
given on the generators by Kλ 7→ Kλ, Ei 7→ Fi, Fi 7→ Ei. With it, one has the notion of
contravariant duality.
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1.3 Hecke algebras of type A and the quantum Schur–Weyl dual-

ity

Let d be a positive integer, Sd be the symmetric group on d letters, and S = {s1, . . . , sd−1}
be the set of usual generators of Sd.

Definition 2 The Hecke algebra Hq(Sd) of the Coxeter system (Sd, S) is the Q(v)-algebra
presented by the generators (Tsi

)1≤i≤d−1, with the relations:

Tsi
Tsj

= Tsj
Tsi

(for |i− j| ≥ 2),

Tsi
Tsi+1

Tsi
= Tsi+1

Tsi
Tsi+1

(for 1 ≤ i ≤ d− 2),

(Tsi
− q)(Tsi

+ 1) = 0 (for 1 ≤ i ≤ d− 1).

For each w ∈ Sd, one can define Tw as the product Tsi1
· · ·Tsik

, where si1 · · · sik is a reduced
decomposition of w. The (Tw)w∈Sd

form a basis of Hq(Sd).
The algebra Hq(Sd) acts on the spaces (Vm)⊗d and (V ∗

m)⊗d, by means of the following
formulas:

ej1,...,jd
· Tsi

=





v ej1,...,ji+1,ji,...,jd
if ji < ji+1,

q ej1,...,jd
if ji = ji+1,

v ej1,...,ji+1,ji,...,jd
+ (q − 1)ej1,...,jd

if ji > ji+1,

Tsi
· fi1,...,id =





v fj1,...,ji+1,ji,...,jd
if ji < ji+1,

q fj1,...,jd
if ji = ji+1,

v fj1,...,ji+1,ji,...,jd
+ (q − 1)fj1,...,jd

if ji > ji+1.

In this way, (Vm)⊗d becomes a Uq(glm)-Hq(Sd)-bimodule and (V ∗
m)⊗d is its dual Hq(Sd)-

Uq(glm)-bimodule. These assertions are part of the theory of quantized Schur–Weyl duality,
due to Jimbo (see Section 3.2).

1.4 q-Schur algebras and the BLM construction

In this section, I present a construction of the q-Schur algebras due to Beilinson, Lusztig and
MacPherson. One can find detailed proofs for the assertions below in the article [1].

Let m, n and d be three positive integers, and denote by Θd
m,n the set of all matrices of

size m× n, whose coefficients are non-negative integers of sum d.
Let V be a vector space of finite dimension d over a field F. Let f = (0 = V0 ⊆ · · · ⊆

Vm = V ) and f ′ = (0 = V ′
0 ⊆ · · · ⊆ V ′

n = V ) be two filtrations of V . To the pair (f, f ′),
one associates the matrix A = c(f, f ′) of size m × n with coefficients aij = dim(Vi ∩ V ′

j ) −
dim(Vi ∩ V ′

j−1)− dim(Vi−1 ∩V ′
j ) + dim(Vi−1 ∩ V ′

j−1), so that dim(Vi ∩ V ′
j ) =

∑
r≤i,s≤j ars. Let

Xm be the set of all m-step filtrations in V . The group GL(V ) acts on all the Xm, hence
acts also (diagonally) on Xm × Xn. The map (f, f ′) 7→ c(f, f ′) defines a bijection between
the set of GL(V )-orbits in Xm ×Xn and the set of matrices Θd

m,n.
If A ∈ Θd

m,n, we denote by OA the corresponding GL(V )-orbit in Xm ×Xn. To a matrix
A ∈ Θd

m,n, we associate the weights ro(A) =
∑

i,j aijεi and co(A) =
∑

i,j aijεj belonging to
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Pm and Pn respectively. If (f, f ′) ∈ OA, with f = (0 = V0 ⊆ · · · ⊆ Vm = V ) and f ′ = (0 =
V ′

0 ⊆ · · · ⊆ V ′
n = V ), then ro(A) =

∑m
i=1 dim(Vi/Vi−1)εi and co(A) =

∑n
j=1 dim(V ′

j /V
′
j−1)εj.

Let m, n, p be three positive integers and let A ∈ Θd
m,p, B ∈ Θd

p,n, C ∈ Θd
m,n. There

exists a polynomial gA,B,C ∈ Z[v2] satisfying the following property: if F is a finite field
with q elements, if one chooses filtrations f ∈ Xm and f ′ ∈ Xn such that (f, f ′) belongs
to the orbit OC , then the value at v2 = q of polynomial gA,B,C is equal to the number of
filtrations f ′′ ∈ Xp such that (f, f ′′) ∈ OA and (f ′′, f ′) ∈ OB. One has gA,B,C = 0 except if
ro(A) = ro(C), co(A) = ro(B), and co(B) = co(C). If m = p and A ∈ Θd

m,m is a diagonal
matrix, then gA,B,C is δB,C or 0 according as ro(B) is equal or different from co(A). If p = n
and B ∈ Θd

n,n is a diagonal matrix, then gA,B,C is δA,C or 0 according as co(A) is equal or
different from ro(B).

We denote by Sd
q(m, n) the Q(v)-vector space with basis the family of symbols (eA)A∈Θd

m,n
.

The coefficients gA,B,C afford a bilinear map
(
Sd

q(m, p) × Sd
q(p, n) → Sd

q(m, n),

(eA, eB) 7→
∑

c∈Θd
m,n

gA,B,C eC

)
, and we have an associativity property for these “prod-

ucts”. Letting m = n = p, we see that Sd
q(m, m) is an algebra; the unit is the element∑

A eA, where the sum runs over the set of diagonal matrices in Θd
m,m. Similarly, Sd

q(m, n) is
a Sd

q(m, m)-Sd
q(n, n)-bimodule. We will simplify the notation and denote Sd

q(m, m) by Sd
q(m).

Finally if A ∈ Θd
m,n, one puts [A] = v−

∑
i≥k,j<l aijakleA in Sd

q(m, n). From the above, it
follows that if A ∈ Θd

m,m is a diagonal matrix, then [A] ∈ Sd
q(m) is an idempotent and the

left multiplication by [A] in Sd
q(m, n) is the projection on the subspace spanned by the set

{[B] | B ∈ Θd
m,n, ro(B) = co(A)}. An analogous property holds on the right. The unit in

Sd
q(m) is the element

∑
A[A], where the sum runs over the set of diagonal matrices in Θd

m,m.

Remarks. (a) The original definition of the q-Schur algebra goes back to Dipper and James.
The fact that both constructions define the same object has been noticed by Du [8,
§ 1.4]. Let me explain here briefly and without proofs this correspondence.

To a polynomial weight λ = λ1ε1 + · · · + λmεm in Pm of degree d, one can associate
the parabolic subgroup Sλ = Sλ1 × · · · ×Sλm

of Sd and the element xλ =
∑

w∈Sλ
Tw

in Hq(Sd). In the Uq(glm)-Hq(Sd)-bimodule (Vm)⊗d, the weight space (for the action
of Uq(glm)) for the weight λ is a right Hq(Sd)-submodule isomorphic to the induced
module xλHq(Sd). Hence the commutant of the image of the algebra Hq(Sd) inside
EndQ(v)

(
(Vm)⊗d

)
is isomorphic to the algebra EndHq(Sd)

(⊕
λ xλHq(Sd)

)
, where the

sum runs over all polynomial weights λ ∈ Pm of degree d. This latter object is the
q-Schur algebra of Dipper and James (see [5, § 1.2]). The Schur–Weyl duality (see
the end of Section 1.3) implies the existence of an algebra morphism from Uq(glm) to
Sd

q(m).

Dipper and James’ definition for the q-Schur algebra is valid over an arbitrary base
ring R. Let q be a power of a prime number and take R so that the image of q in
the prime subring of R is invertible and has a square root v. Let Fq be the field with
q elements, let G be the group GLd(Fq), let B be its standard Borel subgroup, and
identify the symmetric group Sd with the Weyl group of G in the usual way. To each
weight λ ∈ Pm of degree d is associated the standard parabolic subgroup Pλ = BSλB
of G. Let M (respectively Nλ) be the right RG-module obtained by inducing the trivial
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representation of B (respectively Pλ) to G. The module M (respectively Nλ) can be
identified with the set of functions from G/B (respectively G/Pλ) to R, where G acts
by left translation.

The endomorphism algebra EndG(M) is classically identified with the set of functions
from B\G/B to R, endowed with the convolution product (see [2, Chap. IV, § 2,
exerc. 22]), that is, with the “specialized” Hecke algebra Hq(Sd)R. The subspace
xλHq(Sd)R may be identified with the set of functions from B\G/Pλ to R.

Now M is an Hq(Sd)R-RG-bimodule, so we have the functor HomG(M,−) from the
category of right RG-modules to the category of right Hq(Sd)R-modules. It sends

the object Nλ to the object xλHq(Sd)R, and if µ ∈ Pm is another weight of degree
d, it defines a bijection between the spaces of homomorphisms HomG(Nλ, Nµ) and
HomHq(Sd)R

(
xλHq(Sd)R, xµHq(Sd)R

)
. (This is Theorem 2.24 of [4]. Both spaces are

naturally in bijection with the space of functions from Pλ\G/Pµ to R, which can be
identified with the subspace Hq(Sd)R xλ ∩ xµHq(Sd)R; see [7, Lemma 1.1 (e)].)

Thus the “specialized” q-Schur algebra in the definition of Dipper and James identifies
with the endomorphism ring EndG(

⊕
λ Nλ). This correspondence, traced at the level

of “generic” algebras, explains the aforementioned result of [8].

(b) There is a stabilization procedure in this framework. Let N be an integer greater that
two given positive integers m and n. There is a canonical injection Θd

m,n →֒ Θd
N,N ,

obtained by putting a matrix A of size m × n in the top left corner of an N × N
matrix and by padding with zeros elsewhere. This gives rise to a map Sd

q(m, n) →֒
Sd

q(N), defined on the basic vectors. If N is also greater than p and if A ∈ Θd
m,p,

B ∈ Θd
p,n, then the product [A][B] is the same computed in Sd

q(N) or by the map
Sd

q(m, p)× Sd
q(p, n)→ Sd

q(m, n). In particular, we have a map Sd
q(m) →֒ Sd

q(N), and we
denote by ηm the image in Sd

q(N) of the unit element in Sd
q(m). Thus ηm is the sum of

elements [A], for A ∈ Θd
N,N running over the set of diagonal matrices with co(A) ∈ Pm.

Then ηm is an idempotent in Sd
q(N), the algebra Sd

q(m) may be identified with the
algebra ηm Sd

q(N) ηm, and the Sd
q(m)-Sd

q(n)-bimodule Sd
q(m, n) may be identified with

the subspace ηm Sd
q(N) ηn.

There is an algebra homomorphism from Uq(glm) to Sd
q(m). The main result obtained by

Beilinson, Lusztig and MacPherson asserts its surjectivity and provides formulas for it:

Theorem 1 [1, § 5.7] There exists a (unique) surjective homomorphism ζ of Q(v)-algebras
from Uq(glm) to Sd

q(m) which:

• sends Kλ to
∑

vλ1j1+···+λmjm[j1E11+· · ·+jmEmm], the sum running over all the m-uples
of non-negative integers (j1, . . . , jm) of sum d;

• sends Ei to
∑

[j1E11 + · · ·+ jmEmm + Ei,i+1], the sum running over all the m-uples of
non-negative integers (j1, . . . , jm) of sum d− 1;

• sends Fi to
∑

[j1E11 + · · ·+ jmEmm + Ei+1,i], the sum running over all the m-uples of
non-negative integers (j1, . . . , jm) of sum d− 1.

6



So Sd
q(m) is a quotient of Uq(glm) and Sd

q(m, n) is a Uq(glm)-Uq(gln)-bimodule. The laws for
this latter structure are given by the formulas in [1, Lemmas 3.2 and 3.4]:

Lemma 1 For the Uq(glm)-Uq(gln)-bimodule structure on Sd
q(m, n), one has for all A ∈

Θd
m,n:

Kλ · [A] = v(λ| ro(A)) [A],

Eh · [A] =
n∑

p=1
ah+1,p≥1

[ahp + 1] v
∑

j>p(ahj−ah+1,j) [A + Ehp −Eh+1,p],

Fh · [A] =
n∑

p=1
ahp≥1

[ah+1,p + 1] v
∑

j<p(ah+1,j−ahj) [A− Ehp + Eh+1,p],

[A] ·Kλ = v(λ| co(A)) [A],

[A] · Eh =
m∑

p=1
aph≥1

[ap,h+1 + 1] v
∑

i<p(ai,h+1−aih) [A− Eph + Ep,h+1],

[A] · Fh =
m∑

p=1
ap,h+1≥1

[aph + 1] v
∑

i>p(aih−ai,h+1) [A + Eph − Ep,h+1].

As a consequence, the left Uq(glm)-module Sd
q(m) is a finite-dimensional polynomial module

of degree d.

1.5 The algebra of functions on quantum matrix spaces

Let m and n be two positive integers. The following definition can be traced back at least to
Manin in the case m = n, and the immediate generalization to the case m 6= n also appears
in numerous places.

Definition 3 The Q(v)-algebra presented by generators Xij (1 ≤ i ≤ m and 1 ≤ j ≤ n)
and relations:

XrtXsu =





XsuXrt if r > s and t < u or if r < s and t > u,

v XsuXrt if r > s and t = u or if r = s and t > u,

XsuXrt + (v − v−1)XruXst if r > s and t > u.

is called the algebra of functions on the quantum matrix space and is denoted by Sq(M
∗
m,n).

Sq(M
∗
m,n) is in a natural way a N-graded algebra, whose d-th homogeneous components will

be denoted by Sd
q (M

∗
m,n).

Fix the natural integer d, and let Id
m,n and Jd

m,n be the sets of all the d-tuples of pairs of
integers ((i1, j1), . . . , (id, jd)) ∈ ({1, . . . , m}× {1, . . . , n})d defined by the conditions of being
lexicographically non-decreasing:

Id
m,n = {((i1, j1), . . . , (id, jd)) | ia ≤ ia+1, ia = ia+1 ⇒ ja ≤ ja+1},

Jd
m,n = {((i1, j1), . . . , (id, jd)) | ja ≤ ja+1, ja = ja+1 ⇒ ia ≤ ia+1}.

7



Theorem 2 [24, § 3.5]

(a) The set consisting of the vectors Xi1,j1 · · ·Xid,jd
for ((i1, j1), . . . , (id, jd)) running over

Id
m,n (or running over Jd

m,n) is a Q(v)-basis in Sd
q (M

∗
m,n), which is thus of dimension(

mn+d−1
d

)
.

(b) Sq(M
∗
m,n) is an algebra without zero-divisor.

We will need later another parametrization of the basis given by the above theorem.
Let Ed

m,n be the set of all d-uples of pairs of integers ((i1, j1), . . . , (id, jd)) ∈ ({1, . . . , m} ×
{1, . . . , n})d such that for all 1 ≤ a < b ≤ d, one has ia < ib, ja < jb or (ia, ja) = (ib, jb).

Recall that Θd
m,n is the set of all matrices of size m×n, whose coefficients are non-negative

integers of sum d. Let Eij ∈ Θ1
m,n denotes the elementary matrix, with a 1 in position (i, j)

and with 0 elsewhere. To the element ((i1, j1), . . . , (id, jd)) of Ed
m,n, one associates the matrix

ϕ((i1, j1), . . . , (id, jd)) =
∑d

a=1 Eia,ja
∈ Θd

m,n.
On Ed

m,n, we put the equivalence relation ≈ generated by the following elementary moves:
((i1, j1), . . . , (id, jd)) ∼ ((i′1, j

′
1), . . . , (i

′
d, j

′
d)) if and only if there exists 1 ≤ a < d such that

(ia − ia+1)(ja − ja+1) < 0 and ((i′1, j
′
1), . . . , (i

′
d, j

′
d)) is obtained from ((i1, j1), . . . , (id, jd)) by

exchanging (ia, ja) with (ia+1, ja+1).

Proposition 1 The equivalence classes in Ed
m,n are the fibers of ϕ : Ed

m,n → Θd
m,n. The

subsets Id
m,n and Jd

m,n of Ed
m,n contain each one exactly one element of each equivalence class

for ≈. If ((i1, j1), . . . , (id, jd)) and ((i′1, j
′
1), . . . , (i

′
d, j

′
d)) are two ≈-equivalent elements in

Ed
m,n, then Xi1,j1 · · ·Xid,jd

= Xi′1,j′1
· · ·Xi′

d
,j′

d
.

Proof. One first remark that ϕ induces bijections between Id
m,n, Jd

m,n and Θd
m,n. If (i1, . . . , jd)

∈ Ed
m,n, then (ia > ia+1) ⇒ (ja < ja+1). By induction on the number of inversions in the

sequence (i1, . . . , id), one then shows that ((i1, j1), . . . , (id, jd)) is equivalent for the relation
≈ to at least one element of Id

m,n. Since ϕ : Ed
m,n → Θd

m,n is surjective and constant on the
equivalence classes, the relation ≈ has at least Card Θd

m,n = Card Id
m,n equivalence classes.

One deduces from this that Id
m,n is a set of representatives for the equivalence classes of ≈

in Ed
m,n. The same is true for Jd

m,n. From the fact that ϕ : Id
m,n → Θd

m,n is a bijection, one
deduces that ϕ induces a bijection between Ed

m,n/ ≈ and Θd
m,n. The last assertion of the

lemma follows from the first relation in Definition 3.

If B ∈ Θd
m,n, we will denote by X(B) the element Xi1,j1 · · ·Xid,jd

∈ Sd
q (M

∗
m,n) with

((i1, j1), . . . , (id, jd)) ∈ Ed
m,n ∩ϕ−1(B). The interesting structure on Sq(M

∗
m,n) is given in the

following proposition.

Proposition 2 [15, p. 210] Let m, n, p be three natural numbers. There is a unique homo-
morphism of algebras from Sq(M

∗
m,n) to Sq(M

∗
m,p)⊗Sq(M

∗
p,n) which sends Xij to

∑p
k=1 Xik⊗

Xkj.
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Letting m = n = p in this proposition, we see that the algebra Sq(M
∗
m,m) may be endowed

with the structure of a bialgebra. The counit is given by ε(Xij) = δij for 1 ≤ i, j ≤ m. Letting
p = m (respectively p = n) in the proposition, we see that Sq(M

∗
m,n) is a left Sq(M

∗
m,m)-

comodule (respectively a right Sq(M
∗
n,n)-comodule). It is in fact a Sq(M

∗
m,m)-Sq(M

∗
n,n)-

bicomodule. Each homogeneous component Sd
q (M∗

m,m) is a subcoalgebra of Sq(M
∗
m,m) and

Sd
q (M

∗
m,n) is a Sd

q (M
∗
m,m)-Sd

q (M
∗
n,n)-bicomodule.

Remark. There is a stabilization procedure here. Let N be an integer greater than m,
n and p. Let us denote by Km,n the two-sided ideal generated in the algebra Sq(M

∗
N,N)

by the elements Xij with i > m or j > n. The quotient algebra Sq(M
∗
N,N)/Km,n iden-

tifies naturally with the algebra Sq(M
∗
m,n). If N is also greater than p, then the coprod-

uct given in Proposition 2 is compatible with this construction since it sends Km,n into(
Km,p ⊗ Sq(M

∗
p,n)

)
+

(
Sq(M

∗
m,p)⊗Kp,n

)
.

Let us denote by tij ∈ (Uq(glm))∗ the matrix coefficients of the natural Uq(glm)-module Vm:
tij : x 7→ 〈fi, x · ej〉. They belong to the restricted (Hopf) dual (Uq(glm))∗res of Uq(glm).

Proposition 3 There is a bialgebra morphism κ from Sq(M
∗
m,m) to (Uq(glm))∗res which sends

Xij to tij.

Proof. The R-matrix of Uq(glm) defines the Uq(glm)-linear map:


(Vm)⊗2 → (Vm)⊗2, ej1,j2 7→





ej2,j1 if j1 < j2,

v ej1,j2 if j1 = j2,

ej2,j1 + (v − v−1)ej1,j2 if j1 > j2


 .

The Uq(glm)-linearity of this map implies that the elements tij satisfy the relations of Def-
inition 3. We thus have an algebra homomorphism from Sq(M

∗
m,m) to (Uq(glm))∗res, that

clearly respects the coproduct and the counit.

The Sd
q (M

∗
m,m)-Sd

q (M
∗
n,n)-bicomodule structure on Sd

q (M
∗
m,n) gives rise to a (Uq(glm))∗res-

(Uq(gln))∗res-bicomodule structure on Sd
q (M

∗
m,n), and thus to a Uq(gln)-Uq(glm)-bimodule

structure on Sd
q (M

∗
m,n). Another way to describe that is to look at the Uq(gln)-Uq(glm)-

bimodule (Vn)⊗d ⊗ (V ∗
m)⊗d, with basis ej1,...,jd

⊗ fi1,...,id = (ej1 ⊗ · · · ⊗ ejd
)⊗ (fi1 ⊗ · · · ⊗ fid).

Proposition 4 The linear map

π :
(
(Vn)⊗d ⊗ (V ∗

m)⊗d → Sd
q (M∗

m,n), ej1,...,jd
⊗ fi1,...,id 7→ Xi1,j1 · · ·Xid,jd

)

factorizes through (Vn)⊗d ⊗Hq(Sd) (V ∗
m)⊗d and defines an isomorphism of Uq(gln)-Uq(glm)-

bimodules between this latter space and Sd
q (M∗

m,n).

Proof. The relations defining the algebra Sq(M
∗
m,n) imply that the kernel of π is exactly

the subspace spanned by the vectors e · Tsk
⊗ f − e ⊗ Tsk

· f for e ∈ (Vn)⊗d, f ∈ (V ∗
m)⊗d
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and 1 ≤ k ≤ d − 1. Hence π defines an injection from (Vn)
⊗d ⊗Hq(Sd) (V ∗

m)⊗d to Sd
q (M

∗
m,n).

Further, π is surjective.
We now fix (j1, . . . , jd) ∈ {1, . . . , n}

d and consider the map

u :
(
(V ∗

m)⊗d → Sd
q (M

∗
m,n), fi1,...,id 7→ Xi1,j1 · · ·Xid,jd

)
.

Let x ∈ Uq(glm) and denote its iterated coproduct by the Sweedler notation
∑

x(1)⊗· · ·⊗x(d).
Then

u(ej1,...,jd
) · x = (Xi1,j1 · · ·Xid,jd

) · x

=
∑m

k1,...,kd=1〈x, κ(Xi1,k1 · · ·Xid,kd
)〉Xk1,j1 · · ·Xkd,jd

=
∑m

k1,...,kd=1〈x, ti1,k1 · · · tid,kd
〉Xk1,j1 · · ·Xkd,jd

=
∑m

k1,...,kd=1〈x(1), ti1,k1〉 · · · 〈x(d), tid,kd
〉Xk1,j1 · · ·Xkd,jd

=
∑m

k1,...,kd=1〈fi1 , x(1) · ek1〉 · · · 〈fid, x(d) · ekd
〉Xk1,j1 · · ·Xkd,jd

=
∑m

k1,...,kd=1〈fi1,...,id, x · ek1,...,kd
〉u(fk1,...,kd

)

= u(fi1,...,id · x).

This calculation shows that the linear map in the statement of the proposition is Uq(glm)-
linear. An analogous reasoning shows that it respects the left action of Uq(gln).

In the case m = n, under the identification (through κ) of Sd
q (M∗

m,m) with the subcoalgebra
of (Uq(glm))∗res spanned by monomials of degree d in the elements tij , the Uq(glm)-Uq(glm)-
linearity of the map π in Proposition 4 is of course a standard fact (see [6, Proposition 2.7.11]
for instance).

Remark. In [3], Dipper and Donkin have introduced another version of the algebra of func-
tions on the quantum matrix space, which has the advantage of being defined over the subring
Z[q] ⊂ Q(v). Dipper and Donkin have pointed out that their bialgebra was not isomorphic
to Sd

q (M
∗
mm). Several techniques of [loc. cit.] may however easily be adapted to our purposes.

For instance, Theorem 2 corresponds to [loc. cit., Theorem 1.1.8 and Lemma 1.2.1], Proposi-
tion 1 is reminiscent of [loc. cit., Definition 4.3.1], and Proposition 2 corresponds to [loc. cit.,
Theorem 1.4.2]. The forthcoming Proposition 5 is an analogue of [loc. cit., Theorem 3.2.5]
(taking into account [8, § 1.4]) and Lemma 3 has to do with [loc. cit., Lemma 4.3.2].

1.6 Duality with the function algebras

We already asserted the existence of a pairing between Uq(glm) and Sq(M
∗
m,m). By the defini-

tion of κ, the orthogonal in Uq(glm) of Sd
q (M

∗
m,m) for this pairing is the annihilator of the left

Uq(glm)-module (Vm)⊗d. And by [10, § 1], this latter is also the kernel of the homomorphism
ζ defined in Theorem 1. Thus there is a pairing between Sd

q(m) and Sd
q (M∗

m,m).
The explicit formula giving this pairing does not seem to be widely known. More gener-

ally, let us define a pairing between Sd
q(m, n) and Sd

q (M
∗
m,n) by, for A and B in Θd

m,n:

〈[A], X(B)〉 =

{
v−

∑
i<j,k aikajk if A = B,

0 if A 6= B.
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This is a non-degenerate bilinear form.

Proposition 5 (a) For the structures of Uq(glm)-Uq(gln)-bimodule on Sd
q(m, n) and of

Uq(gln)-Uq(glm)-bimodule on Sd
q (M

∗
m,n), one has for all a ∈ Sd

q(m, n), b ∈ Sd
q (M

∗
m,n),

x ∈ Uq(glm) and y ∈ Uq(gln):

〈x · a, b〉 = 〈a, b · x〉 and 〈a · y, b〉 = 〈a, y · b〉.

(b) If m, n, p, d are positive integers, if a ∈ Sd
q(m, p), b ∈ Sd

q(p, n), c ∈ Sd
q (M

∗
m,n), and if

we denote by ab ∈ Sd
q(m, n) the product of a and b and by

∑
c(1) ⊗ c(2) ∈ Sd

q (M∗
m,p) ⊗

Sd
q (M

∗
p,n) the coproduct of c (as in Proposition 2), then

〈ab, c〉 =
∑
〈a, c(1)〉 〈b, c(2)〉.

(c) For x ∈ Uq(glm) and a ∈ Sd
q (M

∗
m,m), one has 〈ζ(x), a〉 = 〈x, κ(a)〉.

Proof. If we fix (i1, . . . , id) ∈ {1, . . . , m}
d, the map

(
(Vn)⊗d → Sd

q (M
∗
m,n), ej1,...,jd

7→ Xi1,j1 · · ·Xid,jd

)

is a morphism of Uq(gln)-modules (Proposition 4). This allows to compute the action of
Uq(gln) on the elements X(B) ∈ Sd

q (M
∗
m,n), for B ∈ Θd

m,n, by taking ((i1, j1), . . . , (id, jd)) ∈
Id
m,n ∩ ϕ−1(B) (notations from Section 1.5). Using the relations in Definition 3, one finds

after some simple calculations

Kλ ·X(B) = v(λ| co(B)) X(B),

Eh ·X(B) =
m∑

p=1

[bp,h+1] v
∑

i>p bih−bi,h+1 X(B + Eph −Ep,h+1),

Fh ·X(B) =
m∑

p=1

[bph] v
∑

i<p bi,h+1−bih X(B − Eph + Ep,h+1).

In the right hand side of the second (respectively the third) formula, it is understood that a
summand corresponding to an index p such that bp,h+1 = 0 (respectively bph = 0) vanishes.
Comparing with the formulas in Lemma 1, this proves the second equality in statement (a).

The first equality in statement (a) follows as for it from the following relations describing
the action of Uq(glm) on Sd

q (M
∗
m,n):

X(B) ·Kλ = v(λ| ro(B)) X(B),

X(B) · Eh =
n∑

p=1

[bhp] v(
∑

j≥p bhj−bh+1,j)−1 X(B −Ehp + Eh+1,p),

X(B) · Fh =
n∑

p=1

[bh+1,p] v(
∑

j≤p bh+1,j−bhj)−1 X(B + Ehp − Eh+1,p).

Here again, in the right hand side of the second (respectively the third) formula, it is under-
stood that a summand corresponding to an index p such that bhp = 0 (respectively bh+1,p = 0)
vanishes.
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The formula in statement (c) is true for x = 1 and any a. Since ζ (respectively κ) is a
morphism of left (respectively right) Uq(glm)-modules and since 1 generates the left regular
Uq(glm)-module, statement (a) shows that the formula is true in the general case.

Statement (c), the fact that ζ is a surjective morphism of algebras, and the fact that κ
is a morphism of coalgebras imply that statement (b) holds in the case m = n = p. For
the general case, we choose an integer N greater than m, n and p, and use a stabilization
procedure, as explained in previous remarks.

One can understand the statement (b) by saying that the algebra Sd
q(m) is the dual of the

coalgebra Sd
q (M

∗
m,m) (see [24, § 11.2 and Remark 11.3.3] and [3, Theorem 4.4.8]). State-

ment (c) and the surjectivity of ζ imply that, in restriction to Sd
q (M

∗
m,m), the map κ is

injective. (In fact, κ itself is injective.)

1.7 Appendix: Standard basis theorems for Sd
q (M

∗
m,n) and Sd

q(m, n)

To study combinatorially the theory of invariants in a way independent of the characteristic
of the ground field, Doubilet, Rota and Stein have introduced some objects called bitableaux.
These bitableaux give a “standard basis” of the space of polynomial functions on a space
of matrices, and J. A. Green has defined in a dual way a “standard basis” for the classical
Schur algebra. In turn, these bases allow one to define filtrations on both these spaces, that
are linked with the recent notions of tilting theory and quasi-hereditary algebra. (See [11]
and references therein for all that.)

In [15] and [12], Huang, Zhang and R. M. Green defined quantum analogues of these
constructions and devised straightening algorithms in order to prove standard basis theorems
for Sd

q (M∗
m,n) (in a supersymmetric case) and for Sd

q(m) respectively. Using (and abusing of)
an idea of J. A. Green [11], we will show in this appendix how to deduce both standard basis
theorems from the explicit formula given in Section 1.6 for the pairing between Sd

q(m, n) and
Sd

q (M
∗
m,n). Besides being simpler, this approach has the advantage of giving a more precise

information than the straightening algorithms can do.
The set of polynomial dominant weights of degree d in Pm is in bijection with the set

of Young diagrams with d boxes and at most m rows. Such a Young diagram, filled with
integers between 1 and m, is called semistandard if the entries in each row, from the left to
the right, are non-decreasing and if the entries in each column, from the top to the bottom,
are increasing.

Let Td
m,n be the set of pairs (P, Q) consisting of Young semistandard tableaux of the

same shape, with d boxes, such that P and Q are filled with positive integers less or equal
than m and n respectively. To each (P, Q) ∈ Td

m,n, one associates a “quantum semistandard
bitableau” (or “bideterminant”) XP,Q ∈ Sd

q (M
∗
m,n), as in [21, § 1], and a “quantized semistan-

dard codeterminant” YP,Q ∈ Sd
q(m, n), as in [12] (the precise definitions are recalled below).

We aim to show that these elements afford bases for the spaces Sd
q (M

∗
m,n) and Sd

q(m, n).
First, I introduce some notations:

• If λ and µ ∈ Pm are weights, we write λ E µ if one can express µ − λ as a linear
combination with non-negative coefficients of the simple roots αi. To a Young tableau
P with at most m lines and filled with positive numbers less or equal than m, we
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associate two polynomial weights in Pm: the shape of P is sh(P ) = λ1ε1 + · · ·+ λmεm,
where λ1 ≥ · · · ≥ λm are the lengths of the rows of P , and the content of P is
cont(P ) = n1ε1 + · · · + nmεm, where ni is the number of boxes in P filled by i. We
say that P is column-standard if the entries is each column of P increase from top to
bottom. If P is column-standard, then cont(P ) E sh(P ).

• If d is a positive integer, we let Ad =
∑

w∈Sd
(−q)−ℓ(w)Tw be the antisymmetrizer in

Hq(Sd), where ℓ(w) denotes the usual length of the permutation w. If 1 ≤ i1 < · · · <
id ≤ m and 1 ≤ j1 < · · · < jd ≤ n, one defines the quantum determinant as the
element of Sd

q (M∗
m,n) given by

∣∣∣∣∣∣∣

Xi1,j1 . . . Xi1,jd

...
...

Xid,j1 . . . Xid,jd

∣∣∣∣∣∣∣
q

= π(ej1,...,jd
· Ad ⊗ fi1,...,id)

=
∑

w∈Sd

(−v)−ℓ(w) π(ejw(1),...,jw(d)
⊗ fi1,...,id)

=
∑

w∈Sd

(−v)−ℓ(w) Xi1,jw(1)
· · ·Xid,jw(d)

.

• Let (P, Q) ∈ Td
m,n. The common shape of P and Q is a Young diagram with say t

columns of lengths d1, . . . , dt. Let 1 ≤ is,1 < · · · < is,ds
≤ m and 1 ≤ js,1 < · · · <

js,ds
≤ n be the entries in the s-th columns of P and Q respectively, from top to

bottom. One then puts

XP,Q =
∏t

s=1

∣∣∣∣∣∣∣

Xis,1, js,1 . . . Xis,1, js,ds

...
...

Xis,ds , js,1 . . . Xis,ds , js,ds

∣∣∣∣∣∣∣
q

.

This definition extends to the case of a pair of Young tableaux of the same shape,
with P and Q filled with positive integers less or equal than m and n respectively, but
that are only column-standard. In this latter case, we refer to XP,Q as a “quantum
column-standard bitableau” (this is a less general notion than the one of “quantum
bitabloid” defined in [21, § 1]).

• Let (P, Q) ∈ Td
m,n. The common shape of P and Q is a Young diagram with at most

p = min(m, n) rows. Let AP ∈ Θd
m,p be the lower triangular matrix whose element in

position (i, j) is the number of times i appears in the j-th line of P . Let BQ ∈ Θd
p,n

be the upper triangular matrix whose element in position (i, j) is the number of times
j appears in the i-th line of Q. Then co(A) = ro(B) = sh(P ) = sh(Q), and, following
R. M. Green, we define YP,Q ∈ Sd

q(m, n) to be the product [AP ][BQ].

• Let m, n and d be positive integers. We say that a matrix A ∈ Θd
m,n is less than or

equal to a matrix B ∈ Θd
m,n if ro(A) = ro(B), co(A) = co(B), and if for all 1 ≤ µ ≤ m

and 1 ≤ ν ≤ n, there holds
∑

(i,j)∈{1,...,µ}×{1,...,ν} aij ≤
∑

(i,j)∈{1,...,µ}×{1,...,ν} bij .
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This defines a partial order ≤ on Θd
m,n.

We will also need two lemmas.

Lemma 2 [24, Lemma 4.4.2][15, Proposition 6] Let m, n, p, d be positive integers, with d ≤
min(m, n, p), and take 1 ≤ i1 < · · · < id ≤ m and 1 ≤ j1 < · · · < jd ≤ n. Then the image of
the quantum determinant

∣∣∣∣∣∣∣

Xi1,j1 . . . Xi1,jd

...
...

Xid,j1 . . . Xid,jd

∣∣∣∣∣∣∣
q

∈ Sd
q (M

∗
m,n)

under the coproduct defined in Proposition 2 is equal to

∑
1≤k1<···<kd≤p

∣∣∣∣∣∣∣

Xi1,k1 . . . Xi1,kd

...
...

Xid,k1 . . . Xid,kd

∣∣∣∣∣∣∣
q

⊗

∣∣∣∣∣∣∣

Xk1,j1 . . . Xk1,jd

...
...

Xkd,j1 . . . Xkd,jd

∣∣∣∣∣∣∣
q

∈ Sd
q (M∗

m,p)⊗ Sd
q (M

∗
p,n).

Lemma 3 Let m, n, d be positive integers.

(a) Take ((i1, j1), . . . , (id, jd)) ∈ ({1, . . . , m} × {1, . . . , n})d, put A =
∑d

a=1 Eia,ja
∈ Θd

m,n,

and expand Xi1,j1 · · ·Xid,jd
=

∑
B∈Θd

m,n
cB X(B) in terms of our usual basis (see con-

ventions after Proposition 1). Then the coefficients cB belong to Z[v, v−1], cB 6= 0 only
if B ≤ A, and cA is a power of v.

(b) Take 1 ≤ i1 < · · · < id ≤ m and 1 ≤ j1 < · · · < jd ≤ n, put A =
∑d

a=1 Eia,ja
∈ Θd

m,n,
and expand ∣∣∣∣∣∣∣

Xi1,j1 . . . Xi1,jd

...
...

Xid,j1 . . . Xid,jd

∣∣∣∣∣∣∣
q

=
∑

B∈Θd
m,n

cB X(B)

in terms of our usual basis. Then the coefficients cB belong to Z[v, v−1], cB 6= 0 only if
B ≤ A, and cA = 1.

(c) Let (P, Q) be a pair of column-standard Young tableaux of the same shape, such that
P and Q are filled with positive integers less or equal than m and n respectively. (For
instance, take (P, Q) ∈ Td

m,n.) Enumerate the entries in the boxes of P and Q by

(i1, . . . , id) and (j1, . . . , jd) (in the same order), put A =
∑d

a=1 Eia,ja
∈ Θd

m,n, and

expand XP,Q =
∑

B∈Θd
m,n

cB X(B) in terms of our usual basis. Then the coefficients

cB belong to Z[v, v−1], cB 6= 0 only if B ≤ A, and cA is a power of v.

Proof. (a) Order the set {1, . . . , m}×{1, . . . , n} by the lexicographic order: (i, j) ≤ (i′, j′)
if i < i′ or if i = i′ and j ≤ j′, and denote by N the number of inversions in the
sequence ((i1, j1), . . . , (id, jd)). There is nothing to prove if N = 0, since in that case
((i1, j1), . . . , (id, jd)) ∈ Id

m,n (see Section 1.5). So assume that N ≥ 1. There is then
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an a ∈ {1, . . . , d − 1} such that (ia, ja) > (ia+1, ja+1). Thanks to the relations in
Definition 3, we have

Xi1,j1 · · ·Xid,jd
=





Xi1,j1 · · ·Xia+1,ja+1Xia,ja
· · ·Xid,jd

if ia > ia+1 and ja < ja+1,

vXi1,j1 · · ·Xia+1,ja+1Xia,ja
· · ·Xid,jd

if ia > ia+1 and ja = ja+1

or if ia = ia+1 and ja > ja+1,

Xi1,j1 · · ·Xia+1,ja+1Xia,ja
· · ·Xid,jd

+

(v − v−1) Xi1,j1 · · ·Xia+1,ja
Xia,ja+1 · · ·Xid,jd

if ia > ia+1 and ja > ja+1.

The sequences arising from each terms above have fewer than N inversions. The matrix
associated to the sequence ((i1, j1), . . . , (ia+1, ja+1), (ia, ja), . . . , (id, jd)) is the matrix A
and, in the third case, the matrix associated to the sequence ((i1, j1), . . . , (ia+1, ja),
(ia, ja+1), . . . , (id, jd)) is less than A. An induction concludes the proof.

(b) Choose w ∈ Sd and consider in the quantum determinant the term Xi1,jw(1)
· · ·Xid,jw(d)

.
By statement (a), the expansion of this term involve monomials X(B) such that the
matrix B is less or equal than

∑d
a=1 Eia,jw(a)

. This latter matrix is equal to A if w = 1
and is less than A otherwise. Thus after having gathered the expansions of the different
terms, only monomials X(B) with B ≤ A can occur, and X(A) occurs only for the
term Xi1,j1 · · ·Xid,jd

= X(A).

(c) The assertion (c) is a direct consequence of the statements (a) and (b).

Now we can prove:

Proposition 6 The matrix
(
〈YP,Q, XP ′,Q′〉

)
(P,Q),(P ′,Q′)∈Td

m,n

has entries in Z[v, v−1] and is

invertible over this ring.

Proof. Since the structure constants of the q-Schur algebras belong to Z[v, v−1], Lemma 3 (c)
implies that our matrix is Z[v, v−1]-valued. If (P, Q) and (P ′, Q′) ∈ Td

m,n, we say that (P, Q)
is less or equal than (P ′, Q′) if either

• the common shape of P and Q is less than the common shape of P ′ and Q′ : sh(P ) ⊳

sh(P ′) ;

• P, Q, P ′, Q′ have the same shape, AP ≤ AP ′ and BQ ≤ BQ′.

This definition endows Td
m,n with a partial order 4 and it is enough to prove that the matrix(

〈YP,Q, XP ′,Q′〉
)
(P,Q),(P ′,Q′)∈Td

m,n
is upper triangular w.r.t. 4 with invertible diagonal elements.

The image of XP ′,Q′ under the coproduct (defined in Proposition 2) can be computed
using Lemma 2. The result is

∑
R XP ′,R⊗XR,Q′ where the sum runs over the set of column-

standard Young tableaux with the same shape than P ′ and Q′ that are filled with positive
integers less or equal than p. Using Proposition 5 (b), we can write

〈YP,Q, XP ′,Q′〉 =
∑

R 〈[AP ], XP ′,R〉 〈[BQ], XR,Q′〉.
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If 〈YP,Q, XP ′,Q′〉 is non-zero, then there is an R such that 〈[AP ], XP ′,R〉 and 〈[BQ], XR,Q′〉
are non-zero. These conditions imply that cont(R) is equal to co(AP ) = ro(BQ) = sh(P ), and
this is possible only if sh(P ) = cont(R) E sh(R) = sh(P ′). Suppose further that P, Q, P ′, Q′

have the same shape. In the sum
∑

R 〈[AP ], XP ′,R〉 〈[BQ], XR,Q′〉, the only possible non-
zero term occurs for the so-called Yamanouchi tableau R, filled with 1 in the first line, 2 in
the second, and so on. According to Lemma 3 (c), the bracket 〈[AP ], XP ′,R〉 (respectively
〈[BQ], XR,Q′〉) can be non-zero only if AP ≤ AP ′ (respectively BQ ≤ BQ′). All this proves
that (P, Q) 4 (P ′, Q′) is a necessary condition to have 〈YP,Q, XP ′,Q′〉 6= 0. Therefore the
matrix

(
〈YP,Q, XP ′,Q′〉

)
is upper triangular.

The same reasoning proves that, up to a power of v, 〈YP,Q, XP,Q〉 equals 〈[AP ], X(AP )〉×
〈[BQ], X(BQ)〉. Hence 〈YP,Q, XP,Q〉 is a power of v. This proves our assertion about the
diagonal entries of the matrix.

A direct consequence of this proposition is that the sets (XP,Q)(P,Q)∈Td
m,n

and (YP,Q)(P,Q)∈Td
m,n

are bases of the spaces Sd
q (M

∗
m,n) and Sd

q(m, n) respectively. More precisely, they are bases
of the Z[v, v−1]-lattices spanned by the sets {X(A) | A ∈ Θd

m,n} and {[A] | A ∈ Θd
m,n}

respectively (compare with [15, Theorem 9] and [12, Corollary 3.7]).
All the other consequences that J. A. Green has obtained from its technique quantify

easily. For instance, one can show that the straightening of a quantum column-standard
bitableau only affords quantum semistandard bitableaux whose shapes are less or equal than
the shape of the original column-standard bitableau w.r.t. the dominance order E (this
fact does not seem to be a direct consequence of the algorithm described by Huang and
Zhang [15] and Galdi [9]). One can therefore use the quantum bitableaux and the quantized
codeterminants to exhibit bimodule filtrations for Sd

q (M∗
m,n) and Sd

q(m, n). I must point
out further that, despite J. A. Green’s claim, details of the straightening algorithm are not
needed to get the precise isomorphism in [11, Theorem 7.3 (iii)].

2 The q-Weyl group

2.1 The completion and the q-Weyl group of Uq(glm)

In the above presentation of the q-Weyl group, I will use Levendorskii and Soibelman’s
idea of seeing the q-Weyl group inside a completion of Uq(glm) and not as a subgroup of
Aut(Uq(glm)).

Let J be the set of the annihilators I ⊆ Uq(glm) of the finite-dimensional weight Uq(glm)-
modules. Endowing J with the order relation given by the inclusion, one may define the

inverse limit Ûq(glm) = lim
←−

(Uq(glm)/I). The canonical map Uq(glm)→ Ûq(glm) is injective

(see [18, Lemma 8.3]) and we identify Uq(glm) with its image.
Here is an instance where this construction arises naturally. Let λ ∈ Pm be a weight. For

each I ∈ J, one may choose a finite-dimensional weight Uq(glm)-module M whose annihilator
is I. This module M is the direct sum of its weight subspaces: M =

⊕
λ∈Pm

Mλ ; in
particular, it is completely reducible as a U0-module. The projection on a summand Mλ

with respect to this decomposition belongs to the centralizer of EndU0(M) in EndQ(v)(M),
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hence is the image of a (unique) element (1λ)I ∈ Uq(glm)/I, by the density theorem. Forming
direct sums, one can easily see that (1λ)I does not depend on the choice of M and that the

family ((1λ)I)I∈J defines an element 1λ ∈ Ûq(glm). (Here, we used the same notation as in
[23, § 23.1].)

More generally, an element x ∈ Ûq(glm) gives rise, for every finite-dimensional weight
module M , to an operator xM ∈ EndQ(v)(M), with the property that for all morphism
f : M → N , there holds xN ◦ f = f ◦ xM .

Now the symmetric group Sm identifies with the Weyl group of GLm. This is a Coxeter
system on the set of simple reflections {s1, . . . , sm−1} and it acts on the weight lattice Pm.
Lusztig [23, Chap. 5], and independently Levendorskii and Soibelman [20], have introduced

elements s̄1, . . . , s̄m−1 of the algebra Ûq(glm) such that:

• for each weight λ ∈ Pm, one has 1si(λ) s̄i = s̄i 1λ (see [23, Proposition 5.2.7]);

• the s̄i satisfy the braid relations: s̄is̄j = s̄j s̄i if |i − j| ≥ 2, and s̄is̄i+1s̄i = s̄i+1s̄is̄i+1

(see [23, Theorem 39.4.3]);

• the s̄i are invertible in Ûq(glm) and the inner automorphisms they define in Ûq(glm)
stabilize the subalgebra Uq(glm) (see [23, Proposition 37.1.2]).

By the definition of Ûq(glm), the elements s̄i give rise, for each finite-dimensional weight
Uq(glm)-module M , to an operator Ti = (s̄i)M : M →M . In fact, Lusztig has found several
possible choices for the Ti, which he denotes by T ′

i,±1 and T ′′
i,±1. These operators are defined

by the following formulas, in which e is a vector of weight λ, and E
(a)
i =

Ea
i

[a]!
and F

(b)
i =

F b
i

[b]!

are the q-divided powers (see [23, § 5.2.1]):

T ′
i,±1(e) =

∑
a−b+c=(αi|λ) (−1)b v±(b−ac) F

(a)
i E

(b)
i F

(c)
i · e ,

T ′′
i,±1(e) =

∑
−a+b−c=(αi|λ) (−1)b v±(b−ac) E

(a)
i F

(b)
i E

(c)
i · e .

It is known that T ′′
i,±1 = (T ′

i,∓1)
−1 [23, Proposition 5.2.3].

The operators T ′
i,+1 and T ′′

i,+1 are induced by elements s̄′i and s̄′′i in Ûq(glm), T ′
i,−1 and T ′′

i,−1

being then induced by (s̄′′i )
−1 and (s̄′i)

−1. The formulas above define the elements (s̄′i)
±11λ

and (s̄′′i )
±11λ as the sum of series which converge in Ûq(glm).

Finally, recall the involutive antiautomorphism Φ of the algebra Uq(glm) defined in Sec-
tion 1.2. It preserves the set J of ideals, since the contravariant dual of a finite-dimensional
weight module is a finite-dimensional weight module. Thus Φ extends to an involutive anti-

automorphism of the algebra Ûq(glm), which we denote by Φ̂. If λ ∈ Pm, then Φ̂(1λ) = 1λ in
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Ûq(glm). One also verifies by the formulas that Φ̂(s̄′i) = s̄′′i in Ûq(glm):

Φ̂(s̄′i 1λ) = Φ̂
(∑

a−b+c=(αi|λ) (−1)b vb−ac F
(a)
i E

(b)
i F

(c)
i

)
Φ̂(1si(λ))

=
∑

a−b+c=(αi|λ) (−1)b vb−ac E
(c)
i F

(b)
i E

(a)
i 1si(λ)

=
∑

−a+b−c=(αi|si(λ)) (−1)b vb−ac E
(c)
i F

(b)
i E

(a)
i 1si(λ)

= s̄′′i 1si(λ)

= Φ̂(1λ) s̄′′i .

2.2 The q-Weyl group of the q-Schur algebra

As noticed at the end of Section 1.4, the left Uq(glm)-module Sd
q(m) is finite-dimensional

and is a weight module. Thus the kernel of ζ belongs to J, and so ζ factorizes canonically

through an epimorphism ζ̂ : Ûq(glm)→ Sd
q(m).

Let λ = λ1ε1 + · · · + λmεm ∈ Pm be a weight. Since the left Uq(glm)-module Sd
q(m) is

polynomial of degree d, the image under ζ̂ of 1λ in Sd
q(m) is zero except if λ is polynomial

of degree d, in which case it is equal to [
∑m

j=1 λjEjj ]. Our aim is to describe similarly the

images of s̄′i and s̄′′i in Sd
q(m).

We first begin with a proposition giving a pairing between Sd
q (M∗

n,m) and Sd
q (M∗

m,n). (This
pairing is the quantum version of the non-supersymmetric case of [13, Proposition 11].) Let
us denote by AT the transposed of a matrix A.

Proposition 7 The non-degenerate bilinear form between Sd
q (M

∗
n,m) and Sd

q (M∗
m,n) defined

by, for A ∈ Θd
n,m and B ∈ Θd

m,n

(X(A), X(B)) =

{∏
i,j

(
vaij(aij−1)/2[aij ]!

)
if B = AT ,

0 else,

satisfies, for all a ∈ Sd
q (M

∗
n,m), b ∈ Sd

q (M
∗
m,n), x ∈ Uq(glm) and y ∈ Uq(gln):

(x · a, b) = (a, b · x) and (a · y, b) = (a, y · b).

Proof. One checks the relations directly with the help of the formulas given in the proof of
Proposition 5.

An immediate corollary of Propositions 5 and 7 is the following statement.

Proposition 8 The linear map defined in the standard bases by

(
Sd

q (M
∗
n,m)→ Sd

q(m, n), X(AT ) 7→
∏

i,j

(
vaij(aij−1)/2[aij ]!

)
v

∑
i<j,k aikajk [A]

)

is an homomorphism of Uq(glm)-Uq(gln)-bimodules.
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One may notice that the expression
∏

i,j

(
vaij(aij−1)/2[aij ]!

)
v

∑
i<j,k aikajk also appears, in a

slightly different context, in [12, p. 2896].

The proof of the following technical lemma relies on a result due to Levendorskii and Soibel-
man.

Lemma 4 Let λ = λ1ε1 + · · · + λmεm ∈ Pm be a polynomial weight of degree d. In the
Uq(glm)-module (Vm)⊗d, the action of T ′′

i,+1 satisfies the relation:

T ′′
i,+1(e1,...,1︸︷︷︸

λ1

,...,m,...,m︸ ︷︷ ︸
λm

) = (−v)λie1,...,1︸︷︷︸
λ1

,...,i−1,i+1,...,i+1︸ ︷︷ ︸
λi

, i,...,i︸︷︷︸
λi+1

,i+2,...,m,...,m︸ ︷︷ ︸
λm

).

Proof. It is easy to compute in (Vm)⊗λi, from the definition of T ′′
i,+1, that T ′′

i,+1 · ei,...,i =

(−v)λiF
(λi)
i ei,...,i = (−v)λiei+1,...,i+1. With the help of [23, Proposition 5.2.2], one can also

compute, in (Vm)⊗λi+1, that T ′′
i,+1 · ei+1,...,i+1 = E

(λi+1)
i ei+1,...,i+1 = ei,...,i.

One may compute the action of T ′′
i,+1 on a tensor product of modules thanks to the link,

discovered by Levendorskii and Soibelman, between the action of the q-Weyl group and the
action of the “partial R-matrices”. Remembering that we are using from the beginning the
opposite coproduct as the one in [23], the lemma and the proposition in [23, § 5.3] imply the
following equality in (Vm)⊗λi ⊗ (Vm)⊗λi+1:

T ′′
i,+1 · (ei,...,i ⊗ ei+1,...,i+1) = (−v)λiei+1,...,i+1 ⊗ ei,...,i.

Our formula can be deduced immediately from that.

Now we can prove our result:

Theorem 3 The images of s̄′i and s̄′′i in Sd
q(m) are given by the following sums, running

over all the m-uples λ = (λ1, . . . , λm) of non-negative integers of sum d:

ζ̂(s̄′i) =
∑

λ (−v)λi

[∑
j∈{1,...,m}\{i,i+1} λjEjj + λiEi,i+1 + λi+1Ei+1,i

]
,

ζ̂(s̄′′i ) =
∑

λ (−v)λi

[∑
j∈{1,...,m}\{i,i+1} λjEjj + λiEi+1,i + λi+1Ei,i+1

]
.

Proof. Proposition 4 and Lemma 4 imply that

s̄′′i · π(e1,...,1︸︷︷︸
λ1

,...,m,...,m︸ ︷︷ ︸
λm

⊗f1,...,1︸︷︷︸
λ1

,...,m,...,m︸ ︷︷ ︸
λm

)

= π
(
T ′′

i,+1(e1,...,1︸︷︷︸
λ1

,...,m,...,m︸ ︷︷ ︸
λm

)⊗ f1,...,1︸︷︷︸
λ1

,...,m,...,m︸ ︷︷ ︸
λm

)

= (−v)λiπ(e1,...,1︸︷︷︸
λ1

,...,i−1,i+1,...,i+1︸ ︷︷ ︸
λi

, i,...,i︸︷︷︸
λi+1

,i+2,...,m,...,m︸ ︷︷ ︸
λm

⊗ f1,...,1︸︷︷︸
λ1

,...,m,...,m︸ ︷︷ ︸
λm

).

Thus in the left Uq(glm)-module Sd
q (M

∗
n,m), by Proposition 4:

s̄′′i ·X(
∑

j λjEjj) = (−v)λiX(
∑

j∈{1,...,m}\{i,i+1} λjEjj + λiEi,i+1 + λi+1Ei+1,i)
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and so in the left Uq(glm)-module Sd
q(m, n), using Proposition 8:

s̄′′i ·
[∑

j λjEjj

]
= (−v)λi

[∑
j∈{1,...,m}\{i,i+1} λjEjj + λiEi+1,i + λi+1Ei,i+1

]
.

Using the fact that the unit in the algebra Sd
q(m) is the sum of the [

∑
j λjEjj] for (λ1, . . . , λm)

running over the m-uples of non-negative integers of sum d, we find the second formula.
The Q(v)-linear map from Sd

q(m) to itself defined by [A] 7→ [AT ] is an algebra antiauto-
morphism (see [1, Lemma 3.10]). Comparing with Theorem 1, we see that this automorphism

is induced by Φ̂. Applying this automorphism to our formula for s̄′′i , we obtain the first for-
mula.

It would be now easy to describe the elements s̄′i and s̄′′i with the help of the basis φw
λµ

introduced by Dipper and James [5, p. 253]. We leave the translation to the reader, who will
use the explicit isomorphism of Du [8, § 1.4]. The simplicity of the result hide the fact that

the present approach gives for free the invertibility of ζ̂(s̄′i) and ζ̂(s̄′′i ). This can for instance
be used to simplify to proof of [12, Lemma 2.4 (ii)], rendering the analysis of [loc. cit., § 2]
unnecessary.

3 Applications

3.1 A result of Lusztig, Levendorskii and Soibelman

Let d ≤ m be two positive integers. It is well-known that the Hecke algebra Hq(Sd) can
be identified with a subalgebra of the q-Schur algebra (see [5, p. 256]). Maybe the simplest
way to see that is the following. Consider the weight ω = ε1 + · · ·+ εd ∈ Pm and the matrix
Id = E11 + · · · + Edd ∈ Θd

m,m. Then ζ̂(1ω) = [Id] ∈ Sd
q(m) is an idempotent in the algebra

Sd
q(m), and the algebra [Id]S

d
q(m)[Id] admits as basis the set of elements [A], for the matrices

A such that ro(A) = co(A) = ω, that is the matrices A consisting of a permutation matrix
of order d in the upper left corner, padded with zeros elsewhere.

Proposition 9 The map
(
Hq(Sd)→ [Id]S

d
q(m)[Id], Tsi

7→ v
[∑

j∈{1,...,d}\{i,i+1} Ejj + Ei,i+1 + Ei+1,i

])

is an isomorphism of algebras.

Proof. A matrix A ∈ Θd
m,m satisfies ro(A) = co(A) = ω if and only if for (f, f ′) ∈ OA, writing

f = (0 = V0 ⊆ · · · ⊆ Vm = V ) and f ′ = (0 = V ′
0 ⊆ · · · ⊆ V ′

m = V ), one has that Vd = V ′
d = V

and that (V0 ⊆ · · · ⊆ Vd) and (V ′
0 ⊆ · · · ⊆ V ′

d) are complete flags in V . Hence the above
isomorphism is the usual geometric realization of the Hecke algebra of type A in terms of
the geometry of flag varieties (see [2, Chap. IV, § 2, exerc. 22]).

We can now relate this fact with the quantum Weyl group of Uq(glm): for i ≤ d− 1, the

images under ζ̂ of −s̄′i1ω = −1ω s̄′i1ω and of −s̄′′i 1ω = −1ω s̄′′i 1ω belong to [Id]S
d
q(m)[Id] and

are both equal to the image of Tsi
under the map of Proposition 9. Taking m = d, we can

state the following variant of the result of Lusztig, Levendorskii and Soibelman:
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Proposition 10 Let M be a finite-dimensional weight Uq(glm)-module. The operators T ′
i,+1

and T ′′
i,+1 of the q-Weyl group of Uq(glm) act on M . They stabilize the weight subspace of M

of weight ε1 + · · ·+ εm and satisfy on it the relations

(−Ti,+1 − q)(−Ti,+1 + 1) = 0.

This single result would not justify the development of all our machinery. In fact, we could
have followed Levendorskii and Soibelman’s method, without any further computation.

3.2 Quantum Schur–Weyl duality and quantum (glm, gln) duality

The space (Vn)⊗d is a Uq(gln)-Hq(Sd)-bimodule (see Section 1.3). Let us recall the following
result of Jimbo.

Theorem 4 [17] The images of the algebras Uq(gln) and Hq(Sd) in EndQ(v)((Vn)⊗d) are
each one the full commutant of the other.

The following result is known to the experts (see [9]), but apparently has not yet appeared
in printed form. It may be called quantum (glm, gln) duality.

Proposition 11 (a) The images in EndQ(v)(S
d
q (M

∗
m,n)) of (Uq(glm))op and Uq(gln) are

each one the full commutant of the other.

(b) The images in EndQ(v)(S
d
q(m, n)) of Uq(glm) and (Uq(gln))op are each one the full com-

mutant of the other.

Proof. We first prove statement (b). Suppose that m ≤ n and denote by η ∈ Sd
q(n) the

sum
∑

A[A] over all diagonal matrices A ∈ Θd
n,n such that ro(A) ∈ Pm. Being the sum of

a family of orthogonal idempotents, η is an idempotent. There are canonical isomorphisms
Sd

q(m) ≃ η Sd
q(n) η and Sd

q(m, n) ≃ η Sd
q(n), compatible with the structure of Sd

q(m)-Sd
q(n)-

bimodule over Sd
q(m, n) (see Remark (b) in Section 1.4). Thus we have isomorphisms

Sd
q(m) ≃ η Sd

q(n) η ≃ EndSd
q(n)(η Sd

q(n)) ≃ EndSd
q(n)(S

d
q(m, n)),

whence one half of our assertion. The other half follows from the density theorem [16,
Chap. 4, § 3], since the choice of our ground ring makes all our algebras semisimple.

Statement (a) is now a simple consequence of Proposition 5 (a).

Our final result presents how to recover the quantum Schur–Weyl duality from the quan-
tum (glm, gln) duality (see [14] for instance in the classical case). Let n and d be integers. We
consider the Uq(gln)-Hq(Sd)-bimodule (Vn)⊗d and the Uq(gln)-Uq(gld)-bimodule Sd

q (M
∗
d,n).

By Proposition 10 (and at the expense of exchanging left and right), the Uq(gld)-weight
subspace of Sd

q (M∗
d,n) of weight ω = ε1 + · · ·+ εd becomes a Uq(gln)-Hq(Sd)-bimodule under

the action of the q-Weyl group of Uq(gld).
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Proposition 12 With the data above, the map

u :
(
(Vn)⊗d → Sd

q (M∗
d,n), ej1,...,jd

7→ X1,j1 · · ·Xd,jd

)

defines a Uq(gln)-Hq(Sd)-isomorphism between (Vn)
⊗d and the Uq(gld)-weight subspace of

Sd
q (M

∗
d,n) of weight ω.

Proof. By Proposition 4 and Theorem 2 (a), the map u is an isomorphism of Uq(gln)-modules
between the two aforementioned spaces. Lemma 4 and induction on length show that if
w = si1 · · · sik is a reduced expression of a permutation w ∈ Sd, then the relation

Tw · f1,...,d = f1,...,d · (−Ti1,+1) · · · (−Tik ,+1)

(where Ti,+1 denotes either T ′
i,+1 or T ′′

i,+1) holds in the Hq(Sd)-Uq(gld)-bimodule (V ∗
d )⊗d. It

follows from Proposition 4 that u preserves the action of Hq(Sd).

Remarks. (a) A version of Proposition 12 has been announced in [19, p. 249].

(b) Proposition 8 shows that the Uq(gln)-Uq(gld)-modules Sd
q (M∗

d,n) and Sd
q(n, d) are iso-

morphic in a natural way. Under this isomorphism, the subspace u
(
(Vn)

⊗d
)
⊆ Sd

q (M
∗
d,n)

is sent to Sd
q(n, d)[Id], whence an isomorphism of Uq(gln)-Hq(Sd)-bimodules between

(Vn)⊗d and Sd
q(n, d)[Id], taking into account the isomorphism Hq(Sd) ≃ [Id]S

d
q(d)[Id].

Up to a multiplication by the scalar vd(d−1)/2, this is the geometric construction of
quantum Schur–Weyl duality given in [10, § 1.13]. This is also the realization of the
“q-tensor space” in [5, § 2.6]. These facts were already noticed by Du and R. M. Green,
the new thing here is the relation with the q-Weyl group.

Finally, let us point out the difficulties that arise upon base ring change. Nearly all the
constructions are valid in an integral setting: one has to replace the quantized enveloping
algebra by its Lusztig form, but then Theorem 1 is still valid (see [8, Theorem 3.4]), the
q-Weyl group is still defined (see [23, Chap. 41]), and Theorem 3 still holds. One can then
specialize the objects in any commutative Z[v, v−1]-algebra. Theorem 4 extends to this
setting (see [7, Theorem 6.3]). Proposition 11 does not hold in general, but its validity is
restored if one adds the assumption that m = n or that d ≤ min(m, n). Although the map
given in Proposition 8 is no longer an isomorphism, it maps isomorphically the subspace
u
(
(Vn)⊗d

)
⊆ Sd

q (M
∗
d,n) to Sd

q(n, d)[Id].
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