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A CLASS OF PAIRWISE-INDEPENDENT JOININGS

ÉLISE JANVRESSE AND THIERRY DE LA RUE

Dedicated to the memory of Professor José de Sam Lazaro

Abstract. We introduce a special class of pairwise-independent self-joinings
for a stationary process: Those for which one coordinate is a continuous func-
tion of the two others. We investigate which properties on the process the
existence of such a joining entails. In particular, we prove that if the process
is aperiodic, then it has positive entropy. Our other results suggest that such
pairwise independent, non-independent self-joinings exist only in very specific
situations: Essentially when the process is a subshift of finite type topologically
conjugate to a full-shift. This provides an argument in favor of the conjecture
that 2-fold mixing implies 3-fold-mixing.

1. Introduction

The purpose of this article is to study in which cases it is possible to construct
some special self-joinings for a stationary process. Throughout the text, ξ = (ξi)i∈Z

is a stationary process taking values in the finite alphabet A, and µ is its probability
distribution on AZ. For any i < j, we denote by ξj

i the sequence of random variables
(ξi, ξi+1, . . . , ξj).

Definition 1.1. Let k ≥ 2. A k-fold self-joining of ξ is a stationary probability
distribution on (Ak)Z (canonically identified with (AZ)k), whose k marginals on AZ

are all equal to µ.

In the sequel, we will mostly concentrate on 2-fold and 3-fold self-joinings. A
3-fold self-joining of ξ can be viewed as the joint distribution of three processes ξ, ξ′

and ξ′′ with the same distribution µ, provided this joint distribution is stationary.

1.1. Pairwise-independent joinings.

Definition 1.2. We call pairwise-independent joining of ξ a 3-fold self-joining of ξ
such that the three 2-dimensional marginals are equal to µ ⊗ µ.

An obvious example of a pairwise-independent joining of ξ is the product measure
µ ⊗ µ ⊗ µ, corresponding to the case where ξ, ξ′ and ξ′′ are independent.

Two other classical examples arise for particular processes ξ.

Example 1.3. When A = Z/nZ and ξ is a uniform Bernoulli process (i.e. the
random variables ξi are i.i.d. and uniformly distributed in A), we can take ξ′ as an
independent copy of ξ, and set for all i ∈ Z

ξ′′i := ξi + ξ′i mod n.
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Then ξ′′ follows the same distribution as ξ and ξ′, is independent from ξ and from ξ′,
but the joint distribution is clearly not the product measure, since ξ′′ is determined
by ξ and ξ′.

Example 1.4. When A = Z/nZ for an odd integer n, and ξ is a periodic process
satisfying ξi+1 = ξi + 1 mod n for all i, we can also take an independent copy ξ′

of ξ, and set for all i ∈ Z

ξ′′i := 2ξi − ξ′i mod n.

The same conclusion follows for the joint distribution of ξ, ξ′ and ξ′′.

Whether there exist examples of a different nature is an oustanding problem in
ergodic theory, which can be stated as follows.

Question 1.5. Does there exist a zero-entropy, weakly mixing, stationary process
ξ with a pairwise-independent joining λ, λ 6= µ ⊗ µ ⊗ µ?

Observe that the two preceding examples do not belong to the category of zero-
entropy, weakly mixing processes. The above open question is related to two im-
portant problems in ergodic theory: Whether 2-fold mixing implies 3-fold mixing,
and whether 2-fold minimal self-joinings implies 3-fold minimal self-joinings. In-
deed, a negative answer to Question 1.5 would prove both implications, since any
counterexample to one of these problems would automatically lead to a non-trivial
pairwise independent joining.

Many important results have already been obtained on this question. Most
of them consider some special category of stationary processes (e.g. finite-rank
processes [3, 10], or processes with singular spectrum [2]), and prove that in this
category a pairwise-independent 3-fold self-joining has to be the product measure.
In the present work, we have a slightly different approach: Consider a stationary
process which admits some kind of pairwise-independent 3-fold self-joining which
is not the product measure, and see which other properties on the process this
assumption entails.

1.2. The PIJ property. The special kind of pairwise-independent joining we want
to study is the case where the third coordinate ξ′′ is determined in a continuous
way by the first two.

Definition 1.6. We say that the process ξ has the PIJ property if there exist a
pairwise-independent joining λ of ξ and a continuous function ϕ : AZ × AZ → A

satisfying

(1) ξ′′0 = ϕ(ξ, ξ′) (λ-a.e.)

This amounts to saying that there exists some p ∈ N such that

(2) ξ′′0 = ϕ(ξp
−p, ξ

′p
−p) (λ-a.e.)

We will sometimes refer to this integer p as the width of the joining λ.
The two examples given above (uniform Bernoulli and periodic process) obviously

have the PIJ property, with p = 0. It is straightforward to check that the PIJ
property is preserved by topological conjugacy and independent product. Therefore,
we get from these examples a whole family of PIJ processes, which all are subshifts
of finite type. This leads to the following question.
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Question 1.7. Do there exist other processes enjoying the PIJ property than the
processes arising from Examples 1.3 and 1.4?

A connected problem was raised by Ryzhikov [9] who asked under which con-
dition it is possible to find a process ζ = ϕ(ξ, ξ′) independent from ξ and from ξ′

(where ξ and ξ′ are two independent copies of the same process).

1.3. Results. Our first result, presented in Section 2, states that a process which
has the PIJ property is either periodic or has positive entropy. Therefore, no process
possessing the PIJ property can answer positively to Question 1.5. This generalizes
the results obtained in [7, 8] in the case where the width of the joining is 0. Note that
the first result in this direction was obtained by Ryzhikov in 1993: de Sam Lazaro,
Thouvenot and Ryzhikov noticed that Assertion 4.4 in [11] could be reinterpreted
in the following elegant form: If ξ, ξ′ and ξ + ξ′ are pairwise independent 2-valued
processes, then ξ is Bernoulli or periodic.

In Section 3, we study irreducible aperiodic subshifts of finite type having the PIJ
property. We show that their Perron value is an integer, which implies that they
are measure-theoretically isomorphic to a uniform Bernoulli shift (cf. Example 1.3).
We even prove a stronger result: any irreducible aperiodic subshift of finite type
with the PIJ property is shift-equivalent 1 to a full shift.

Finally, we ask whether any process with the PIJ property is a subshift of finite
type. We prove in Section 4 that a slightly stronger property than PIJ is sufficient:
If, in the definition of the PIJ property, we further require that the first coordinate
be a continuous function of ξ′ and ξ′′, then the process is a subshift of finite type.

All these results lead to the conjecture that there are no other processes with
the PIJ property than those which arise from our two examples by topological
conjugacy or direct product.

2. General consequences of the PIJ property

2.1. Zero-entropy implies periodicity.

Theorem 2.1. If ξ has the PIJ property, then

• either ξ has positive entropy,
• or ξ is periodic.

One of the main ingredients for the proof of this theorem is the property of
quasi-uniformity of the measure µ which is a consequence of the PIJ property.

We call cylinder of length ℓ any event of the form (ξi = ai, . . . , ξi+ℓ−1 = ai+ℓ−1),
provided that the sequence (ai, . . . , ai+ℓ−1) is seen with positive probability. This

cylinder will be denoted by [ai+ℓ−1
i ]. The set of all words of length ℓ appearing

with positive probability will be denoted by Lℓ.

Definition 2.2. The probability distribution µ is said to be quasi-uniform if there
exists a constant K > 0 such that, if B and C are two cylinders of the same length,

(3)
1

K
µ(B) ≤ µ(C) ≤ Kµ(B).

1Williams [12] conjectured that shift equivalence was the same as topological conjugacy, which
was disproved by Kim and Roush [4]. Even so, Williams’ conjecture could be true when one of
the subshift is the full shift.
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Lemma 2.3. Assume that ξ has the PIJ property with some joining λ of width p.

(i) If A and B are two cylinders with respective lengths ℓ ≥ 1 and ℓ+2p, then
µ(A) ≥ µ(B).

(ii) µ is quasi-uniform.
(iii) µ has maximal entropy among all invariant probability measures with the

same support.

Proof. Since µ is shift-invariant, there is no loss of generality in assuming that A is

of the form [aℓ−1
0 ] and B = [bp+ℓ−1

−p ]. Under λ, ξ′ and ξ′′ are independent, therefore

λ(ξ′ ∈ B, ξ′′ ∈ A) > 0.

We can thus find some θ > 0 small enough such that

Cθ := {ξ ∈ AZ : λ(ξ′ ∈ B, ξ′′ ∈ A|ξ) > θ}
has positive probability. By (2) and by definition of Cθ,

(ξ′ ∈ B, ξ ∈ Cθ) ⊂ (ξ′′ ∈ A, ξ ∈ Cθ).

Using pairwise independence, we get

µ(B)µ(Cθ) = λ(ξ′ ∈ B, ξ ∈ Cθ) ≤ λ(ξ′′ ∈ A, ξ ∈ Cθ) = µ(A)µ(Cθ).

Hence µ(B) ≤ µ(A).

Let A1 = [aℓ−1
0 ] and A2 be two cylinder sets of same length ℓ. Applying the first

part of the lemma, we obtain

µ(A1) =
∑

a
−1

−p
,a

ℓ+p−1

ℓ
: a

ℓ+p−1

−p
∈Lℓ+2p

µ([aℓ+p−1
−p ]) ≤ |A|2pµ(A2),

which proves (ii).
It follows that the entropy of ξ is

h(ξ) = lim
ℓ→∞

1

ℓ
log |Lℓ|,

which clearly achieves the maximum possible entropy for invariant measures with
the same support as µ. �

Proof of Theorem 2.1. Let us assume that ξ is a zero-entropy process satisfying the
PIJ property, with the 3-fold self-joining λ of width p. We have to prove that ξ is
a periodic process. Without loss of generality, we can assume p > 0.

We know that ξ is quasi-uniform. Let K > 0 be a constant satisfying (3) for
all cylinders B and C of the same length. Observe that, if X is a random variable
taking values in A such that

(4) ∀a, b ∈ A,

P(X = a)P(X = b) > 0 =⇒ 1

K
P(X = a) ≤ P(X = b) ≤ KP(X = a)

then there exists δ > 0 satisfying

(5) H(X) < δ =⇒ ∃a ∈ A, P(X = a) = 1.

We now consider the distribution of ξ0 conditioned on ξ−1, . . . , ξ−k, k ≥ 1. It obvi-
ously satisfies (4) for any choice of ξ−1, . . . , ξ−k. Moreover, since ξ has zero entropy,
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the measure of the set of sequences (ξ−1, . . . , ξ−k) such that H(ξ0|ξ−1, . . . , ξ−k) < δ
tends to 1 as k → ∞:

µ (H(ξ0|ξ−1, . . . , ξ−k) < δ) −−−−→
k→∞

1 .

Therefore

µ
({

[a−1
−k] : ξ0 is determined by (ξ−1

−k = a−1
−k)

})

−−−−→
k→∞

1 ,

where we say that a random variable X is determined by (Y = y) if there exists a
value a such that P(X = a|Y = y) = 1. Let us define the sets of cylinders

Ck :=
{

[ak
−k] : ξk+p

−k−p is determined by (ξk
−k = ak

−k)
}

.

Observe that all cylinders in Ck have the same measure µk : Indeed, let A and B
be two cylinders in Ck and A′ be the cylinder of length (2k + 1) + 2p such that

ξk
−k ∈ A ⇐⇒ ξk+p

−k−p ∈ A′ .

By Lemma 2.3, we have µ(A) = µ(A′) ≤ µ(B). By symmetry, we conclude that
µ(A) = µ(B).

Moreover, µ(Ck) → 1. Hence, for k large enough, there exists a cylinder [ak
−k] ∈

Ck such that the cylinder [ak+1
−k−1] determined by [ak

−k] is in Ck+1. This implies that
µk = µk+1. Let us denote by µ∞ > 0 the ultimate value of the µk’s. If k is large
enough so that µ(Ck) > 1 − µ∞, then µ(Ck) = 1.

We conclude that, for k large enough, ξk+p
−k−p is always determined by ξk

−k. This
means that ξ is periodic. �

2.2. An algebraic lemma and its consequence on PIJ processes. We present
in this section an algebraic lemma which can be stated in a very simple context.
Let F and F ′ be two finite sets, and C be a subset of F × F ′. We are interested
in the situation where we can find two probability measures m on F and m′ on F ′

such that, under the product distribution m⊗m′, 1C is independent of each coordi-
nate. In other words, we demand that there exist two finite families of nonnegative
numbers (m(x))x∈F and (m′(x′))x′∈F ′ such that

(6)















∑

x∈F

m(x) =
∑

x′∈F ′

m′(x′) = 1

∀x0 ∈ F, ∀x′
0 ∈ F ′,

∑

x:(x,x′

0
)∈C

m(x) =
∑

x′:(x0,x′)∈C

m′(x′)

It may happen that many pairs (m, m′) satisfy this requirement (see Figure 1),
but as the following lemma shows, m ⊗ m′(C) does not depend on the particular
choice of the pair (m, m′). And the upshot is that this quantity is always a rational
number2!

Lemma 2.4. Let (m1, m
′
1) and (m2, m

′
2) be two pairs of probability measures which

satisfy (6). Then, m1 ⊗ m′
1(C) = m2 ⊗ m′

2(C) ∈ Q.

2It would be interesting to bound the denominator of m⊗m′(C) by a (possibly linear) function
of the sizes of F and F ′.
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Figure 1. Let C be the colored elements in F × F ′. We provide
examples of pairs of probability measures satisfying (6). On the
left, m ⊗ m′(C) = 1/4. On the right, there is a continuous family
of probability measures satisfying (6) (the measure on F ′ is defined
symmetrically, with a possibly different parameter), but for each
pair of them, m ⊗ m′(C) = 1/2.

Proof. We fix x0 ∈ F . We have

m1 ⊗ m′
1(C) =

∑

x∈F

m1(x)
∑

x′:(x,x′)∈C

m′
1(x

′) =
∑

x′:(x0,x′)∈C

m′
1(x

′) = m2 ⊗ m′
1(C)

The same argument shows that m2 ⊗ m′
1(C) = m2 ⊗ m′

2(C).
Notice that (6) is a system of linear equations with rational coefficients. There-

fore, if it has a solution in R, it also has a solution in Q. �

The preceding lemma has a direct consequence for the process ξ if we assume
that it has the PIJ property. Let ℓ ≥ 1 be an integer, and denote by F (respectively

F ′) the set of all cylinders [xℓ+p−1
−p ] of length ℓ + 2p for ξ (respectively ξ′). Then

any cylinder C = [cℓ−1
0 ] of length ℓ for ξ′′ can be identified via the special pairwise-

independent joining λ with a subset of F × F ′ which is independent of ξ and
independent of ξ′. Therefore, we get the following corollary.

Corollary 2.5. If ξ has the PIJ property, then for any cylinder C,

µ(C) ∈ Q.

3. Subshifts of finite type with the PIJ property

We recall that a subshift of finite type is a subset Σ of AZ whose elements are
all sequences in which a finite number of forbidden patterns never appear. We may
always assume that all forbidden patterns have length 2: Replace if necessary A

by Aℓ−1, where ℓ is the largest length of a forbidden word. Then the subshift of
finite type can be defined by an |A|-by-|A| matrix M , with 0-1 entries, called the
adjacency matrix : Mab = 1 if and only if ab is an allowed pattern.

The subshift of finite type is irreducible if ∀a, b ∈ A, we can find k ≥ 1 such that
Mk

ab ≥ 1. In this case, there exists on Σ a unique shift-invariant measure of maximal
entropy, and the stationary process it defines is quasi-uniform (see [5], p. 166). This,
and the fact that all the examples of processes having the PIJ property that we
know arise from subshifts of finite type, justify our interest in the links between the
PIJ property and subshifts of finite type.
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Observe that there can exist only one quasi-uniform measure whose support
is a given irreducible subshift of finite type. Indeed, any such measure would
be equivalent to the maximal-entropy measure. Since the latter is ergodic, these
measures are equal. Note also that the motivations for the study of the PIJ property
allow us to restrict our interest to weakly mixing processes. Therefore we can always
assume that the subshift of finite type we consider is aperiodic.

In the sequel, we only consider subshifts of finite type which are irreducible and
aperiodic, endowed with their probability measure of maximal entropy, and use the
abbreviation IASFT to denote them.

3.1. The Perron value. Let β be the largest eigenvalue of the adjacency matrix
M , called its Perron value. Let ℓ = (ℓ1, . . . , ℓ|A|) (respectively r = (r1, . . . , r|A|))
be a left (respectively right) Perron eigenvector normalized such that

∑

ℓiri = 1.
We recall (see [5] p. 166), that the measure of maximal entropy satisfies, for any
cylinder [ak

0 ],

(7) µ([ak
0 ]) =

ℓa0
rak

βk
.

Theorem 3.1. Let ξ be an IASFT with the PIJ property. Then the Perron value
of the adjacency matrix is an integer.

Proof. Fix a ∈ A. We know from Corollary 2.5 that all cylinders have rational
probabilities. Hence, ℓara ∈ Q and ℓara/βk ∈ Q as soon as Mk

aa > 0.
Since the subshift is aperiodic, gcd({k : Mk

aa > 0}) = 1. Therefore, there exist

integers t1, . . . , tj and k1, . . . , kj such that Mki
aa > 0 and

∑j
i=1 tiki = 1. It follows

that βki ∈ Q for all 1 ≤ i ≤ j, and β
∑

tiki = β ∈ Q.
We let the reader check that if a square matrix with integer coefficients has a

rational eigenvalue β, then β ∈ Z. Hence, the Perron value of M is a positive
integer. �

Note that if we drop the aperiodicity assumption, the fact that all cylinders have
rational probabilities does not imply that the Perron value is an integer: Consider
the subshift of finite type whose adjacency matrix is

M :=









0 0 1 0
0 0 0 1
1 1 0 0
1 1 0 0









,

with Perron value
√

2.

Theorem 3.1 means that, if ξ is an IASFT with the PIJ property, then there
exists a positive integer n such that h(ξ) = log n. Since the IASFT we consider
is a mixing Markov process, it satisfies the weak-Bernoulli property, and thus is
measure-theoretically isomorphic to the full n-shift described in Example 1.3 (see
[1]).

The conclusion of Theorem 3.1 is also equivalent to the following property (see
[6], p.156): The IASFT is topologically conjugate to another IASFT for which each
vertex has n incoming edges and n outcoming edges. We will call such a subshift a
uniform subshift.
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We may ask whether any IASFT with integer Perron value satisfies the PIJ
property. The following section shows that it is not true. From now on, we will
denote by n instead of β the Perron value of the adjacency matrix M .

3.2. Independence property.

Theorem 3.2. Let ξ be an IASFT with the PIJ property. For k large enough, ξ0
−∞

and ξ+∞
k are independent.

Proof. Without loss of generality, we assume that ξ is a uniform subshift. Indeed,
the independence property is preserved by topological conjugacy (with a different
k). Therefore, for any cylinder [ak

0 ], µ([ak
0 ]) = (|A|nk)−1.

We consider a three-fold, pairwise-independent self-joining λ of width p such

that ξ′′k0 = ϕ(ξk+p
−p , ξ′k+p

−p ) λ-a.s. for any k ≥ 0.

Let us fix ξk+p
−p . Then ξ′′

k
0 is a function of ξ′

k+p
−p . We will first compute the

number of preimages of ξ′′k0 .

(8) ∀ξk+p
−p , ∀ak

0 ,
∣

∣

∣

{

ξ′
k+p
−p : ϕ(ξk+p

−p , ξ′
k+p
−p ) = ak

0

}∣

∣

∣ = n2p .

Indeed, for all cylinder [ak
0 ], by independence of ξ and ξ′′,

λ(ξ′′
k
0 = ak

0 |ξk+p
−p ) = µ(ξ′′

k
0 = ak

0) =
1

|A|nk
.

On the other hand, this is also equal to
∑

ξ′
k+p

−p
:ϕ(ξk+p

−p
,ξ′

k+p

−p
)=ak

0

µ([ξ′
k+p

−p ]) =
1

|A|nk+2p

∣

∣

∣

{

ξ′
k+p

−p : ϕ(ξk+p
−p , ξ′

k+p

−p ) = ak
0

}∣

∣

∣ ,

which proves (8).
Recall that Mk

ab is the number of cylinders of length k + 1 starting in a and
ending in b. Since the IASFT is irreducible aperiodic, there exists k large enough

such that Mk−2p
ab > 0 for any a, b ∈ A.

Let us fix a0 and ak in A. Since there are Mk
a0ak

cylinders of length k+1 starting

in a0 and ending in ak, we deduce from (8) that, once ξk+p
−p is fixed, there are exactly

Mk
a0ak

n2p cylinders [ξ′k+p
−p ] yielding ξ′′0 = a0 and ξ′′k = ak. But these cylinders are

characterized by ϕ(ξp
−p, ξ

′p
−p) = a0 and ϕ(ξk+p

k−p , ξ′
k+p
k−p) = ak. Once ξ′

p
−p and ξ′

k+p
k−p

are chosen, there are Mk−2p
ξ′

pξ′

k−p
ways of completing the cylinders. We thus obtain

Mk
a0ak

n2p =
∑

ξ′p

−p

∑

ξ′k+p

k−p

Mk−2p
ξ′

pξ′

k−p
1{ϕ(ξp

−p
,ξ′p

−p
)=a0}1{ϕ(ξk+p

k−p
,ξ′k+p

k−p
)=ak}

.

Observe there are |A|2n4p ways of choosing ξp
−p and ξk+p

k−p , because Mk−2p
ab > 0

for any a, b ∈ A. Therefore, summing over all these possible choices, we get that
Mk

a0ak
|A|2n6p is equal to

∑

ξ′p

−p

∑

ξ′k+p

k−p

Mk−2p
ξ′

pξ′

k−p

∑

ξ
p

−p

1{ϕ(ξp

−p
,ξ′p

−p
)=a0}

∑

ξ
k+p

k−p

1{ϕ(ξk+p

k−p
,ξ′k+p

k−p
)=ak}

.

Exchanging the roles of ξ and ξ′ in (8), we have
∑

ξ
p

−p

1{ϕ(ξp

−p
,ξ′

p

−p
)=a0} =

∑

ξ
k+p

k−p

1{ϕ(ξk+p

k−p
,ξ′

k+p

k−p
)=ak}

= n2p .
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We conclude that

Mk
a0ak

=
1

|A|2n2p

∑

ξ′
p

−p

∑

ξ′
k+p

k−p

Mk−2p
ξ′

pξ′

k−p
,

which does not depend on a0 and ak. Let us denote by Ck the common value of
all coefficients in Mk. We can compute Ck by recalling that all cylinders of length
k +1 have the same mass (|A|nk)−1. Since there are exactly Ck|A|2 such cylinders,
Ck = nk/|A|.

Let us see why this implies the independence property for ξ. For any j ≥ 0,

µ(ξ0
−j = a0

−j , ξ
k+j
k = ak+j

k ) = Ck

1

|A|nk+2j
=

(

1

|A|nj

)2

= µ(ξ0
−j = a0

−j)µ(ξk+j
k = ak+j

k ) .

�

Remark that since Ck = nk/|A| is an integer, we get the following corollary.

Corollary 3.3. Let ξ be a uniform IASFT with the PIJ property. Then for k large
enough, |A| divides nk, where n is the Perron value of ξ.

Example 3.4 (The triangle subshift, see Figure 2). Consider the IASFT on the
alphabet A = {0, 1, 2} with adjacency matrix

M :=





0 1 1
1 0 1
1 1 0



 .

This is a uniform IASFT whose Perron value is n = 2. In view of Corollary 3.3, it
does not satisfy the PIJ property.

1

0

2

Figure 2. Graph defining the triangle subshift of finite type.

3.3. Shift-equivalence to a full shift. We now wish to investigate whether any
IASFT with the PIJ property is topologically conjugate to the full shift on n symbols
(where n is the Perron value of the adjacency matrix). Deciding whether two
IASFT are topologically conjugate is a difficult problem, for which the work of R.F.
Williams [12] gives partial answers. Williams introduced purely algebraic properties
for square matrices A and B with entries in Z+. The matrices A and B are said
strong shift equivalent if there exist nonnegative integer matrices R1, . . . , Rm and
S1, . . . , Sm with

A = R1S1, S1R1 = R2S2, . . . , SmRm = B.

Two IASFT are topologically conjugate if and only if their adjacency matrices are
strong shift equivalent. However, strong shift equivalence is not easy to check.
That is why the weaker notion of shift equivalence has been introduced: A is shift
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equivalent to B if there are two nonnegative integer matrices R and S and an integer
m such that RA = BR, SB = AS, SR = Am and RS = Bm.

Theorem 3.5. Let ξ be an IASFT with the PIJ property. Then it is shift-equivalent
to the full shift on n symbols, where n is the Perron value of ξ.

Proof. Without loss of generality, we may still assume that ξ is a uniform subshift.
Let M be the adjacency matrix of ξ. We have shown in the proof of Theorem 3.2
that there exists a large enough integer k such that all the entries of Mk are equal.
Hence the eigenvalues of Mk are 0 (of order |A| − 1) and nk (of order 1), and
the characteristic polynomial of M is X |A|−1(X − n). Lemma 2.2.6 in [5], p. 49
then ensures that M is shift equivalent to the 1-by-1 matrix (n), which itself is
shift-equivalent to the n-by-n matrix whose entries are all equal to 1. �

Williams had conjectured in 1973 that shift equivalence was the same as topo-
logical conjugacy. Kim and Roush have found a counterexample in 1997 [4] which
does not involve a full shift. If Williams’ conjecture is true when one of the IASFT
is the full shift, then any IASFT with the PIJ property is topologically conjugate
to the full shift.

8 1

7 2

3

45

6

Figure 3. The Ashley subshift.

Figure 3 shows a graph defining a uniform subshift of finite type which is shift-
equivalent to the full 2-shift. This example was proposed by Ashley in 1989. It is
not known whether it is topologically conjugate to the full 2-shift (see [5], p. 50).
Neither do we know whether this IASFT has the PIJ property.

4. Does PIJ imply subshift of finite type?

We do not know yet if the PIJ property implies that the process is a subshift of
finite type. However, it is true for a slight strengthening of the PIJ property.

Definition 4.1. We say that the process ξ has the PIJ* property if there exist a
pairwise-independent joining λ of ξ and two continuous functions ϕ1, ϕ2 : AZ×AZ →
A satisfying

(9) ξ′′0 = ϕ1(ξ, ξ
′) and ξ0 = ϕ2(ξ

′, ξ′′) (λ-a.e.)
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It is easy to find a pairwise-independent joining λ satisfying (1) but not (9):
Take ξ to be the uniform Bernoulli process on (Z/2Z)Z, ξ′ an independent copy of
ξ, and set

ξ′′0 = ξ0 + ξ1 + ξ′0 + ξ′1.

However, for this process, we can easily construct another pairwise-independent
joining satisfying (9). We do not know whether PIJ* is strictly stronger than PIJ.

Theorem 4.2. Any process ξ enjoying the PIJ* property is a subshift of finite
type, equipped with an invariant measure of maximal entropy.

Proof. We denote by L = ∪ℓLℓ the set of authorized words in the process ξ, that
is to say all finite words that occur with positive probability. Observe that ξ is a
subshift of finite type if and only if there exists ℓ ∈ N such that for any word W of
length larger than ℓ, any a, b ∈ A,

aW ∈ L and Wb ∈ L =⇒ aWb ∈ L.

By hypothesis, there exist a pairwise independent joining λ of ξ and an integer
p such that λ-almost everywhere,

ξ′′0 = ϕ1(ξ
p
−p, ξ

′p
−p)(10)

ξ0 = ϕ2(ξ
′p
−p, ξ

′′p
−p)(11)

For U ∈ L and d ≥ 1, we define

Ext(d, U) = {U ′ ∈ Ld : UU ′ ∈ L} .

Observe there exists a word U ∈ L of length |U | > p such that for any word U1

with U1U ∈ L, Ext(2p + 1, U) = Ext(2p + 1, U1U). Indeed, it is sufficient to take
U such that the cardinal of Ext(2p + 1, U) be minimum.

We consider a word W of length |W | ≥ |U |+ 2p, and a, b ∈ A such that aW ∈ L
and Wb ∈ L. We have to prove that aWb ∈ L.

Since ξ and ξ′′ are independent under λ, we can observe with positive probability
the following situation: ξ0

−|U|+1 = U and ξ′′
p

p−|W | = aW . Therefore, there exist U1

of length |U1| = |W | + 1 − |U | and V of length |V | = |W | + 2 + 2p such that with
positive probability, we can observe

ξ0
−|W | = U1U, ξ′

2p+1
−|W | = V, ξ′′

p

p−|W | = aW

all together (see Figure 4 (1)).
On the other hand, since ξ′ and ξ′′ are independent under λ, we can observe

with positive probability ξ′
2p+1
−|W | = V and ξ′′

p+1
p−|W |+1 = Wb. By (11), this forces

ξ0
−|U|+1 = U . Hence, there exists U2 ∈ Ext(2p + 1, U) such that, with positive

probability, we can observe (see Figure 4 (2))

ξ2p+1
−|U|+1 = UU2, ξ′

2p+1
−|W | = V, ξ′′

p+1
p−|W |+1 = Wb

all together. But Ext(2p + 1, U) = Ext(2p + 1, U1U). Therefore U1UU2 ∈ L. Since
ξ and ξ′ are independent under λ, we can observe with positive probability the

following situation (see Figure 4 (3)): ξ2p+1
−|W | = U1UU2 and ξ′

2p+1
−|W | = V . By (10),

this forces ξ′′
p+1
p−|W | = aWb. Hence, aWb ∈ L.

Now, using (iii) of Lemma 2.3, we conclude the proof. �
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ξ

ξ′

ξ′′

ξ

ξ′

ξ′′

ξ

ξ′

ξ′′

p

U

p

U

W
p

U

W
p

V

W

V

V

(1)

(2)

(3)

0

0

2p + 1

2p + 1

2p + 1

2p + 1

2p + 1

p

p p

0

a

a b

b

U1

U1

U2

U2

Figure 4. The three situations used in the proof of Theorem 4.2.
In (1), we put together U and aW . In (2), we put together V and
Wb, which forces U . In (3), we put together U1UU2 and V , which
forces aWb.

Observe that possessing the PIJ* property does not imply the subshift of finite
type is irreducible: Indeed, let A = (Z/2Z) × (Z/2Z), and define the subshift Σ as
the set of sequences in AZ for which the first coordinate is constant. Let µ0 and
µ1 be the two ergodic invariant measures on Σ. This is not an irreducible subshift
of finite type, and any convex combination of µ0 and µ1 has maximal entropy. Let
µ = (µ0 + µ1)/2 be the measure giving the same mass to all cylinders of the same
length in Σ. The process defined by µ enjoys the PIJ* property with ξ′′0 = ξ0 + ξ′0
and ξ0 = ξ′0 + ξ′′0.

5. Further questions

Our results lead to the conjecture that, if ξ has the PIJ property, then ξ is
a continuous coding of one of the two examples presented in Section 1.1. If we
weaken the requirements of the PIJ property, by replacing the continuity of ϕ with
the assumption that ξ′′ be a measurable function of ξ and ξ′, we may ask whether
ξ is a measurable coding of one of these examples.
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E-mail address: Elise.Janvresse@univ-rouen.fr, Thierry.de-la-Rue@univ-rouen.fr


